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Abstract

A possible approach to bandwidth selection for difference-based
variance estimators in the nonparametric regression is proposed. The
approach is based on the crossvalidation-type idea modified for the case
of correlated data. The method is compared to an alternative plug-in
style method. Difficulties in implementing the latter are highlighted
and it is argued that the proposed method represents a better alter-
native. Simulations for several models are given that illustrate good
practical performance of the proposed method.
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1. INTRODUCTION

The model we consider in this article is the non-parametric regression model

vi=g(z) + vV flz)e,i=1,...,n (1)

where g(z) and f(z) are unknown mean and variance functions, respectively.
It is assumed that f(z) € CP belong to some functional smoothness classes.
The errors ¢, i = 1,...,n are independent standard normal random vari-
ables N(0,1). For convenience purposes, we further assume that = € [0,1]
and the (fixed) design is equispaced, t.i. z; = % Our problem of inter-
est is estimating the variance function f(z) in the presence of the (infinite
dimensional) nuisance parameter g(z).

It was pointed out in the late 1980’s in [1] that variance (and not only
the mean) estimation is also an important problem. As a practical exam-
ple, we may need to construct confidence(prediction) intervals for the mean
function or to analyze immunoassay(building prediction and calibration in-
tervals) - either task will require an estimate of the variance. At first, only
the mean was assumed to be functionally dependent on the predictor vari-
able and the error variance was assumed to be constant. A few of the articles
that dealt with estimating the constant variance are [18], [7], and [8]. The
heteroscedastic case is a fairly recent research topic. Some notable publi-
cations dedicated to it are [15], [10], [6] and [3]. The functional nature of
the variance means that different local estimation techniques,uch as local
polynomial estimation, are needed. The author in his dissertation (see [14])
proposed a class of Nadaraya-Watson type local kernel estimators of the
variance function.

It is well-known that for any kernel estimator to become a workable
procedure it has to be accompanied by a bandwidth selection procedure.
The traditional application field for the kernel estimation - estimation of
the mean function in nonparametric regression - contains many different
bandwidth selection procedures.

Two most common classes of those procedures are

¢ plug-in type procedures

o data-driven procedures that minimize some estimator of the mean
squared error (MSE)

However, the same problem with respect to the kernel variance estimators
has received scant attention so far.




In this article, we work with the variance estimation method described
in [14]. First, we briefly describe the method. Next, we introduce a suitable
crossvalidation-type method for use with this procedure. The next step is
investigating its properties in Monte-Carlo settings. We will also show why
an alternative approach via a plug-in type procedure does not seem to be
a good option for our variance estimation approach although it is very at-
tractive conceptually. As a sidenote, there are other possible nonconstant
variance estimation procedures that have been suggested in recent years. We
can mention, among others, the approach in [6] that is based on smoothing
squared residuals from the local linear fit of the mean function. [16] uses a
similar idea, only in place of local linear regression the Gasser-Miiller kernel
estimation is used. As for the bandwidth selection procedures, [6] uses the
bandwidth selection method from [5]; as possible alternatives, the crossval-
idation bandwidth rule or the plug-in approach of [20] are also mentioned.
[16] (1994) uses a simple "leave-one-out” crossvalidation. Note that those
are not methods designed specifically for the bandwidth selection in the vari-
ance estimation context: since the problem of variance estimation in both of
the abovementioned articles is being reduced to the local linear regression,
the methods used are the classical ones designed in the local polynomial
regression setting.

2. METHOD DESCRIPTION

Once again, we consider a model (1). What follows is a brief review of the
method to be used to estimate the variance. For a more detailed treatment
of this subject please see [14].

Definition 2..1. A difference sequence of order r is a sequence of real

numbers d;,i = 0,...,r such that its elements sum up to zero:
T
> di=0 (2)
=0

while the sum of squares is 1

}T: =1 (3)
1=0

The first step is to construct the building blocks for the variance es-
timator. We call them pseudoresiduals of order r and use the following
definition.




