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Abstract

We propose a nonparametric estimator of the conditional volatility function in
a time series model with serial correlated innovations. We establish the asymptotic
properties of the nonparametric estimator, as well as the estimator of the parame-
terized innovation process. The main advantage of our approach is that it does not
require any knowledge of the specific form of the conditional volatility function. As
pointed out by Pagan and Hong (in Nonparametric and Semiparametric Methods
in Economic Theory and Econometrics, Cambridge University Press, 1991), Pagan
and Ullah (JAE, 1988) and Pagan and Schwert (JoE, 1990) most parametric mod-
els, including ARCH and GARCH models, do not adequately capture the functional
relationship between volatility and underlying economic factors. By applying our
more flexible approach /estimator these shortcomings may be avoided. Finally, some
simulations are provided.

1 Introduction

In this paper we consider estimation of a zero mean stationary time series process with
an unknown and possibly time varying conditional volatility function and serial corre-
lated innovations. A novel nonparametric estimator of the conditional volatility function
is proposed and its asymptotic properties are established. Secondly, we characterize
the estimated parameters of the serially' correlated innovation process as a solution to
a weighted least squares (WLS) problem, where the weights are given by the infinite

*The scientific notation follows Abadir and Magnus (2002).
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dimensional nonparametric estimator of the conditional volatility function. This (semi-)
parametric estimator belongs to the class of so-called MINPIN estimators and by using
the framework of Andrews (1994) the asymptotic properties of the estimated parameters
in the innovation process are readily established.

The main advantage of our approach is that it does not require any knowledge of
the specific form of the conditional volatility function. As pointed out by Pagan and
Hong (1991), Pagan and Ullah (1988) and Pagan and Schwert (1990) most parametric
models, including ARCH and GARCH models, do not adequately capture the functional
relationship between volatility and underlying economic factors. By applying our more
flexible approach/estimator these shortcomings may be avoided.

Nonparametric estimation of volatility models in economics and finance has up until
recently attracted far less attention relative to parametric estimation of the well estab-
lished (G)ARCH family of models. An important recent contribution has been made by
Fan and Yao (1998), see also Ziegelmann (2002), who derive a fully adaptive local linear
nonparametric estimator of the conditional volatility function. The approach allows for
the inclusion of strong mixing random variables in the conditional volatility function (as
well as in the conditional mean function) and consequently the model can encompass a
variety of non-linear ARCH specifications. To our knowledge, however , this nonpara-
- metric approach has not been widely applied outside the original paper by Fan and Yao
(1998), which seems somewhat surprising in the light of the above mentioned critique of
the parametric approach. ‘

A common feature shared by the (G)ARCH family of models as well as the very gen-
eral non-parametric volatility model of Fan and Yao (199) is that the innovation process
of the time series of interest is assumed to be i.i.d. In our view this is a very critical
assumption when the volatility function is allowed to be time dependent since it will -
as we will demonstrate by a simple example - imply that the ”parameters” entering the
conditional mean function will be time varying and proportional to the increase in the
conditional volatility over the most recent time period. The implication is that if the
conditional mean function is estimated assuming time invariant parameters it will be
inconsistent and the effect of this misspecification will carry over into the volatility esti-
mation. In addition, as pointed out by Halunga and Orme (2004), misspecification test
in (G)ARCH type volatility models will be asymptotically sensitive to misspecification
of the conditional mean. Based on the MINPIN estimator classical statistical inference
regarding the presence of serial correlation in the innovation process - and a potential
misspecification of the fixed parameter conditional mean function - is easily performed.

Instead of relying on the estimated mean function as in the above mentioned papers
when computing the conditional volatility function, we introduce a nonparametric esti-
mator of the conditional volatility function based on the squared differences of the time
series of interest. The history of this approach goes back to Hall, Kay and Titterington




(1990) and Miiller and Stadtmiiller (1993) among others, but have mainly been restricted
to the fixed design case with independent and identically distributed innovations.! We
generalize this approach for nonparametric estimation of the conditional volatility func-
tion allowing for the possibility of serial correlated innovations.

The paper is organized as follows: In Section 2 the model is defined and described.
Section 3 introduces the nonparametric estimator of the conditional volatility function
and its asymptotic properties are established. In Section 4 the estimated parameters driv-
ing the innovation process are defined and the asymptotic properties are characterized.
Section 5 contains simulation results and finally Section 6 concludes.

2 The Model

Consider the following process for the time series of interest denoted y; € R, t =1,2,...,T

h = Vf(mt)et, (1)

€& = oe_1+ vy, (2)

where v; ~ 1.4.d. N(0,1), ¢ € © = (~1;1), f(z:) € C?[0,1] and z; € [0,1]. As for =, it
is presumed ordered and equispaced, i.e., 21 <73 < ... < zp, and z; = % yi=1,...,T.
This assumption is standard in nonparametric function analysis. We will refer to the
function f(z) as the volatility function although it does not fully describe the variance-
covariance structure of the model (1)-(2). As it is common in nonparametric function
estimation, we assume that there exist p continuous derivatives of f(z). The assumption
that the time series v; is Gaussian is not restrictive and has been introduced mainly for
the sake of technical convenience.

