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Abstract

Open environments such as the internet lead to conflict
between those whose goals are at odds: email users vs. spam,
legitimate users vs. malicious hackers, web search engines
vs. pages desiring high rankings, etc. This paper uses a game
theoretic approach to identify a steady-state: What happens
when both parties are doing the best they can to achieve
their (conflicting) goals? We demonstrate that in a spam
email setting, filters should concentrate on attributes that are
expensive for the spammer to modify.

1 Introduction

Many data mining applications, both current and proposed,
are faced with an active adversary. Problems range from the
annoyance of spam to the damage of computer hackers to the
destruction of terrorists. In all of these cases, data mining
has been proposed as a solution: from training spam filter to
using data mining to identify terrorists.

These problems pose a significant new challenge: The
behavior of a class (the adversary) may adapt to avoid
detection. Of course, the data miner can also adapt, in a
never-ending information “arms race”.

Or is it never-ending? Will we instead reach a Nash
Equilibrium[7], where each party is doing the best it can?
If so, does this equilibrium give a satisfactory result for the
data miner? Or does the adversary win?

In the worst case, the adversary’s data would be indis-
tinguishable from “good” data. The result would be that data
mining would be useless: no matter what we do, we could
do no better than a pure guess. However, the more the ad-
versary’s data looks like real data, the less value it has to the
adversary. Imagine spam that exactly matched real email,
viruses that had no impact, or terrorists who never did any-
thing wrong. For the adversary’s strategy to have value, it
must have some impact - and the more the adversary tries to
look like real data, the less the value will be.

For example, look at the emails in Figures 1-3. Email
1 clearly identifies what it is trying to accomplish: convince
the reader to buy a product. Email 2 is actually a link to
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Figure 1: Straightforward advertising spam email.



Subject: Your high IQ score

From: "Tickle" <no-reply @tickle-inc.com>
Date: 27 Sep 2005 12:57:50 PDT

To: "William*" <dreamxxx@yahoo.com>

Tickle Tests

William,

As a top-scorer on Tickle’s IQ Test, the
in-depth analysis of your IQ score is FREE.

lilam

[ Click for your FREE IQ Report

You'll find out:
+ How your I1Q compares to others
« Your intellectual strengths

15 pages

« Answers to all test questions
) i about your IQ
« Simple ways to improve your IQ... and more! FRE E

This emall was sent 1o dreamox@yahoo.com
Tickle Inc., 222 Sutter St, 5th Fir, San Franclsco, CA 94108

Figure 2: Misleading email designed to avoid filters.

From: "Ezra Martens" <ezrabngktbbemn...

To: "Eleftheria Marconi" <clifton@pu...

Subject: shunless Phaxrrmaceutical
Date: Fri, 30 Sep 2005 04:49:10 -0500
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Figure 3: Spam email with text modified to avoid filters.

Proparsdtor

advertisements that have nothing to do with an IQ test — the
“test results” is simply a way to convince filters (including
the human) to let the email pass. Email 3 is heavily modified
to avoid looking like what it actually is: An advertisement for
mail-order pharmaceuticals (the HTML version uses strange
font and style commands to try to be slightly more readable;
the text version is shown to show just how far spammers
go to avoid filters.) Which is more likely to get the reader
to make a purchase? The response rate (actual sales) of
the straightforward request wili probably be higher than the
same message placed through an ad linked from the IQ test,
as many likely purchasers would ignore the bogus IQ test
results.

Thus we see that the transformations the adversary
makes to defeat the data miner come with a cost. Combining
the fact that the reward to the adversary decreases as they
try to defeat the data miner, with the data miner’s interest in
avoiding false positives as well as false negatives, can lead us
to an equilibrium where both are best served by maintaining
the status quo.

In this paper, we model this issue with respect to a
spam filtering problem. Representing the problem as a two-
player game, where the spammer tries to maximize return
and the filter tries to minimize the amount of spam while
retaining good email, we test where a Nash equilibrium
occurs. In many respects, this is similar to the work of [3];
the difference is that we carry the game to a steady-state
conclusion.

In addition to modeling the problem, we present simu-
lation results. The simulation is based on the Spam dataset
in the UCI machine learning repository [1]. This repository
does not contain sufficient data to actually know how spam-
mers would transform their advertisements to avoid detec-
tion. Instead, we use the repository to set parameters distin-
guishing spam and non-spam emails, giving a starting point
for the game. We then search for the equilibrium point for
various misclassification costs (for the filter) and transforma-
tion costs (for the spammer.)

Before going into details, we would like to emphasize
that our formulation applies to many real life scenarios, such
as intrusion detection and profiling for homeland security,
not only spam filtering. Wherever there are two parties
involved, and adversary would try to avoid being detected
by modifying their current strategy to mimic the behavior of
the other party, the scenario would fit into our formulation.