Definition 2..2. A pseudoresidual of order r is
r—1
Ai =) diyjsi (4)
=

where {d;}I_, is a difference sequence as defined in (2) and (3).

Example The (unique) difference sequence of order 2 is {—1—2—,—%}

The corresponding pseudoresidual is A; = ———yi_\}’%—l .

Remark 2..3. It is also possible to define the pseudoresidual A; as being
symmetric around y;:

r—1

A=) ;- [m41] 4441 (5)
=0

Note that this choice does not influence any asymptotic results.

Next, we define the variance estimator as the weighted local average of
the squared pseudoresiduals of order r. Each pseudoresidual is a normalized
difference of  + 1 observations; it can be viewed as the rough first-step
estimate of the variance function f(z). If this view is adopted, the next step
of taking a weighted local average is nothing else but smoothing of several
rough estimates to produce a more precise one. The following definition
should provide a clear insight into the nature of this estimator.

Definition 2..4. Let us assume that the kernel function K(-) is a proper
density on [—1,1]. Then, the variance estimator of order r is defined as

Sy AZK (355
>t K (%55)

Remark 2..5. By definition, any kernel function K (-) must satisfy [ K (u) du =
1 but it need not be the proper density. (see, e.g. [11]). We can also de-
fine (6) with this more general kernel in mind. In such a case, the ”best ”
bandwidth has to be defined in the minimax sense over a certain class of
variance functions F and the rates of convergence are then different from
those we obtain. The functional class F has to be wide enough to contain
the set of twice continuously differentiable functions we use in this article.
For example, we can assume that F = W3 - an Ly-based Sobolev space.

Fulz) =

(6)




Remark 2..6. This estimator is conceptually equivalent to a NW kernel
estimator though of course A,z,,i are not independent.

Various properties of this estimator were derived in [14] including closed
form expressions of the asymptotically optimal bandwidth and integrated
mean squared error (MISE). Ignoring the higher-order bias terms that de-
pend on 7, [14] showed that for fixed r, h — 0, n — 0o and nh — oo
the asymptotically optimal (in the sense of [17] and [19]) bandwidth A ~
O(n~1/5) while MISE ~ O(n~*/%). Unfortunately, these results do not pro-
vide us with a bandwidth selection algorithm which is an obvious priority
before the method can be used in practice.

3. PLUG-IN APPROACH TO BANDWIDTH
SELECTION

From [14], we know that the exact optimal bandwidth is

h=n-1/5 [CRKffz(w) dﬂﬂ]m
B 205 [1f"(z)]? de

r r—k 2
=2 (22 (Z djdj+k) + 1)
k=1 \ j=0

is the constant that depends on the chosen difference sequence {d;}. (see
[14]). The expression (7) contains quadratic functionals of the unknown
variance function, namely [ f2(z)dz and [[f"(z)]? dz. A common notation
for them is

where

Mﬁi/F@Mm (®)
and

R(F) = [If @) s (9)

(see,for example [21]). Then, if some estimates of these functionals R(f)
and R( f ) are available, the plug-in estimator of the optimal bandwidth A

h=n"1/5 M (10)
20KR(f")




This suggests using (10) to derive a possible bandwidth selection method.
However, we have not found this method to be practicable.

Remark 3..1. To help the reader to understand why this method cannot
be applied easily note that already at this stage in order to estimate one
unknown quantity (bandwidth k) we have to estimate two (functionals (8)
and (9)).

It seems that estimating bandwidth by a plug-in method is a more com-
plicated problem than the original problem of variance estimation itself.
That makes the alternative approach that we consider in the next chapter
all the more attractive.

4. CROSSVALIDATION APPROACH

The basic idea of any crossvalidation-type method is to estimate the true
MISE (mean integrated squared error). By definition, MISE depends on the
unknown function f(z); thus, we want to have a data-driven estimator that
mimics its behavior

In order to make it easier to follow we will use the notation fh(x) to stress
the fact that the variance function estimate depends on the bandwidth h.
Remember that the integrated squared error is a global measure of risk
defined as

MISE = / E (fa(z) - f(2))* da (11)

We will also introduce its discrete counterpart that we are going to call
discrete mean squared error (DMSE)

DMSE =n 3" F (fa(as) — £(zi))? (12)

i=1

Both (11) and (12) depend on the unknown variance function f(z) and
so we need to estimate them.