Nonparametric regression with correlated errors has been considered fairly extensively
by S. Marron, see, e.g. Chu and Marron (1991). However, the main focus has been to
analyse to what extent correlation between observations influence the performance of
model-selection methods such as cross-validation. Conditional volatility function esti-
mation in case of correlated data case was to our knowledge first rigorously approached
by Fan and Yao (1998) assuming a random design; specifically, they consider the bivari-
ate vector (y:,7:) to be generated by a two-dimensional strictly stationary process with
9(z) = E(ys|w: = z) and f(z) = var(y|z; = z). They proposed an estimation procedure
that relies on first estimating the conditional mean function g(z) and then constructing
the estimator of the conditional variance function f(z) based on the estimated squared
residuals. Their estimator is asymptotically fully adaptive to the choice of the conditional

1Observations are assumed to have been ordered while the errors are independently generated from
a distribution that satisfies some regularity conditions such as the existence of the fourth moment, see,
e.g., Hall et al (1990).




mean. A slightly modified estimator was proposed in Ziegelmann (2002). A paper by Lu
(1999) introduces a nonparametric regression model with martingale difference sequence
errors but is concerned only with estimating the mean function.

Note that the model (1)-(2) can be re-written as

Yt = 9(Tts Te—-1,Y1—1; ) + /[ (T4)vy, (3)
where
9(T4, Ti—1,Y1-1;9) = f{:ifj)l)¢yt—1- (4)

Since the innovation term in (3) isnow i.i.d. the model very closely resembles the model of
Fan and Yao (1998). However, there are two important differences; Firstly, (3) potentially
involves 4 variables namely (yz,ys—1, %, T1—1), whereas the Fan and Yao (1998) model is
bivariate. Secondly, the conditional mean function given by (4) is parametric. Only in the
case where ¢ = 0, the model given by (1)-(2) becomes a special case of the model in Fan
and Yao (1998). It is also important to notice that if ¢ # 0 one would be likely to obtain
an inconsistent estimate of var(y:|2:,z:—1,y:—1) based on residuals from a least squares
regression of y; on y;—1 as one would assume that the parameter in this regression was
constant when it actually is given as ,/ﬂff—_‘%ﬁ Remarkably, this is exactly the standard
procedure when estimating (G)ARCH models, as a result of the i.i.d. assumption on the
innovation process. We recommend to test the hypothesis that ¢ = 0 before undertaking
such procedure and a test statistic will be provided in Section 4.

Our main interest is the estimation of the variance-covariance structure of the model
(1)-(2) We approach the estimation problem by constructing a two stage procedure that
first gives us the estimator of f(z) - denoted f () - based on the differences of observations
Yt and then construct the estimator of ¢ - denoted $ - that utilizes the estimated variance
function f(z). It turns out that ¢ is a MINPIN estimator as defined by Andrews (1994)
which is very convenient when characterizing its asymptotic properties as Andrews (1994)
provides all the tools necessary.

3 The estimator of f(x;)

We follow the so-called difference sequence-based approach by Hall et al.(1990). The
underlying idea is as follows: first, estimate f(z) at a point z; by Al = (o1 diye)?
where {d;} is a sequence of real numbers such that

1L Y od; =0

2. Y di=1




The sequence d; is usually called the difference sequence of order .2 Secondly, apply
a local smoother (for example, the Nadaraya-Watson local average smoother) to all A, ,
and produce the estimator

T—r —
] = Ater (w_}::_;_)
fz) = S5 At (5)
=1 K (55%)
where K(-) denotes the kernel function. Hall et al.(1990) show that, when the fixed

variance f(z) = o is estimated, both variance and mean squared error of the difference-
based estimator (5) are of the order 7. In other words, such an estimator enjoys the
parametric rate of convergence. These results were further extended by Levins (2003),
showing that in the general case of the non-constant variance function f(z) the following
is true: if f(z) € CP[0,1] and g(z) € CP~1[0,1] for some integer p > 0, as r — oo
the variance slowly tapers off at the rate of l and, asymptotically, the optimal rate of
convergence 1"~ 74T is achieved. Asymptotlcally, the estimator is fully adaptive w.r.t.
the mean function.3 Taking this approach the following nonparametric estimator of the

conditional volatility function is proposed:
1. Define the pseudoresiduals 7; as

ne=LH2 Yy T2 (6)

V2
2. Based on (6), define the variance estimator f(x) as

2\ SRR (352)
flz) = - .
o K (552)

(")

It may seem somewhat surprising that the observation differences considered use the
second lag instead of the more "mundane” first lag as done, for example, in Levins (2003).
The main reason is to ensure that the resulting estimator of the variance function f(z) is
consistent. Indeed, it is easy to check that if the pseudoresiduals are based on Ay 1 instead

ofmy = A2 ‘o the resulting estimator of f(z;) will converge to the —1%—_5) asymptotically. An

2Conditions (1) and (2) are not the only possible constraints one may want to impose on the difference
sequence {d;}. For example, it may be sensible to consider difference sequences such that not only (1)
is true, but, more generally, also }3,d; =0 Y,4d; = 0,...,%,iP~1d; = 0 while Y. 9Pd; # 0 for some
integer p > 0. If the mean function g(z) has no more than p terms in its Taylor expansion (in other
words, it is a polynomial of at least an order p), differences based on a sequence that satisfies these
additional conditions ensure that the bias of the estimator f (z) does not depend on the mean.