For example, the proposed Computer Assisted Passen-
ger Prescreening System II (CAPPS II)[2], designed by the
Transportation Security Agency (TSA), will classify passen-
gers into three groups. If the passenger is classified as red,
he or she will not be able to fly. If the passenger is classified
as yellow, he or she will be subject to an increased search.
Finally, a passenger classified as green will go through the
regular screening process. Clearly, real terrorists will ob-



serve the system and alter their behavior so that they will be
classified as green. Similarly, consider an intrusion detec-
tion system where each TCP/IP connection is monitored for
intrusion. The rules used to identify an attacker would be
based on unusual patterns compared with a real user. An ad-
versary would then change its attack pattern in order to avoid
detection.

Because we have access to a real spam email data, spam
filtering is our experimental application, where the parameter
values are the ones observed from the real data and functions
meaningful to the application. The results show that such
an equilibrium can be reached. Perhaps more important,
they show that if the cost to the adversary for transforming
a message is high (e.g., the response rate of the transformed
spam is very low), then there is little or no benefit to the
spammer from transforming the messages to defeat spam
filters. This has two impacts: First, spam filters need to be
designed to look at features that are expensive to modify.
Second, perhaps by publicizing this work, spammers will
realize that messages like those in Figures 2 and 3 are
worthless, and will instead concentrate on spam that is easily
filtered but likely to be of interest to those who do receive it.

In Section 2.1 we show specifically how we model
the problem, and derive an approach to determining the
Nash Equilibrium. Section 2.2 discusses techniques used
to calculate the equilibrium. We give a simple example in
2.3. Section 3 shows how we model the actual spam dataset
using this approach, and gives results. We conclude with a
discussion of future work. First, however, we will discuss
related work, both in spam filtering and game theory.

1.1 Related Work Learning in the presence of an adap-
tive adversary is an issue in many different applications.
Problems ranging from intrusion detection[l1] to fraud
detection[5] need to be able to cope with adaptive malicious
adversaries. The challenges brought by the malicious ad-
versaries are quite different than the previous work such as
concept drift[8]. In our problem, the concept is maliciously
changed based on the reactions of the classifier.

There have been applications of game theory to spam fil-
tering. In [9], the spam filter and spam emails are considered
fixed, the “game” is if the spammer should send legitimate
or spam emails, and the user decides if the spam filter should
be trusted or not. We instead look at this from the view of
designing an optimal filter in the presence of spam emails
designed to get past the filter. In [10], the adversary tries
to reverse engineer the classifier to learn the parameters. In
our work, we assume that the classifier and the adversaries
actions are known to each other and try to find the Nash equi-
librium in such a setting. To our knowledge, only the work
of Dalvi et. al. [3] is directly related to our problem. In
[3], authors developed a game theoretical framework where
the adversary modifies its input to avoid being detected by

a “Naive Bayes” classifier. They gave heuristic solutions to
find the best action by the adversary given the parameters
of the “Naive Bayes” classifier and vice versa. Compared
to their work, we provide a general formulation that can be
applied to many different settings and many different clas-
sifiers (i.e, not specific to “Naive Bayes” classifier). Also,
using backward induction, we show how stochastic search
techniques can be used to find Nash equilibria for adversar-
ial learning games.

2 Dynamic Games with Complete Information

In this section, we rigorously formulate the problem using
a game theory approach, and provide a solution based on
stochastic simulated annealing and Monte Carlo integration.

Everyday, spammers change their e-mails to pass spam
filters in order to reach the users under their protection.
Based on the changes done by spammers, the classification
rules are updated in spam filters to block the modified spam
e-mails. This process can be considered as a game between
a spammer and a spam filter.

2.1 Formulation of the Game Our goal is to give a rea-
sonable framework where we can analyze such games and
find the Nash equilibriums of those games. Nash equilibrium
for our application is the point where given the spammer’s
strategy, the spam filter has no incentive to change its rules
and given the spam filter rules, the spammer has no incentive
to modify his e-mails ([7]).

The spam filtering scenario can be formulated as a two
class problem, where class one () is the regular class
and class two (wg) is the “spam” class. 7 attributes would
be measured from a subject coming from either classes.
Denote the vector of attributes by z = (z1,22,...,2Z,)".
Assume the attributes of a subject 2z would follow a different
distribution for different class values. Let f;(z) be the
probability density function of class 4, ¢ = 1, 2. The overall
population is formed by combining the two classes. Let p;
denote the proportion of class ¢ in the overall population.
Note p1; + p2 = 1. The distribution of the attributes = for
the overall population could be considered as a mixture of
the two distributions, with the density function written as
f(@) = p1f1(z) + p2fa(2).

Assume that the adversary can control the distribution
of the “spam” class 7. In other words, the adversary can
modify the distribution by applying a transformation T to
the attributes of a subject z that belong to me. Hence fa(z)
would be changed into f§(z). Each such transformation
would have a cost, for example due to the lost effectiveness
of modified spam emails. On the other hand, the adversary
gains a profit when a spam (72) is classified as a regular e-
mail (71).