One possible way of estimating (11) can be briefly described as fol-
lows. Partition the data {z;,y;} at random into K approximately equal
and disjoint subsets. Each of these subsets consists of about k; pairs where
> k;j = mn. Let the {:Ef,gjf}, i =1,...,k; denote the pairs in the jy sub-
set with the values of :Tcz arranged in ascending order; that is, a”:i < :Ic{""l,
i=1,...,k; — 1. Similarly, let {mi,y{}, i=1,...,n—k; denote the pairs in
the complement of the jth subset, again with the :cZ arranged in ascending
order. Using the terminology that originates in machine learning we call the




set {xz } the training dataset and the set {5:3} a validation dataset. Now,
let A7, A denote the pseudoresiduals formed from {zl,4/} and {#,4},
respectively. Then, let f] denote the estimator derived from the jth subset
{(2?,47} when using bandwidth » and squared pseudoresiduals (A1)2. Un-
less stated otherwise, the superscript j will be omitted for the values of the
argument z to simplify the notation.

We estimate the MISE as follows. First, define

k;
cvin) =3 (i - fi@)’ (13)
=1

Then, the crossvalidation criterion is
1 K
== E J
CV(h) n 2 CV7?(h) (14)

As a final step of the algorithm, we choose as optimal bandwidth
hov = argminyegCV (h) (15)

where H € [0, 1] is the finite grid that we use for simulation purposes.

The question about what happens to crossvalidation when the data is
correlated has been partly investigated before. In particular, C.-K. Chu
and J.S. Marron found (see [2]) that, in the case of ”leave-one-out” cross-
validation (which corresponds to K = n) and positively correlated data,
the crossvalidation will produce very small bandwidths resulting in under-
smoothed estimates; on the other hand, if the observations are negatively
correlated, then crossvalidation will produce very large bandwidths that re-
sult in oversmoothed estimates. It is unclear in general if the same happens
for K-fold crossvalidation when K < n. Thus, our method may have prop-
erties that are somewhat different from the standard K-fold crossvalidation.
It was established in [14] that for many potential applications only small
values of r, such as 7 = 2 or r = 3 are needed. We conjecture that for small
values of r the performance of this method will not be very different from
that of the usual K-fold crossvalidation for fairly large data sets.

The following heuristics should help to understand why the algorithm
described by (13)-(14) works. Note that the CV criterion as defined in (14)




gives

-

K Kk

K J . A

2D - RGP = %Z”Z(w FaP? (16)
j=1l=1 j=11=1

1 K kj 9 K k;

=D D U@ - A@? + =33 IAD - f@lf @) - fi@)
J=1 I=1 j=11=1

Looking at the terms one by one, we note that the first term in (16) does
not depend on the bandwidth k. More precisely, it is easy to check that the
first term on the right side of (16) behaves asymptotically as

2 / £2(u) du+ O(n™?) (17)

when n — co. Thus, the first term is approximately a constant for large n
To check this, note that since (AJ )% can be viewed as an estimator of the
variance function f(z) at the point Z; the expected value of the first term
n (16) . .
E[(A])? - f@)? (18)
is the mean squared error of A2 as an estimator of fh (Z1). Let us approxi-
mate [(AJ )2 — £(£))? by its expectation

[(A])? - f(@) ~ Bias?(A])? + Var (A)? (19)

The notation ¥; = y; — g(=;) (where ¢ is the generic index)will be used for
centered observations. Next, using the first-order Taylor formulas for both
f(z) and g(z) we find

2
r—1 r—1
E(A)? = E [Z dig(Zj41) + Zdjng:l
=0 =0

2

(20)

r—1 r—1
- Ty (g(xz>+g(ml+al) ) T FE) 0t S GRS G+ 8)
j=0 J=0
r—1 2 r—1
. C — _ —
< f(xl)+n—; (Z]d?) +n 1022](1?
j=1 j=1

where 0 < §; < 1,4 =1,2, C; > 0 and Cy > 0 are constants that depends
on the choice of g(z) and f(z) only. Thus, the squared bias of (AJ )? is of
the order O(n™2) as n — oo.