3When estimating a constant variance f(z) = o2, Dette, Munk and Wagner(1998) show that in small
samples the MSE of the estimator (5) depends heavily on [ [g (z)}?dz and [ lg"( (z))? dz, in particular
as the order of the sequence r increases. The choice of the proper order r therefore becomes a fairly
delicate affair. In fact, r plays the role similar to the one of the smoothing parameter. For details, see
Dette, Munk and Wagner(1998).




important property of the AR(1) time series is that the difference between its variance,
~o = var(y:), and covariance, y2 = cov(ys, yt—2), equals unity which becomes very handy
and ensures the consistency of the estimator given in (7). Notice that the estimator (7)
looks very similar to the Nadaraya-Watson estimator; it is different, however, because
the transformed data 7; that is used to construct this estimator is not independent which
is usually the case with the standard Nadaraya-Watson estimator. For definitions, see
for example, Fan and Gijbels (1995).

‘We next turn to describing the most important asymptotic properties of the estimator
(7). The degree of precision of the estimator (7} is characterized by the integrated mean
squared error (IMSE)

1 ~
IMSE = /0 (@) - F(@))? da (8)

We first establish consistency in mean squared and, as a consequence, consistency in
probability. The asymptotic rate of convergence is obtained as the direct consequence of
these results. As a second step, asymptotic normality of (7) is established next.

Theorem 1 Let data be generated according to the model (1)-(2). Assume that the
conditional volatility function f(z) > 0 is an element of C2[0,1] and K (u) is a second
order non-negative kernel function:K(u) > 0 for any u € [~1,1], p1 = [K(u)du =0
and 0% = up = [u?K(u)du # 0 and R = [ K(u)? du. Let the mean function g(z) €
C]0,1]. Then the estimator given by (7} is consistent and its mean squared convergence
rate is O(T~*%/%) with asymptotic integrated mean squared error (AIMSE) at the optimal
bandwidth value given as

1/5-

a4 ! 2 ]7°
AIMSE, = T %% @%{C(qb) /0 (f(2) dt]

[ [ - ELGET dt}

L C@) Jo F@)* dt RK}
4 )

4(Clearly, any positive definite quadratic form in the observations y¢ can be used to estimate the
variance function. We already mentioned that (6) is needed to obtain the consistent estimator of f(z).
Another purpose of using (6) and not, say, 7: = y: is that we hope to reduce the influence of the
(potentially nonzero) unknown mean g(z:) on the bias of the variance function estimator f(z:); indeed,
by using (6) the constant term in a Taylor series expansion of the function g(z:) cancels. Levins (2003)
shows that in the case of i.i.d. innovations and g(:) # O the bias term of the estimator f(z:) that is
due to the mean g(z:) is proportional to [ [g’ (2)]? dz if pseudoresiduals defined by (6) are used. For
more discussion on this topic, see Levins (2003).




where C'(¢) is a constant that depends on ¢ only. The optimal bandwidth is of the order
T~1/5 and equals

1/5
C(9) o ((2))* dt

2 2 2
do f1 [D2 Ft) - "—2LDJ,(—{)(9]—] dt

ho =T7/°

Proof of Theorem 1 See the Mathematical Appendix. O
A few remarks are in order here. First, note that the quadratic functional

P a g 2D
| [D A 5 ] i ®)

characterizes the degree of curvature of the function f(z) corrected for the correlation
present in the data. The larger (9), the smaller the bandwidth we have to choose accord-
ing to (3).

Secondly, note that when the innovations are independently distributed we have
72 = 0, C(0) = 12 and the bias becomes Bias ( f(:z:)) = Eg}i + o(h?) exactly as in
Levins (2003). The AIMSE in this case is also identical to Levins (2003). Levins’ (2003)
estimator is based on defining the pseudoresiduals as (y; — y;—1)? but not surprisingly
this now turns out not to matter asymptotically given the assumptions of Theorem 1,
whenever ¢ = 0.

Also, the rates of convergence are the same as those obtained for the kernel regres-
sion estimator of the mean function under identical smoothness requirements (see, for
example, Simonoff (1996))

Finally, as an immediate consequence of this theorem , f(:):)"g NN (z)~* for any
k> 0.

Since the estimator f(z) given by (6) and (7) converges in Lo-sense, it also converges
in probability at the rate O, ﬁ . In particular,

VTh ( f@) - f(z) - Bias ( f(x))) 2,0, (10)
where
R} 72[D?f(2)?

Bias (f(:r)) == [sz(w) " @

In the following Theorem 2 we establish that f (z) is asymptotically normally distributed
with mean

] + o(h?). (11)

E ( f(z:)) = f(z) + Bias ( f'(m)) . (12)
and variance )
var (f(:z:)) = g(ll%))—Rx. (13)

Note that expressions (12) and (13) are derived and used in the proof of Theorem 1 in
the Mathematical Appendix.




Theorem 2 Let the Assumptions of Theorem 1 hold. Then,
@) SN (B (f@), ver (f(=))). (14)

as T — o0, h — 0 and Th — oo , where E (f(a:)) and var (f(:z:)) are defined in (12)
and (13) respectively.