The spam filter attempts to classify the messages and
block the spam emails. Here we examine the case where



a rational adversary and a rational spam filter play the
following two stage game.

1. Given the initial distribution and density f(z), the
adversary will choose a transformation 7" from the set
of all feasible transformations S.

2. After observing the transformation T, the spam filter
will create a classifier that minimizes its cost.

In reality misclassifying a regular email into a spam
email would have more serious consequence than failing to
block a spam email. Hence we consider a minimum cost
Bayesian classifier. Define ¢;; be the cost of classifying a
subject € m; given that in fact x € ;. We stress that the
framework and the solution we present in the paper could
adopt any classifier.

Using the population proportion p; of each class as the
prior probabilities, and after observing the transformation
being applied to the “spam” class (f7 (x)), the Bayesian
classifier considering the cost of each action ([6]) is:

(c12 — c22)p2f7 (z) < (c21 — c11)prfi(z)
otherwise

™
hr(z) = { o
We assume that the values of p; and p; will not be affected
by the transformation, meaning that spammer would modify
the emails but in a short time period would not significantly
increase or decrease the number of spam emails sent out.

The spammer’s goal is to find the transformation T°
that belongs to S which maximizes his profit. By using
transformation T, the spammer attempts to increase the
number of spam instances that are classified as regular ones.
Meanwhile the transformation may change the adversary’s
gain of an instance successfully passed the detection. Define
g¥ (x) as the profit function for a spam instance = which is
classified as a regular one, after the transformation 7" being
implemented.

After observing the transformation 7', spam filter would
use h7(z) defined above as its classification rule. Let LT =
{z : (c12 — co2)p2ff () < (ca1 — c11)p1fi(z)} be the
region where the instances are classified as 7; based on
hr(z). Define the adversary gain of applying transformation
T as:

9.1) = [ (6" @F (@)da) = Egp (I @) %" @),

L

which is the expected value of the profit generated by the
spam instances that pass the spam filter under transformation
T. The above definition of the adversary gain would work
for any classifier. Here L is the region that email instances
would be classified into class 1 (regular emails) for that
classifier, after adjusted to the transformation T' performed
by the adversary.

Using backwards induction ([7]), we can write the Nash
equilibrium as (T, hy-(z)) where
@2.1) T* = argmazres (9e(T))

The above formulation could accommodate any well de-
fined set of transformations S, any appropriate distributions
with densities f1(z) and f2(z), and any meaningful profit
function g7 (z). Next we present a solution under this gen-
eral setting.

2.2 Stochastic Search Algorithm Since the domain of the
integration L7 for the adversary gain g.(T') is a function of
the transformation T, finding an analytical solution to Equa-
tion 2.1 is very challenging. In addition, even calculating the
integration analytically for a specific transformation is not
possible for high dimensional data. We have to numericaily
evaluate g.(T"). Because of these limitations, we consider
stochastic search algorithms for finding an approximate so-
lution to Equation 2.1. A typical stochastic search algorithm
for maximization problems works as follows; First, algo-
rithm assigns a random initial point and tries to search the
solution space by randomly moving to different points based
on some selection criteria. Usually, the selection criteria in-
volve calculating the function that needs to be maximized for
the current and the new point in the solution space. Clearly,
this implies a computationally efficient method for calculat-
ing the integration for g.(7T") is required, since the process
will be repeated for hundreds of thousands transformations
in S. Furthermore a stochastic search algorithm with ability
to converge to the global optimal solution is desired.

In the rest of this section, Monte Carlo integration
method is introduced to compute g.(T") and simulated an-
nealing algorithm is implemented to solve for the Nash equi-
librium.

2.2.1 Monte Carlo Integration Monte Carlo integration
technique generally converts a given integration problem to
computing an expected value. Assume that we would like
to calculate [ g(x)dz. If we can find a probability density
function f(z) (g f(z)dz = 1) which is easy to sample

from, then
= [ 42 pa)de = B, LD
Jateis = [ 565 = roree = B (550

The integration equals to the expected value of g(z)/f(z)
with respect to the density f(z).

The expectation of g(z)/f(z) is estimated by comput-
ing a sample mean. Generate m samples {z()} from f(z)
and calculate pm = 1/m x 37" (g(z®/ f(z(?)). When
sample size m is large enough, p,,, provides an accurate es-
timate of [ g(z)dz.

The integration for computing g.(7") can be rewritten

g9(z)



as:

02 o) = [ (1@ x @) )

In the above formula, I (z) is the indicator function and re-
turns 1 if z is classified into 71, i.e. (c12 — c22)pa f4 (x) <=
(e21 — c11)p1fi(z), else returns 0. fF (z) is naturally a
probability density function. Therefore g.(T") could be cal-
culated by sampling m points from f7 (), and taking the
average of g7 (z) for the sample points that satisfy (c;o —
ca2)p2f3 (x) <= (ca1 — c11)p1f1 (). The pseudo-code for
Monte Carlo integration is given in Algorithm 2.2.1.