Next, note that (A{ )2 is a scaled x2(0) where the scaling factor is equal
to f(Z;) plus the terms of the order o(1). As a result, it is easy to check
that the variance of the squared pseudoresidual (A] )2 is

Var (A)? = 272(&) + O(n~2). (21)

(21) and the asymptotic behavior of the bias of (A{ )2 mean that (17) is true.

The second term is an approximation for the average integrated mean
squared error (MISE) of the estimator fi(z). If we can argue that the ex-
pected value of the third term goes to zero at the rate faster than the second,
the minimizer of the left-hand side in (16) (the crossvalidation criterion as
we defined it) can be expected to mimick the behavior of the minimizer of
the mean squared error of fy(z). _

To analyze the third term, note that the estimator f,{ (z) is the same as
the generic variance estimator fh (z) except that it is defined using not the
entire data set of size n but only n — k; points {z]},i=1,...,n— k;.

Thus, at any point #; from the validation data set we have

S (Ah)K (2522)

(.
7 (&) = Erem—— (22)
S K ()
Using the notation first introduced in [11], we denote
K (B=)
W(Z — 2m) = —— - (23)
St K (B5m)
thus enabling us to write the estimator (22) in the form
‘ n—k;
fa@) = 3 (AL W (@1 ~ 2m) (24)
m=1

Remember that the pseudoresiduals Ain form an r-dependent sequence; this
means that the number of those Af, that are correlated with A} is O(r).
Let us represent (24) as

@) = f @)+ fi _.(%) (25)
where - .
L@ = D (ALPW(E - om) (26)
medy




and

R _ @)=Y (AW (3 — o) (27)

medg

Here the index set J; includes those pseudoresiduals A, that are correlated
with AJ. Clearly, the cardinality of this set is at most O(r). The index set
J2 is its complement. Of course, |J;|+|J2| = n—k;. The crossproduct term

o K K

Con = = ZZ FEF (@) — @) (28)

Jlll

can be now split into two terms:

K kj
O = S UB - 1@ - f @) @9)
j=1I1=1
- —ZZ[ A - f@) A (&)
j=11=1

It is easy to analyze the first term. The factors that comprise it are
independent; also, as was pointed out before in (20), the bias of (A{)2 as
an estimator of f(Z;) is of the order O(n™!). At the same time, note that
the second factor can be viewed as the bias of fg’_r used as an estimator
of f(#;). Since the cardinality of the set J; is O(r), we can easily conclude
that |J2| = O(n). Hence, this bias is asymptotically the same as the order
of the bias of the regular estimator fi(&;): E [f(F) — f,{’_r(a?l)] = O(h?).
Consequently, choosing the usual optimal bandwidth A = O(n‘l/ %) we find
that

[(W = F@ENF (@) = fn-r (@)
=E[(A])? — FEEf (&) — for(@)]

2
-0 (%) o) = 0 (%) — o)

Thus, the first term in (29) goes to zero much faster than O(n~4/5).
Analyzing the second term in (29), it is important to remember that

fh ,(£1) is based on the finite number of terms only. Without loss of gener-

ahty, it is possible to assume that the mean g(z) = 0 for the purpose of this

10




analysis. Then, using the representation (26) for f, (%), we find that

kj o
> (AN (&)
=1
k; . .
= > A (AD*W(E — )
I=1 keJ1
2
r—1

k;
= ZZ dedqﬂp+wq+k W (% — zx)