Proof of Theorem 2 See the Mathematical Appendix. O

4 The estimator of ¢

For notational simplicity we define and use oy = /f(z:) in this section. Following
Andrews (1994) we use a GMM approach to estimate ¢ by defining the following loss
function d;

de (0, 04=1, Y6, Ye1; 0) = (Mt (04, 011, Yt V=15 8))2, (15)

where m; (denoting a moment condition) is given as

M4 (04,061, Y6, ¥e-1;0) = (07 9 — 07 dye—1) lo7hye—1] (16)
= o7 to o1 — o7 A gyl
= Vi€t—1.

The so-called MINPIN estimator $, see Andrews (1994) for a definition, is then given as

T
~ 1 ~
¢ = glelél-z-f Zdt (Ut,Ut—l,ytayt—ﬁ $).
t=1
or equivalently as a solution to
1 I
T > om (atﬁt—n Yo, Ye-15 ¢T) =0. (17)
t=1

Consequently, by solving (17), we can write

N 1 I -1 1 I
¢r = (T;8;—21y?—1) (Tzat_la;jlytyt—l> ‘ (18)

t=1

Immediately the following asymptotic results can be established.

Theorem 3 Let the Assumptions of Theorem 1 hold. Then, the MINPIN estimator
given by (18) is consistent with respect to the true population parameter ¢, i.e., ¢ ——

do.




Proof of Theorem 3 See the Mathematical Appendix. O

Theorem 4 Let the Assumptions of Theorem 1 hold and assume in addition that
D*K (1) = DFK(-1) = 0 and D*¢? € C?[0,1] for k = 1,2. Then,

VT (r—¢0) LN (0,1 ¢3). (19)

asT — oo, h = 0 and Th — oo.

Proof of Theorem 4 See the Mathematical Appendix. O

Although the proof of Theorem 4 is based on the very general setup provided by
Andrews (1994) it could also have been carried out using the approach by Robinson
(1987), i.e., by establishing asymptotic equivalence of $T and

B 1 Z -1 1 Z
¢r = ('f Z%_—zlyf—1> (T ZUFIUF-llytytd) (20)
t=1 t=1

which requires verifying the condition vT' ($T - &5}) 250.

Now it is obvious that the estimator $T will not depend on the first stage estima-
tor of the function f(z;) asymptotically and will be asymptotically equivalent to the
maximum likelihood estimator of ¢y given that e; was observable. Consequently the
MINPIN estimator $T will be asymptotically efficient. In addition, since $T is an effi-
cient estimator of ¢g, and ¢o is the only unknown parameter in the model, the estimator
will be adaptive, see, e.g., Andrews (1994) page 59. Finally, it is noteworthy that aT, as
many semiparametric estimators, will converge to ¢¢ at the parametric VT — rate.

5 Simulations

In this section the small sample properties of the estimators of f(a:) and aT are studied
using simulations. We consider the observational data being generated by (1)—(2) for
6 alternative choices of volatility functions, assuming that the true population value
of ¢ (denoted ¢p) equals 0.6. The volatility functions are specified is Table 1. The
specifications of f(z) applied in Model 1 - 3 are included as they are fundamental in
econometrics/statistics and are typically included in graduate econometric textbook-
chapters on heteroskedasticity in regression models, see, for example Ruud (2000) and
Greene (2003). The specification of f(z) in Model 4 is adapted from Example 1 in
Fan and Yao (1998). They suggest this volatility function specification in modelling the
yields of the US Treasury Bill from secondary markets. Model 5 is also inspired by Fan
and Yao (1998), in particular, the choice of f(z) is identical to the volatility function in
their Example 2. Finally, the volatility function in Model 6 is taken from Haerdle and




Table 1: Alternative data generating processes

Specifications

Model 1 y; = 264

Model 2 y; = \/E'?et
Model 3 y; = /exp(zs)e:,
Model 4y = 1/0.02z5 %€,

Model 5 y: = 1/0.4exp(—222) + 0.2¢;
Model 6 y; = v/op(z: + 1.2) + 1.5¢(z; — 1.2)e:

Table 2: Simulated MSE of f(x;) (as described by (21)) under alternative volatility
function specifications and sample sizes. The number of Monte Carlo replications equals
1000.

T =100 T = 1000 T = 2000

~ ~

MSE(f(z:)) MSE(f(z:)) MSE(f(z:))

Model 1 0.0736 0.0443 0.0407
Model 2 0.0443 0.0143 0.0098
Model 3 1.9330 1.8977 1.9062
Model 4 0.0002 0.0001 0.0001
Model 5 0.0126 0.0023 0.0014
Model 6 0.0315 0.0049 0.0029

Tsybakov (1997). We consider first the precision of the nonparametric estimator given
by (7) based on the simulated mean squared error computed as

) 1M T 9
MSE (f(xt)) = z‘: (f Z (fs(:vt) - f(ﬂ"'t)) > (21)
g= t=1

where M denotes the number of Monte Carlo replications, T' equals the sample size.
The results for the specifications of f(z) given in Table 1 and T = 100, 1000, 2000 are
summarized in Table 2. From the results in Table 2 we see that the precision of the
nonparametric estimators improves substantially when the sample size increases from
T = 100 to T = 1000 as expected. Overall the results are very encouraging. Only in
terms of Model 3 the estimator seem to be performing less satisfying with very moderate
improvements in precision as the sample size increases.

Next, lets turn to the properties of the MINPIN estimator given by (18). To first
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Table 3: Simulated precision of ¢ (as described by ()) under alternative volatility function

specifications and sample sizes.