Algorithm 2.1 Monte Carlo Integration
{Evaluating g.(T") for a given transformation 7'}
Generate m samples {z(* }from £ (z)
sum =20
fori=1tomdo
if (c12—c22)p2 /7 () <= (c21—c11)p1 f1(z(?) then
sum = sum + g¥(z®)
end if
end for
return sum,/m

2.2.2 Simulated Annealing Simulated annealing is a
stochastic search method that is based on an analogy taken
from physics[4]. Physical systems that have many interact-
ing components can be in any of the possible states based
on some probability distribution. For high temperatures, a
system can be in any one of the possible states with roughly
equal probability. As the temperature decreases, the system
will choose a low energy state with higher probability. Simi-
larly, when the temperature is high, our simulated annealing
algorithm will select a solution from the search space with
roughly equal probability. As the temperature gets lower
later in the search, the algorithm will converge to a globally
optimal solution.

Our version of simulated annealing algorithm, first se-
lects few random transformations and tries to get a good
starting transformation. (Algorithm 2.2.2, Lines:1-3).

After the selection of the initial transformation, for
each temperature, a few hundred transformations are se-
lected from the neighborhood of the current transformation
(Lines:7-9). New transformation replaces the current trans-
formation if it gives a greater value of g.(7") (Lines:10-13).
In case the new transformation is not better than the current
one, simulated annealing algorithm may choose it with some
probability. This probability is calculated using the value of
the new transformation, the value of the current transforma-
tion and the current temperature (Lines:15-17). This proba-
bilistic step enables the algorithm to escape local maxima[4].
In Algorithm 2.2.2 (Line:15), rand(0, 1) generates a random

number uniformly distributed between 0 and 1. Also current
temperature is reduced by multiplying it with a reduction rate
(Lines:19). The whole process is repeated until the algorithm
freezes.

Later in our simulation study (Section 3.2), the algo-
rithm appears to converge extremely slowly even when there
are only 6 attributes. We force the algorithm to stop when the
temperature drops below a prespecified minimum tempera-
ture. This may cause the algorithm to stop at a local optimal
value. Nonetheless, we obtained good simulation results.

Algorithm 2.2 Simulated Annealing Algorithm for Solving
for Nash Equilibrium
Require: TempMin,TempMaz,0 < ReductionRate <
1,SampleSize
1: Select random T and evaluate g.(T')
2: Let T¢ be the starting transformation with value evalc =
ge(Te)
3: Let T be the best transformation seen in the search with
value evalg = ge(Ty)
4: Ty = T, evalg = evalc
5: TempCurrent = TempMazx
6: while TempCurrent > Tempmin do
7
8
9

for i = 1 to SampleSize do
Randomly select T, in neighborhood of T,
Let evaln = g.(T3,) for T,,

10: if evaln > evalc then

11: T, = Ty, evalc = evaln

12: if evalg < evaln then

13: Ty = Ty, evalg = evaln

14: end if evaln—evale

15: else if rand(0, 1) < eTempCurrent then
16: T. = T, evalc = evaln

17: end if

18:  end for

19:  TempCurrent X = ReductionRate
20: end while

2.3 Example with Mixture of Gaussian Distributions
Although the simulated annealing algorithm terminates at
a prespecified temperature instead of freezing naturally, if
the temperature is low enough, the algorithm should return a
solution in the correct global optimal region. In this section
we will demonstrate the power of the search algorithm on
a specific setting of the profit function ¢7 (z), distribution
densities f1(z) and fo(z), and a set of transformations S.

2.3.1 Profit Function and Gaussian Mixture First define
the profit function g7 (z) as:

2.3) g (z)=g~alz" — 2|,



where 7 is the transformed spam instance, z is the original
one, and g and ¢ are positive constant numbers. To quantify
the difference of the spam instance x before and after trans-
formation T', we compute the L1 norm of zT — z. This is
simply summarizing the absolute differences of the individ-
ual attributes before and after transformation. The constant
value g is the constant profit generated by original instances.
‘We assume the profit would decline linearly according to the
extent of the transformation. Here a is the declining rate.
This definition of the profit is based on the following intu-
ition: The more the original distribution changes, the higher
the cost for the adversary. Hence it is possible to reach a
point that adversary stops modifying the instances, and the
Nash equilibrium is established.

Further assume that each class m;, ¢ = 1,2, has a
Gaussian distribution.  f;(x) is the density function for
Gaussian distribution N({u;, X;). This is based on our
observation of a real dataset. Refer to Section 3.1. After log
transformation, some variables reveal a Gaussian structure.
The Gaussian mixture is used in our simulation study in
Section 3.2 as well.