=1 kEJ]_ p,g=0

In order to estimate the expected value of the above, we will use the up-
per bound for the absolute sth moment of quadratic forms in independent
random variables due to [22]. It allows us to conclude that

2
r—1

E Z Apylp+1Yq+k (30)
Pg=0

<C Z G (B ) (Eyh )
p,q=0

=C Z \/ f(@p1) f(Tgrk)
p,q=0

where the constant C' depends on 7 and the choice of the difference sequence
{d;}. As the function f(z) is bounded the expression (30) is bounded as well.
This allows us to conclude that

kj kj
DA (@) <CY S W@ - ax) (31)
=1 =1 keJ;

for some constant C. By definition, the coefficients W (%; — ;) are normal-
ized and add up to one:

n——lcj

Z W(E —xx) =1

k=1

Since the kernel function K(-) is assumed bounded, it is easy to see that
asymptotically, as n — oo, each coefficient W (%; — zx) behaves as O(%)

11




The number of observations in J is finite (at most O(r)), and thus

K Kk

B> S (AR, @) =0) (32)

j=11=1

It was shown in [14] that the estimator f,{’r(ml) is asymptotically consistent
and, in particular,

fi (@) = @) + —};opu) (33)

As the variance function f(z) is bounded, (33) means that the expected
value of the product f(z;) f,{r(a}l) is bounded as well. This fact and (32)
mean that the expectation of the second term in (29) is of the order O (%)
As the first term goes to zero much faster, the expectation of the entire
crossproduct (16) is also of the order O ().

We know that the first term in (16) behaves as a constant asymptoti-
cally, the second term imitates MISE of the variance estimator fh(x) and
the third one tends to zero at the rate of O(%) Thus, minimizing the cross-
validation criterion CV(h) mimics equivalent to minimizing the MISE of
the variance estimator fj, (z) and the minimizer of the crossvalidation crite-
rion (14) mimics the behavior of the minimizer of the MISE of the variance
estimator fj,(x).

5. THE FINITE SAMPLE PERFORMANCE
OF THE METHOD AND THE CHOICE OF
K: THE FIRST CASE STUDY

It is known from [14] (and earlier literature cited there) that the shape of
the mean function is not important asymptotically as long as the minimal
smoothness condition (the existence and continuity of the first derivative
¢ (2)) is satisfied. However, the mean function can become rather impor-
tant in finite samples. The mean-function related bias term can be easily
estimated for any sample size n. It was shown in [14] that asymptotically
this term becomes approximately equal to

C({di},r)lg ()2

n2
where C({d;},r) is the constant that depends on the choice of the difference
sequence {d;} and its order r. It is possible to show that, given the order

(34)
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r, the difference sequence can be uniquely selected in a way that minimizes
the variance of the estimator (6) under the constraints (2) and (3). Such
a sequence cannot be written down in the closed form but it is possible
to calculate its elements for any order r; for details, see [14] and [8]. If
this optimal difference sequence is chosen, the constant C({d;},r) becomes
Qill)éil) (see, for example [4]).

Example Suppose our variance function is constant: f(z) = 1 while the
mean function is such that it has large (in absolute value) first derivative;
for example, let us define

100z if0<z<1
g9(z) =

0 otherwise (35)

Then, it is easy to check that for n &~ 112 the term (34) is of the same
magnitude as the variance function (parameter to be estimated) itself; its
absolute value is approximately equal to 1. Clearly, in this example the
bias-related mean term is anything but negligible. O

Thus, it is important to investigate how our method will perform for
finite samples. Another important issue is a choice of parameter K. The
opinion prevailing in the literature (see, for example [12]) is that K = 5 or
K = 10 should be used; however, it is better to run a test to see what the
experience may suggest in our case.

In order to do this, we run a fixed model with different choices of K. We
use a simple choice of smooth quadratic variance function f(z) = (z—0.5)?+

0.5 and a constant mean function g(z) = %. The design is equispaced and
fixed; in other words, z; = +, 4 =1,2,...,n. We use three different sample

sizes: first, n = 500, then n = 1000 and n = 2000 data points on [0, 1]. For
each of the choices of n we try three different choices of K: K =5, 10 and
15 successively. Results are shown in figures (1),(2) and (3). All of them
employ the following convention.