T =100
$  (se)

T = 1000
) (s.e.)

T = 2000
¢ (se)

Model 1
Model 2
Model 3
Model 4
" Model 5
Model 6

0.5888 (0.0854)
0.5891 (0.0948)
0.5871 (0.0806)
0.5715 (0.1235)
0.5835 (0.0817)
0.5846 (0.0807)

0.5990 (0.0264)
0.5990 (0.0300)
0.5986 (0.0244)
0.6025 (0.0390)
0.5983 (0.0258)
0.5982 (0.0249)

0.5983 (0.0173)
0.5986 (0.0200)
0.5979 (0.0173)
0.6033 (0.0258)
0.5976 (0.0184)
0.5978 (0.0183)

analyze the precision of the estimator in small samples we define

s 1.
¢'mc = 'M‘ le ¢s (22)
. 1 X, L N2
var (¢mc) - ——_—1' sz=:1 (¢s - ¢mc) (23)
where
R T L,
¢s = (Z 75ttn‘.-—l) (Z gst—lfat> (24)
t=2 t=2
~ Yst

fS(xt)

and f, s(x:) denotes the estimator of fy(z;) for s = 1,2,..., M. Again data is generated
according to the six models in Table 1 and for each replication @, is computed according
to (24). Based on each sequence {J)s}:: we compute the summary statistics given by
(22) and (23). According to Theorem 3, we would expect to see ¢ getting closer to
¢o = 0.6 and var q?)mc) approaching zero as the sample size increases. The results are
reported in Table 3. These results clearly indicate that the sample properties of the
MINPIN estimator 431: are good across all the models considered and that the estimator

works well even for small samples, i.e., for T' = 100. Finally, we consider the sample
density of dr =T ((ET - ¢0) /+/1 — ¢ which according to Theorem 4 should converge

to a standard normal density. In Figure 1 the density of dr for each of the six model
of Table 1 based on T' = 100, 1000, 2000 is depicted together with the standard normal
density. From the figure we see clearly that the simulation results confirms the prediction
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of Theorem 4. No severe small sample biases seems to be present in any of the pictures
and the small sample approximation to the standard normal in general seems to be very
good.

The simulation results presented in this section all seem to indicate the small sample
properties of the nonparametric estimator and the MINPIN estimator are very satisfac-
tory.

6 Conclusion and directions for future research

In this paper we consider estimation of a zero mean stationary time series process with
an unknown and possibly time varying conditional volatility function f(z) and serial
correlated innovations. A novel nonparametric estimator of the conditional volatility
function is proposed and its asymptotic properties are established. The main advantage
of this approach is that it does not require any knowledge of the specific form of the
conditional volatility function. The form of the volatility function estimator f (z) ensures
that, in case of the constant nonzero mean, the mean function g(z) does not influence the
mean squared error of the estimator f(z). The estimator possesses a rate of convergence
equal to T'—2P/2P+1 if the function f(z) € CP[0,1]. This is the convergence rate that is
commonly encountered in nonparametric function estimation. We conjecture that the
estimator is asymptotic minimax among all possible estimators of f(z). Research on
verifying this conjecture is ongoing. It is also useful to recall that similar estimators
ensuring the mean-related bias term of f (z) is zero can be constructed when the mean
function g(z) is a polynormial of an arbitrary order p > 0. Construction of such estimators
in the case where the time series of interest possesses a nonzero trend is an interesting
extension to be considered.

Secondly, we characterize the estimated parameter of the serially correlated innova-
tion process as a solution to a weighted least squares (WLS) problem, where the weights
are given by the infinite dimensional nonparametric estimator of the conditional volatil-
ity function. This semiparametric estimator belongs to the class of so-called MINPIN
estimators and by using the framework of Andrews (1994) the asymptotic properties of
the estimated parameter characterizing the innovation process are readily established.
This estimator is asymptotically efficient, adaptive, and enjoys the parametric rate of
convergence T~ 1/2,

Based on simulation studies the finite sample properties of the proposed estimators
are investigated and the findings are very encouraging.

It is important to stress that the present analysis has been limited to one particular
dependence structure in the innovation process, namely the simple AR(1) structure. It
is not entirely clear at this stage if the method used to construct the nonparametric
estimator can be successfully generalized to any arbitrary AR(p) structure for p > 0.
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Density

Figure 1: Small sample (simulated) densities and the asymptotic density of
VT (5571 - ¢o) /11— ¢0§ under alternative volatility function specifications. The number
of Monte Carlo replications equals 1000.
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If, however, this is feasible we conjecture that a MINPIN estimator will exist with very
similar properties to the one developed here.