Consider the set of linear transformations S. Define T’
as a n X n real matrix, the transformed instance 27 = Tz
has every element wf as a linear combination of the original
attributes (z1, @2, ..., Z)'. Both in the artificial examples in
this section and in our simulation study in Section 3.2, §
will be limited to a certain region, not the entire space of the
real matrices. Under transformation 7', f7 (z) becomes the
density of N'(T'uz, T%oT"), which is the new distribution for
the “spam” class 7o, Here T” is the transpose of T'.

Rewrite Equation 2.1 using the above specifics as fol-
lows:

2.4

T = argmazr (/
LT

1

(9-a|Tz —zl) x sz(w)dw> ;

where f7 (z) is the density of N (T ug, TE2T").

In the rest of this section the profit function g7 (z) is
simplified by setting ¢ = 1 and a = 0, i.e. no cost for
transformation. Let c;; = co2 = O and 10 = ¢co1 = 1,
i.e. no cost for correctly classifying the instances and equal
cost for misclassification. Assume ps <= p;, meaning the
number of regular instances is no less than that of spam
instances. Then the adversary gain g.(T") would reach
a maximum value 1 if there exists a 79 such that two
classes are not distinguishable after the transformation 79,
ie. f7°(x) = fi(z). Next the structure of the adversary
gain function g.(T") will be examined.

2.3.2 Adversary’s Gain If there exists a transformation
TO that could map the “spam” class 7 into the regular
class m;, the adversary gain would reach its maximum value
1. However by defining the adversary gain as the expected

value of the profit, g.(T") is discontinuous at 7°°.

1-Dimensional Example

Adversary Gain
L brd
o

o o
@ o~

0.2

0.1

2 4 6 8 10 12 14 16 18
Transformation T

Figure 4:
0.6

Adversary gain with true transformation equal to

1-Dimensional Example; Nei d of 0.6

Adversary Gain
o
[=2]

0.5% 06 0.605 061

Transformation T

%sg

Figure 5: Adversary gain in the neighborhood of true trans-
formation 0.6

This is demonstrated by a 1—dimensional example. Set
fi(z) be a density for N(0.2160,0.3168) and fz(z) be
a density for N(0.36,0.88). Let g7(z) = 1 for all z,
Ci1 = C29 = 0 and ci2 = co1 = 1, and P1 = D2 = 0.5.
A transformation T = 0.6 would transform fo(z) into
fi(z). In Figure 4, the value of the adversary gain g.(7T')
is plotted against the transformation T". g.(T") is continuous
everywhere else except at the true transformation. It has
local minimal and maximal regions.

In the neighborhood around the true transformation,
ge(T) is increasing, but not approaching the maximum
value 1. Refer to Figure 5. Fortunately since g.(7T") has



a higher value in the neighborhood of true transformation
than in other local regions, we could get close to the true
value. In Section 2.3.3, another example also suggests the
neighborhood is a good local region. With good properties
of the surrounding neighborhood, we could find a solution
close to the true transformation even when the adversary gain
ge(T') is discontinuous at the optimal solution 7°°.

The discontinuity is caused by the sudden change of the
classification region, where “spam” class will be classified
as regular. At the true transformation, the “spam” class
coincides with the regular class and will all be classified
as regular instances. Then we will integrate over the entire
space to compute g.(7"). For any other transformation 7%,
the classification region LT will experience a continuous
change with respect to T* and will never be the entire space.

Within the set of linear transformations S, there may
not exist a transformation T' that could map f2(z) into
f1(z) even if both are Gaussian densities. For example, this
happens when the two densities have the same mean vectors
and the variance-covariance matrices are different. In this
case, the adversary gain g.(T) is continuous over the entire
S, and simulated annealing algorithm will converge to the
optimal linear transformation and maximize the adversary
gain.

To test the effectiveness of the simulated annealing
algorithm we first ran it on a toy example.

2.3.3 An Artificial Example Use a two dimensional ex-
ample. Again set g7 (z) = 1 for all z, 11 = ca2 = 0,
c12 = c21 = 1, and py = p1 = 0.5. First choose a bivariate
normal distribution N (2, o2} for fo(z), a transformation T,
and let fi(z) as density for N{T'ua, Ta2T"). Since the cost
of transformation is 0, we expect the simulated annealing
algorithm to find a solution close to T to achieve near max-
imum gain when forced to stop. In our experiment, set the
parameter values as:

_ [ —0.6461
B2=1 _o.5501
s _ [04978 0
2= 0  0.7984
Choose T as:
05 0
T= [ 0 05 ]

The cooling schedule is set by fixing the temperature
reduction rate to 0.9. Stop the algorithm when reaching
minimum temperature 0.001. Set maximum temperature
to 1.5 and sample 100 points at every temperature. Our
simulated annealing algorithm managed to find the following
result which gives a near optimal value for the adversary.