On the X-axis are the values of the discreet oracle loss which is denoted

ODMSE = min n! Z:; [fh(zi) - f(:ni)]2 (36)

Here, ODMSE stands for Oracle Discreet Mean Squafed Error. Of course,
we can calculate ODMSE only because we work with the simulated data

where f(z) is known beforehand. The Y-coordinate is a crossvalidation
DMSE (CDMSE) that is defined as

CDMSE=n"1Y" [ Frow () — f(mi)] ’ (37)

i=1

13




with hcy defined by (15). Clearly, ODMSE < CDMSE. The closer CDMSE
is to the ODMSE, the better choice of the bandwidth has been made.

First, note that for the fairly low sample size of n = 500, increasing K
seem to decrease slightly the variability of CDMSE values. At the same
time, the method performance is also getting better (in case of K = 15,
all values of CDMSE except for three outliers are less then 0.025 while for
K = 5 the largest non-outlier value is above 0.03). This is not true for
larger sample sizes, though. When n = 1000, we have values of CDMSE
that are highly spread out. Increasing K does little to reduce the variability
of CDMSE; only the choice of K = 15 seems to offer some improvement
over K = 5, but the reduction isn’t great. At the same time, the method
performance as measured by the difference between ODMSE and CDMSE
gets worse as K increases; when K = 15, the largest values of CDMSE are
over 0.015 while for K = 5 they are (except for a very few outliers) staying
close to 0.010. The same trends hold when sample size is n = 2000. In other
words, increasing K does very little, if anything, to decrease the variability
while making the method performance worse.

One of the few literary sources on the subject, [12] suggests K = 5 or
K = 10 as an optimal choice. The argument goes that the choice of K is,
probably, the matter of bias-variance tradeoff for the K-fold crossvalidation
criterion as an estimator of the global mean squared error. Qur empirical
analysis suggests that, unless the sample size is quite small, K = 10 is,
probably, the better option.

6. SECOND CASE STUDY

To test how well the method performs for different possible mean functions,
the following study design was followed. We chose a smooth quadratic vari-
ance function

flz)= (az—%)z—#% (38)

that remained fixed throughout this study. The mean function choices
ranged from ones with the small mean-related bias term (34) to less smooth
ones. Since this term, if measured globally over [0,1], is asymptotically
proportional to the

R(¢) = [l @) do (39)

14




we will use the quadratic functional (39) as a measure of the mean function
influence on the variance estimation. Clearly, the larger (39) is, the more
distortion the mean function would be expected to bring to the process.

Next we define a sequence of mean functions we use for our simulation
study. Let us define first the indicator function

I(4) =

{1 ifxe A (40)

0 otherwise

for any set A. Then, the following choices are considered:
1 g(z) =%
2. g(z) = (z+ L)2xI(z < 0.5) + (252 — )2 % I(z > 0.5)
3. g(z) = 3 xsin(16mz) + 3

The setup (1)-(83) is fairly logical. Function choices range from constant
to the sinusoid (thus increasing the value of (39)). The mean function (1)
is constant, thus all its derivatives and the functional (39) are equal to zero.
Consequently, the mean-related bias term is also zero and the difference
between the small sample and large sample performance of the method is,
probably, not very large. This is clearly not the case for (2) and (3); it
is easy to calculate the value of R(g') for each of them and find out that
(39) is greater for (3) than it is for (2). Consequently, the finite sample
performance is likely to be the best for (1) and the worst for (3)

As before, we consider an equidistant design with z; = —f;, i=1,...,n
where the number of observations n is first assumed to be 500, then 1000
and, finally, 2000. We perform 100 simulations for each choice of n and use
K =10.