An additional and natural extension to the nonparametric function estimation proce-
dure would be to relax the assumption that the function domain is compact (e.g. {0,1]).
This requirement is rarely realistic in economics, where z; cannot easily be bounded
and in addition typically will be stochastic, i.e., contain lagged values of the dependent
variable. It will be highly desirable to develop a method that would provide compara-
ble asymptotic results when the domain of the function f(z) is not compact and z is a
stochastic vector, as in Fan and Yao (1998). Such a method would facilitate the estima-
tion of nonparametric (G)ARCH models with serially dependent innovation processes.
This is currently not feasible using our estimator but we believe that our model and the
suggested approach provides an important first step in this direction.
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Mathematical Appendix

Proof of Theorem 1 We begin by finding the expected value of n? given by (6). Since
the function f(z) is twice continuously differentiable on [0,1], we can use the following
Taylor series expansion

D2 f(z)(z ~ z:)?

f(@2) = £(z) = Df (&)(z — m2) + —L2

+ o(z: — z)?,
It is easy to check that the existence of the two continuous derivatives of f(z) guarantees

that > )
£(@1) = £(2) - D (o)fa — ) + L DE 2

Note that we can write n? = 1 (f(:rt)ef + f(zi-2)€l_y — \/f(zt)f(xt_g)etet_l). Using

the Taylor expansion for f(z;) and f(z;-2) we have

V F(z:) f(zt-2)

+ o(h)?.

i

((f(:ﬂ))2 +Df(@) (@)@ — 21) + (& = ze-2)] + [DF (@)]* (& — 2:) (2 — 24-2)

L+ o aica) o))
As T4z =1+ }z + o(z) for small = we obtain the following asymptotic expansion
VIGT@D = 1@+ 3D ezt @ - mea) + 2L e,y

2 F (@) 2 f@)
FID (@)@ - 20)? + (0 = 21-0)%] + o(?)

Using that E (¢;) = 0, var (&) =y = ¢ 1=z and cov(e;, €:~;) =« yields

B = (0—m)()+0DS@) (@ - o) + (o - 21o2) (29
1 (@ = 20) + (o — 21-0)) + 29001 (@) (&~ 207 + (& ~ 1)
1 2HL (o 22) (o — 21ca)) - D) [t = 2+ (0 = )]
Since the expectation is linear

. K (2=
B(flo)) = 2 ZZ" 12(K)(_x_h_m)h ) (26)

R
Th* 2 t_ ¢ (235%) ~ Th [ K(u)du = Th asymptotically. As (Y0 — 2) = 1, the

Next, let us introduce the new variable u; = £3% and notice that Zz:lzK (252) =
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first term in (25} is equal to f(z) and consequently the bias can be expressed as

Bias (f(x)) = 2Th 270D f(z Z2utK(ut Df (x) Z 2uK (ug)| + (27)
= Df(x)?
577, | 10D°F (@) tz_ju?K w) = s ;u?ff(ut)
—72D?f(x) ZU?K ut) ] - (28)

The first group in (27) consists of the first-order terms that are asymptotically equal to
zero because our kernel K (u) is the first-order kernel; indeed, the first one of these terms
is equivalent to 4yof(z) [ uK(u)du = 0, while the second one asymptotically equals
—2v ijz(s J K(u)du = 0. As a result, the bias only depend on the second order terms.
After taking the limit as T' — o0, h — 0 and Th — oo the Riemann sums on the

right-hand side of (27) become integrals. In particular,

Bias (f(z)) = % {70D2f($) - 7—2—[1?%)]2 - 72D2f(:1:)] + O(hz)
_ hP} _ 7[D*f(z))?
- Bk oy - 2ELEL oy, (29)

asy — Y2 =1.

Now let us proceed with computation of the asymptotic variance of f (x). First, recall
that the denominator (7) is a constant and so we need only to compute the variance of
the numerator. By definition of pseudoresiduals 7?, it is clear that they form a dependent
data sequence, i.e., nf is correlated with nZ and n? is correlated with 52 etc., while 72 is
correlated with 2 and 72 is correlated with 72 etc. Keeping this in mind we find that

e (i (552)) = Fwon (x(552) o

+ ¥ conlabtix (252) K (252)).

|t—uj=2

With respect to the first term in (30), note that var(?) ~ (f(x))* var (e — €s-2)?)
asymptotically while it can be shown by straightforward calculations that

31—¢M(1+2¢%)  (1-¢%°
1+ ¢2 1+ ¢2

where Ci(¢) depends only on ¢. Therefore, up to the second order term

var(n?) = (£(z))? C1(¢),

var ((e; — €:-2)%) = 2+6¢2+3(L+¢%)2+ + = Ci(¢), (31)
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asymptotically and the first term divided by the denominator can be represented (recall
that 371> K (232) = Th asymptotically ) as

SR () “

In the same way as before, introducing the new variable u; = 252+ and treating (32) as

a Riemann sum we obtain the asymptotic expression for the first term in (30) as

2
Cl(f()T(‘}{l)(zm)) RK) (33)

where Rg = [ (K (w))? du. Now, let us consider the second term in (30). In this case,
again, up to the second order Taylor series term we have

cov(n, ) = (£(2))" cov ((ee — ex~2)”, (et—2 — €t-0)%) .

Covariance calculations are fairly long and tedious but can be done in straightforward
manner; the result is

cov (e — €s~2)%, (€t—2 — €1-4)%) = Ca(4) (34)

6% —2¢% -3
CER e 2) )

Thus, cov(n?,n2_,) ~ Ca(¢) (f(z))* and the second term after division by the denomi-

nator is 2’1’ .
ol () ().

and, in the limit, it becomes

2
————————02(f()T(£)(f)) Rk. (37)
Ultimately, the variance is
T—2
o (;n?K (”ﬁf‘)) -y, (39

where C(¢) = Ci(¢) + C2(¢). Then, the asymptotic integrated mean squared error
(AIMSE) becomes

4,4 1 2 2
AIMSE:f‘—Z—’i /0 [sz(t) 2D (f)( )]] dt + ¢)f°4Th(t) “Re. (39)
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Differentiating this expression w.r.t. h and putting the result equal to zero we find the
optimal (minimizing) bandwidth

1/5
1 2
h = T—-l/5 - C(¢) fO (f(t)) Zdt —5 (40)
4ot fy [D2#(t) - 2IEHOE] 4t

Thus, we confirm that h = O(T~1/%). If we plug the above expression back into (39) we
find that the optimal AIMSE is

4 1 4/5 1 2 012 1/5
AIMSE, = T4/ {4—"9&,5 o [wera] | [ oo - 2B dtJ
L C@) [y (F@)” et RK]
: .