_ | 0.4300 0.0320

T" =1 0.0330 0.4770

This result suggests that the surrounding neighborhood
is an optimal region and if we allow the algorithm to con-
verge, we would reach an even better result. Simulated an-
nealing is proven to converge to the globally optimal solution
but in reality has a slow convergence rate. Other stochastic
search algorithms are being considered to improve the speed.
Please refer to Section 4 for details.

3 Experimental Analysis

3.1 Spam Data Analysis In order to obtain the informa-
tion related to the variables used in spam filters and the as-
sociated distributions and parameter values, a spam dataset
documented in the UCI (University of California, Irvine) ma-
chine learning repository [1] is examined.

The spam dataset documented in the UCI repository
contains 4601 instances. Among those, 1813 belong to spam
emails, which is 39.4% of the total. 58 attributes are reported
on each instance. One is the class, indicating whether the
instance belongs to a regular or a spam email. 48 attributes
measure the occurrence frequency of certain words. 6
measure the occurrence frequency of certain characters, and
3 attributes are for the length of sequences of capital letters.
The spam and regular emails are analyzed separately to
examine the properties for each class. We worked with the
57 numerical attributes.

The values of the 54 attributes focusing on the word or
character frequencies contain many Os, meaning there are
many instances that these words or characters did no appear
in the emails. The overall distribution of one attribute for
spam emails could be formulated as the following:

Pi(X <2)=Ps(X =0)+ps x P{X <z|X >0),

where ps = P;(X > 0), the probability that a word or
character does appear in a spam email. The distribution
for the regular emails P.(X < z) could be expressed in
a similar fashion. Given an email does include a certain
word or character, we discovered that many such conditional
distributions (P, /(X < z|X > 0)) could be approximated
by lognormal distribution, for both spam and regular emails.
The three attributes for the length of sequence of capital
letters have minimum values greater or equal to 1 and
large maximum values. Some of them could be directly
approximated by lognormal distribution.

In the literature, Zipf distribution is used to characterize
the distribution of word frequencies in a natural language. It
describes a phenomenon that a few words occur frequently
while others appear rarely. In our study we focus on the
occurrence of a certain word or character in a large number
of emails. A word (character) would appear more frequently
in some emails (maybe a certain type of advertisement) than
others. Hence the distribution given an email does include
the word (character) is also a skewed distribution, but not
with such a long tail such as the Zipf distribution. Some



could be modeled as lognormal, as shown in Figures 6 and
7.

A correlation study shows that the 57 attributes for
spam emails are mostly uncorrelated. Only two pairs of the
attributes have correlation coefficients either greater than 0.5
or smaller than —0.5, showing modest to large correlation:
attributes 25 and 26; and attributes 50 and 56. On the other
hand, the attributes for regular emails exhibit much stronger
correlation structure. 30 pairs have correlation coefficients
either greater than 0.5 or smaller than —0.5 (a second look
shows these are all positive correlations), with the largest
equal to 0.9988. We suspect this is due to the fact that
regular emails have more coherent content. Therefore words
or characters would appear or disappear in groups.

It is difficult to modify the values of p; and p,.. Spam
emails serve a purpose, such as advertising, and inevitably
some words would appear more often while others almost
never. Note regular emails can not avoid these words com-
pletely. Therefore it is possible to transform the conditional
distributions with some cost, so given a word (character) oc-
curs in spam emails, the occurrence follows a distribution
similar to the one for regular emails. Then it would be diffi-
cult to separate the two classes. Further notice if a variable
Y follows a lognormal distribution, log(Y") is normally dis-
tributed, log(Y) ~ N(u,o2). To transform a lognormal
distribution is essentially to transform the underlying normal
distribution. In the simulation study, we would work directly
with normal distributions.
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Figure 6: Lognormal probability plot of the 6 selected
attributes for spam emails.

We picked 6 attributes, for which lognormal is a good
fit for both spam and regular emails and the probability of
occurring in each class is not too small. They are attributes
3, 5, 50, 53, 56 and 57. Refer to Fig. 6 and Fig. 7. On
the probability plot, the log of the variable values are plotted

against normal percentiles. A straight line is desired for a
good fit.
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Figure 7: Lognormal probability plot of the 6 selected
attributes for regular emails.

The correlation among these attributes for the spam
emails are:

1.00 0.03 -0.02 0.05 0.11 0.06
0.03 1.00 -0.03 -—-0.06 0.00 —-0.09
—-0.02 -0.03 1.00 0.12 0.61 0.21
0.06 —-0.06 012 100 0.12 0.15
0.11  0.00 061 012 1.00 048
0.06 -0.09 021 015 048 1.00
And the correlation for the regular emails are:
1.00 003 0.01 -0.02 -0.01 -0.02
0.03 1.00 -0.02 0.00 -0.02 -0.03
001 -0.02 1.00 0.02 0.02 0.05
-0.02 000 002 100 014 0.06
—-0.01 —-0.02 0.02 014 1.00 0.36
—-0.02 -0.03 005 006 036 1.00

Since most of the correlation is weak and in both classes only
one to two pairs show a modest correlation, later we will use
6 independent variables in our simulation study. Taking the
log of non-zero values, we estimated the mean and standard
deviation for the lognormal distributions. Tables 1 and 2)
contain the estimated parameter values and they are the ones
we will use in simulation:

3.2 Experimental Set-up It is interesting to see what the
adversary’s strategy would become in response to different
classification rules and transformation costs. According
to our setting a classification rule changes when the cost
matrix changes, and the adversary’s gain is affected by the



Table 1: Mean and standard deviation of the log of non-zero

attribute values for spam emails.