Definition 6..1. We define the oracle bandwidth as
ho = argmin, .y DM SE(h) (41)
and the crossvalidation bandwidth as before in (15)

Remark 6..2. The ODMSE, previously defined in (36), can be also de-
scribed as R, = DM SE(h,) while CDMSE is Rcy = DMSE(hcy). As
before, Rov > R,. The smaller (and closer to the oracle loss, respectively)
the crossvalidation loss is, the better the performance of our method.

15




In the graphs (4)-(6), the oracle risk is shown using a straight line (and
not 100 separate points for each simulation) to serve as a benchmark against
which values of the crossvalidation risk are plotted. We show three graphs
corresponding to the three possible mean function choices for each of the
sample sizes n = 500, n = 1000 and n = 2000. In each panel, we move
clockwise from (1) to (3).

Tables (1)-(2) summarize values of R(g') for each of the choices (1)-(3).
It also gives the respective median oracle loss and median crossvalidation loss
for every combination of the mean function (1)-(3) and the sample size. We
report both ODMSE and CDMSE in the form of approximate 95% binomial

confidence interval (Np;, Npy) where the percentiles p; = 0.5 — L\/g-—%, P2 =

0.5+ \1/'—%%, and N is the number of simulations performed (which in our case
is equal to 100).

Note that for different choices of the mean function the differences in
ODMSE do not look statistically significant as the confidence intervals over-
lap strongly. This seems to be true for each of the three sample sizes con-
sidered. In other words, the oracle loss changes very little, if at all, with the
introduction of a more complicated mean function.

It is not entirely clear at this stage what is the influence of the par-
ticular choice of the mean on the performance of the bandwidth selection
method. There seems to be a tendency towards increased crossvalidation
loss as the mean function curvature increases; however, the effect is not very
pronounced. Tables (1)-(2) show that overlap between confidence intervals
for CDMSE and ODMSE is still present for all choices of the mean function
at any given sample size, although it becomes very small for quadratic and
sinusoid mean functions for large n = 1000 and n = 2000. More extensive
simulations with wider choice of the mean function are necessary to clarify
this issue better.

7. THIRD CASE STUDY

Of course, the most important issue is whether the method performs well
for variance functions of different smoothness. As a smoothness measure of
the variance function the following quadratic functional is used:

R() = [ (f' @P da (42)

The reason for this choice is that the asymptotically optimal bandwidth for
the estimator (6) is inversely proportional to (42). The larger (42) is, the

16




smaller the optimal bandwidth has to be chosen to pick up ever smaller
details of the original function f(z).

We use the following study design:

1. We assume that the mean function is constant; for example, g(z) = %
for z € [0,1]. Our main purpose here is to keep the asymptotic mean-
related bias term equal to zero so that only the variance function f(z)
contributes to the mean squared error asymptotic expansion of the
estimator (6)

2. We will consider several choices of the variance function f(z). They
are arranged in a ”ladder” of possible candidates from the ones having
small (42) to those with a larger value of this functional. The choices
are:

(a) f(z)=(z—0.5)%24+05
() f(z) =2(z —0.5)2+0.5
(¢) f(z) =4(z—0.5)24+05

As we move from (2a) to (2c), the value of (42) increases; as a consequence,
we expect the bandwidth selection to become increasingly more difficult.

As in the first study, we specify the crossvalidation parameter as K = 10.
The sample size is first n = 500, then n = 1000 and eventually n = 2000.
The number of Monte-Carlo simulations for each possible combination of the
sample size and variance function is 100. Tables (3)-(4) give some indication
of the performance of the method, together with plots (7)-(9).

The first conclusion we can make is that, indeed, the median oracle loss
(ODMSE) seems to grow as the variance function becomes more difficult
to handle. For each of the three sample sizes, ODMSE grows as we move
from (2a) to the (2c) options for the variance functions. Note also that the
median crossvalidation loss (CDMSE) exhibits the same tendency, in effect
mimicking the oracle loss.