Hence the optimal AIMSE is of the order O (T~4/%). O

Proof of Theorem 2 As a first step, we note that the estimator in (7) can be repre-
sented as a (normalized) quadratic form, i.e.,

2oy YD)y
f(z) = (D))’ (41)

where y = (y1,...,yr)’ is a (T, 1) vector of data generated by the model (1)-(2) while
D(x) is the quadratic form matrix

K(52) 0 —2K(Z521) 0 .0

0 K(3522) 0 —2K(2552) 0 0
D(m)z.;. SOK(EREL) 0 K(BE)HK(EE) 0 —aK(E3E) 0 . 0
0 . 0 —zK(—h—;’T-Z) P ' K(*2T)

(42)
Using the representation (41) and an elementary result about the quadratic form dis-
tribution (see Moser(1985)), we find that (41) is the linear combination of independent

X7 variables. More precisely, let us denote X' the variance-covariance matrix of y and
p =rk (D(z)X). Then we have

P
YD)y =D \xi, (43)
t=1

with A;’s being nonzero eigenvalues of the matrix D(z)X and x3}, are independent
(centered) x?} random variables. Applying a Taylor series expansion of the function f (z)
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we find that up to the multiplicative factor f(z) the variance-covariance matrix X' is

1 ) e e g
6 1 ¢ # . g
" ¢n—1 ¢n—2 el e 1

which is a Toplitz matrix of a specific kind, namely the so-called Kac-Murdock-Szego
matrix. It is known that the determinant of this matrix is (1 — ¢?)7~! and therefore
not equal to zero unless ¢ = 1, see, e.g., Dow (2003). Thus, the matrix X is strictly
positive-definite for any ¢ € © and as a consequence rk (D(z)X) = 1k (D(z)). Recall,
that in order to derive asymptotic results we require T' — o0, A — 0 and Th — oco. The
last requirement ensures that the number of points in the local neighborhood T (z) =
(x — h,z + h) about the point z remains infinite as the neighborhood shrinks, when
h — oco. Assuming the bandwidth used is the optimal, i.e., A = O(T~/%), we find that
each local neighborhood of z contains O(T%/%) points. Since the design is equispaced,
we have for t =1,...,T that

- K(0),
which is a constant term. This means that as T — 00, the rank of D(z) tends to the
rank of
1 0 =1 0 oo oo 0
01 0-10:0
01 0 -

: (44)
O S i S

and consequently rk (D(z)) < T — 2 where < stands for asymptotic equivalence. Thus,

T-2

~ 1 5

f((l?) -~ tr (D(.’B)) ; A15X1,t' (45)

To handle (45) we use the CLT version for non-identically distributed random variables

as described by Jacod and Protter (1998). To check that the conditions of the theorem
2 2

we need to verify that i) sup Tt'r_D)lfW < o0 and ii) limr_,o 231:_12 (tr—b\f;yyf = o00. Both

of the conditions are satisfied immediately as we note that

i 2OER L (yDEn) o (L),

tr (D())® = tr (D(z)? ~ tr (D(z)) Th

which completes the proof. O
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Proposition A1 Let data be generated according to the model (1)-(2). Then,
1 ~ -
(T Z‘Tt—zlytz- > (T Z g -21'!/t2 1) 0. (46)
t=

Proof of Proposition A1 Rewrite the left hand side of (46) as

and by the Holder inequality (see, e.g., B.5.14 in Davidson (1994)) we have that
11 Z

T @2 -o7%) v,

< (mtin (52) min (0?)) B (47)
=2

(48)

Note that 07 — o2 = 0p(1) and thus in order to complete the proof it suffices to show that
L ST o9k 1 = 0u(1). The following two steps are needed: (1) show that E(y?_,) < oo
and (2) show that 1 YL ,v4 | —E(yt ;) £ 0. First, notice that

op 1E<Z¢ Vg—iy— 1Z¢ Vt—ip— 1245 Vi iy 1Z¢ Vpmig— 1)‘1)

i2=0 i3=0 t4=0

E(yf—l)

© 00 oo o
_ 4 i1 At 4T3 AL
= 0, B E E E _S_ P P2 B B Vi) 1V iy 1Vt iy —1 Vg1
11 =0 12 =0 7.3=0 14-—0
© 00 oo oo
_ 4 41 4%2 4T3 A%
= 04 EEE ¢" 32 ¢ ™ B (Vy—iy —1Vt—ig—1Vsmig— 1Vt—ig—1)
11=012=013=0144=0
oo