Attribute L o4
3 —0.6460696 | 0.7055715
5 —0.5501368 | 0.8935253
50 —2.1506839 | 0.7973027
53 —1.7247619 | 0.9477220
56 3.7256119 | 1.2580866
57 5.3754914 | 1.2592832

Table 2: Mean and standard deviation of the log of non-zero

attribute values for regular emails.
Attribute n o
3 —0.7563790 | 0.9595315
5 —0.7323973 | 1.0411335
50 —1.5978695 | 0.8483226
53 —2.8987724 | 1.1485875
56 2.4558962 | 0.9872055
57 3.9976330 | 1.4711475

profit function under a transformation 7". In this section
we search for approximate Nash equilibrium results under
various classification cost matrices and profit functions.

In constructing our cost matrices, the correct classifica-
tion costs are fixed to be 0, i.e., c11 = cg2 = 0. We would
modify the misclassification cost of classifying a spam in-
stance as non-spam and a non-spam instance as a spam.
(Please note that ¢;; is the cost of deciding = € m; given that
z € 7;. In our case, o is the class of spam e-mails and 7y
is the class of non-spam e-mails). Different transformation
costs are also considered.

Increasing misclassification cost for spam filter:
Usually having more spam emails pass the filter would cost
users a little extra time to delete them. However blocking
an important email which happens to be put in a wrong for-
mat would cause serious consequence. Here we gradually
increase the cost of misclassifying a non-spam instance and
examine the effect in the experiments.

Equal cost (¢21/c12 = 1) In this setting, the cost of mis-
classifying a spam e-mail as non-spam is equal to mis-
classifying a non-spam e-mail as spam. We use the
following parameters for the cost matrix:” ¢y; = 0,
ci12=1,c01=1,co0 =0.

Low cost (cp1/c12 = 2) For this cost matrix, we assumed
that the cost of misclassifying a non-spam e-mail as
spam is twice the cost of misclassifying a spam e-mail
as non-spam. We used the following parameters for the
cost matrix: ¢;1 = 0,c1o=1,¢c91 =2, ¢co0 = 0.

High Cost (c21/c12 = 10) For this cost matrix, we assumed

that the cost of misclassifying a non-spam e-mail as
spam costs ten times as much as misclassifying a spam
e-mail as non-spam. We used the following parameters
for the cost matrix: ¢;3 = 0, ¢12 = 1, ¢a1 = 10,
Cog = 0.

Increasing transformation cost for adversary: The
adversary’s gain is the expectation of the profit generated by
a certain transformation 7. Note that in the profit function
(Equation 2.3), there are two parameters: the profit of an
instance without transformation g, and the profit reduction
rate a. In the experiments, without loss of generality, we fix
g to be 1 and change the value of a. Please note that as the
value of a increases the cost of transforming the spam class
also increases. Based on this observation, we created three
different gain functions.

No Transformation Cost: In this setting, we assume that
using a linear transformation would not introduce any
cost to the adversary, set a = 0, and use the following
profit function: g7 (z) = 1.

Low Transformation Cost: In this setting, we assume that
using a linear transformation creates a small cost to the
adversary, set ¢ = 0.2, and use the following profit
function: g7 (z) =1 - 0.2|Tz — z|,.

High Transformation Cost: In this setting, we assume that
applying a linear transformation imposes a high cost on
the adversary, set a = 0.7, and use the following profit
function: g7(z) =1 - 0.7 |Tz — z|,.

Using the cost matrices and profit functions defined
above, we performed 9 experiments corresponding to each
and every combination of cost matrix and profit function. In
every experiment, we set the parameters of simulated anneal-
ing algorithm as the following: the initial temperature is 1.5;
temperature reduction rate is 0.94; minimum temperature is
0.001. At every temperature, we search through 200 ran-
domly generated transformations. To evaluate the integra-
tion, we used 10000 samples. We restricted our search space
to the matrices with entries chosen from (0,1).

3.3 Experiment Results Our experiment results are re-
ported in the Figure 8. Each line in the figure corresponds
to a different cost matrix for the spam filter. The gain of the
adversary is reported for every transformation cost level.

For each cost matrix of the spam filter, the initial gain
of the adversary (i.e., choosing the identity matrix as the
transformation) is given in Table 3.