It is fairly clear just from the visual inspection of the graphs (7)-(9) that
the distance between ODMSE and CDMSE is larger for more complicated
choices of the variance function. For example, for n = 1000 and the simplest
choice of the variance function (2a) the ODMSE and CDMSE confidence
intervals still have a small overlap of 0.00027. However, for (2b) they do not
overlap at all and the same is true for (2c). The situation is exactly the same
for n = 2000. These results suggest that CDMSE becomes an increasingly
poor estimator of ODMSE as the degree of the variance function curvature
increases.
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Visually, the performance of the method seems to improve for larger
sample sizes. This improvement looks to be rather slow for the fixed choice
of the variance function f(z) which seems to indicate similarity between our
method and the classical "leave-one-out” crossvalidation. It is known that
the relative rate of convergence of the crossvalidation-selected bandwidth
estimator to the oracle bandwidth is O(n=1/19) (for details, see [9]). We
may conjecture that the similar phenomenon is at work here as well. More
extensive simulations with the wider choice of possible variance functions
f(z) are probably needed here.

8. CONCLUSIONS

At this point, we have a workable method that allows us to select the band-
width for the general variance function estimator (6). The method can be
easily implemented using any statistical software and is intuitively appeal-
ing. The method is reasonably insensitive to fluctuations in the mean func-
tion g(x); however, it does tend to break down for highly variable variance
functions, as shown in Fig. (7), (8) and (9).

There are a lot of questions that remain unanswered for now and that
need a careful investigation. A number of theoretical questions are raised
by this research. To begin with, it is unclear what is the rate at which
the bandwidth estimated by our method converges to the minimizer of the
(11). There is very little research done so far on the K-fold crossvalidation
(except when K = N - the standard ”leave-one-out” crossvalidation) even
under the ordinary assumption of independent data, let alone in a case
like ours that deals with correlated data. We know that in the case of
”leave-one-out ” crossvalidation” having positively correlated data results in
choosing a bandwidth that is smaller than the minimizer of MISE while the
opposite is true for the negatively correlated data (see [2]). It is sensible
to assume that having correlated data also influences K-fold crossvalidation
to a degree; however, a precise theoretical investigation is very much in
order here. Another interesting question that merits further discussion is
whether there possibly exists an optimal value of K such that it minimizes
the MISE. In much of our development here we have used K = 10 on the
basis of simulations shown in graphs (1), (2) and (3).
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Table 1: Performance under the changing curvature of the mean function

Median ODMSE

Mean function R(g) n = 500 n = 1000 n = 2000
Constant 0 0.00390 0.00609 0.00215 0.00375 0.00124 0.00206
Quadratic 5.07 0.00395 0.00663 0.00226 0.00329 0.00124 0.00216

Sinusoid 72n? ~ 710.61 0.00357 0.00503 0.00204 0.00314 0.00107 0.00177

Table 2: Performance under the changing curvature of the mean function

Median CDMSE

Mean function R(q) n = 500 n = 1000 n = 2000
Constant 0 0.00512 0.00780 0.00292 0.00464 0.00168 0.00284
Quadratic 5.07 0.00482 0.00814 0.00318 0.00442 0.00203 0.00263

Sinusoid 7272 ~ 710.61 0.00405 0.00568 0.00299 0.00441 0.00162 0.00235
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Table 3: Performance under the changing curvature of the variance function

Median ODMSE

Variance function R(f") n = 500 n = 1000 n = 2000
(2a) 4 0.00423 0.00695 0.00223 0.00342 0.00113 0.00175
(2b) 16  0.00579 0.01073 0.00337 0.00496 0.00209 0.00321
(2c) 64  0.01330 0.02189 0.00765 0.01117 0.00438 0.00645

Table 4: Performance under the changing curvature of the variance function

Median CDMSE

Variance function R(f") n = 500 n = 1000 n = 2000
(2a) 4 0.00532 0.00818 0.00315 0.00430 0.00165 0.00235
(2b) 16 0.00775 0.01396 0.00505 0.00676 0.00344 0.00516
(2c) 64 0.02220 0.02967 0.01308 0.01750 0.00775 0.01014
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