Figure 8 shows that for transformation cost a > 0,
simulated annealing cannot find a transformation within the
search space that improves the gain of the adversary. For
a = 0, the adversary can increase its gain significantly by
using transformation to defeat the filter.
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Figure 8: Benefit to the adversary under different cost
matrices.

Table 3: Initial Gain of the Adversary

C21 / c12 Initial Gain
1 0.2023
2 03114
10 0.6107

These initial results indicate that even under moderate
transformation cost, an adversary has little incentive to mod-
ify its input. This suggests that in adversarial settings clas-
sifiers should be built using attributes that are costliest to
change for adversaries. Another indication of this initial re-
sult is that spam filtering based on the easily modifiable at-
tributes cannot be really effective, as the adversary will find
ways to defeat them.

4 Conclusions

Many classification problems operate in a setting with active
adversaries: while one party tries to identify the members of
a particular class, the other tries to reduce the effectiveness
of the classifier. Although this may seem like a never-ending
cycle, it is possible to reach a steady-state where the actions
of both parties stabilize. Achieving such a Nash Equilibrium
requires that the adversaries and the classifier face costs:
costs associated with misclassification on the one hand, and
for defeating the classifier on the other. By incorporating
such costs in modeling, we can determine where such a
steady state could be reached, and how best to build a
classifier to make it as effective as possible at that steady
state.

This paper has evaluated this game theoretic approach
in the spam email domain. Costs to the classifier come
both from subjecting the reader to (misclassified) spam, and
from rejecting legitimate email. The spammer faces a cost
from transforming email to defeat the classifier; while the
transformed email may get past the filter, it is much less
likely to obtain the desired response from the recipient.

While this is early work, the results are interesting. If the
cost of rejecting legitimate email is low, then (as expected),
the spammer gains by transforming the email. Perhaps
surprisingly, however, if the cost of rejecting legitimate email
is high then the spammer does as well by rot transforming
email. This is because a certain proportion of spam emails
will get through, and the value of those spam emails is as
high as getting a lot more of unreadable ones through. This
also has implications for the filter designer: By searching for
features that are expensive for the spammer to transform, the
filter can remove incentives for the spammer to send hard to
read, but hard to filter, “garbage”.

The proposed approach is not limited to application
to email. The same basic technique can be applied to
anything from intrusion detection to homeland security. Our
formulation of the problem could accommodate a wide
range of distributions, classifiers and profit functions. With
the application to spam filtering we performed experiments
on a combination of Bayesian classifier with cost matrix,
Gaussian mixture distribution and linear loss of profit for
transformations. For the spam filtering application we would
like to obtain information about classification rules used by
real spam filters.



Further the ability of the simulated annealing algorithm
to find the Nash equilibrium is examined in this paper.
Though it is able to find the global optimal solution, in our
experiments, the algorithm experienced a slow convergence
problem. We are considering other stochastic search meth-
ods. Stochastic hill climbing technique is an alternative we
have tested. With stochastic hill climbing, a new point is
chosen only if it improves the current result. To prevent the
algorithm sticking in a local optimal region, the algorithm is
repeated with a few different random starting points. Our ini-
tial results with the example given in Section 2.3.3 indicates
that stochastic hill-climbing technique could quickly find a
good local optimal solution, returning a better solution given
limited running time. For the example in Section 2.3.3, our
stochastic hill-climbing algorithm found the following trans-
formation 7. Though clearly it is far from the true transfor-
mation, the gain of the results produced by both algorithms
are very close, stochastic hill-climbing with slightly higher
gain. In higher dimensional space, i.e., considering more
attributes simultaneously, stochastic hill-climbing technique
is an alternative, since it will be extremely time consuming
for simulated annealing to converge. We would examine the
structure of adversary gain g.(7") and explore other methods
which could lead to a good solution with improved conver-
gence rate targeted on ge(T").

0.3502  0.3736

To=1| _0.3577 0.3519

With minor adjustments, our formulation could fit many
real life scenarios. We plan to extend our work in the
following directions:

Other Applications: We would like to test our formulation
on other scenarios, such as homeland security and in-
trusion detection. It would be interesting to investi-
gate whether in other applications a Nash equilibrium
is achievable.

Other Games: The two stage game with complete infor-
mation discussed in this paper might be too limited.
First we will consider what will happen when adver-
sary could only have incomplete information. Next we
would like to extend our formulation to games that in-
volve many players and possibly with incomplete infor-
mation. (For example, what if a spammer was unable to
determine if email was classified as spam?)

Designing Effective Classifiers: Our current results indi-
cate that parameter selection is very important in an ad-
versarial setting. We would like to design better classi-
fiers that do not give the adversary a cost effective trans-
formation ability.

In summary, modeling adversarial classification prob-
lems using game theory is a valuable tool. First, it gives an

idea of how effective we can expect a classifier to be in the
long term. Second, it gives insights into the problems that
enable us to build better classifiers/filters both short and long
term.
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