1|M8
1|M8

E ¢ 628" ™| |B (Vi 10—t~ 1Vt ig— 10t—ig-1)|

Since Y30, z:-’:;o z;-’;;o z?:;o [ gt gie| = 2o |87 | D500 16| o 16| S50 [0 <

00 and |E (Vg—s, ~10¢ip—1Vimiz—1Vs—is—1)] < B (vf) = pg by strict stationarity of v;, we
have

E@i1) < om0 DD [¢767¢R e |
11=012=043=014=0
<




as of_, is a bounded function. Secondly, define

Zi1 = yio1—B(yiy)

o« 0 o X

0_21_1 Z Z Z Z ¢i1¢iz¢i3¢i4

11 =019=013=0 i4=0

X (Vg—iy —1Vtmig— 1Vt iz — 1Vt —ig—1 — B (Vg ~ 1V ip—1Vt—is —1Vs—ig—1))
Let &4 m—-1 = {Vt—m—1,Vtwm—2, ...} for m > 1. Consider a forecast of Z,_; conditional
on D m—1:

oo o0

B(ZiafSi-m-1) = of D0 D0 30 3 4"eteten

ig=m iz=m iq4=m

X (Ugmiy — 1Vt —ip —1Vtmig—1Vtig—1 — B (Vi) —1Vs—ip— 1Vt ig—1Vt—iq—1)) -

Then

I

Blofy Do D D D Hengiegn

1=mig=mig=mis=m

EIE(Zi-1|8¢t-m-1)|

X ('Ut——h—I'Ut—iz—l'vt—ia—l'ut—u—l - E (Ut—i1—lvt-iz—lvt—-ia—-I'Ut-i.;-—l))]

a3 35 S e

<
f1=mis=miz=m ig=m
X B ([Vt—iy = 1Vtmig = 1Vtmig =1Vt—ig—1 — B (Vtiy —1Vtmip— 1Vt 13— 1Vt—ig —1)|)
o0 o0 o0 o
S EPIDID DDV Ll Al

i1=m ig=m ig=m i4=m

= £ncCi-1

for some M < oo, where

n o= D0 D0 D0 D letgtenen|
i1=miz=miz=mis=m
= Dol Do 16t D o] Y 6%,
i1=m ig=m i3=m ig=m
and
co1 =04 1 M. (50)
Because {(ﬁ“}fzo is absolutely summable, limm—o0 Y5 oy [¢| = 0 implying that

limm— oo &m = 0. Consequently, according to Andrews (1987), {Z;—1} is an L'-mixingale.
To apply Andrews (1987) LLN for L!-mixingales we first need to show that v} _; is uni-
formly integrable, i.e., that E (ny_llz) < oo (using 7 = 2). This can most easily be

shown by noticing that since y ; = ]yf_ll the condition simplifies to showing that
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E (y?) < o0o. Taking a similar approach to showing the existence of E (y?_ 1) as in (49)
the existence of E (y8_;) will follow immediately due to the absolute summability of
{¢" }(:zo and the existence of E (v}_;) (due to the assumption of normality). Finally,
in order to apply the result of Andrews (1987) LLN we need to verify the condition

1& 1 &
. T 4
AT Zt_z Co-1 = lim = Zt_z -1 M < 0o,

which will hold as of_; is bounded. We can therefore according to Andrews (1987) LLN
conclude that

szt-— E(yt 1) —0

where E(y?_;) = Op(1) and from (??) this implies that

T

> (EE -0 vl

t=2

0p(1)05(1)

= op(1)

as T'— 00, h — 0 and Th — oo, which completes the proof. O

lim —
plim =

Proposition A2 Let the Assumptions of Proposition Al hold. Then
1 & 1 &
(T Zaflaf-llytyt—l> - <T Zﬂflall1ytyt~1> 0. (51)
t=1 t=1

as T — o0, h — 0 and Th — .

Proof of Proposition A2 Rewrite the left hand side of (51) as

T
% Z ((’U\t-l?f\t)“1 - (Ut—lat)_l) Y19t
t=2

and notice that (similar to the proof of Proposition Al) as T — o0, h — 0 and Th — o0

1

-1
< 1 (5 15) mi _
T < (mtln(at 1at)mt1n(ort 1(7t)>

i ((3}—15,*,)*1 - (Ut._lat)_1> Vi1Vt

t=2

T T
1 - 2 |1 2
XJ T ; (G4—18¢ — 04—10%) \’ T ;yt_@@

1 T
ONED IR ES Y- (53)
t= f,_

OP(l)) (54)

IA

(M=
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since (from the proof of Proposition Al) 7 23;2 Yty = Op(1) and % 231:2 yi = 0p(1)
which completes the proof. O

Proof of Theorem 3 Write (18) as

1 I -1 1z
2 ~A—2 ~ela—l
¢r = (T ;at—lyf—l> (T ;Ut Ut—lytyt—1>

such that asymptotically

T -1 T
. 1 2 2 L1 ~—laei
plim ¢ = (phm T ; at__zlyt_1> (phm T t}; O3 O, 1Ytli—1

and by Proposition Al and A2 we have
1< B 1 &
7 . — . -1 -1
plimgr = (th T ; Ut—21yt2-1> (phm T ; gt 1at—1ytyt—l>

1 & - 1&
. 2 .
¢+ (phm T t§=1 et_l) (phm T til et_lvt>

= ¢

as T — 00, h — 0 and Th — oc. The results of the last equation follows from the fact that
the random variable €;_1v; is a martingale difference sequence with mean E(e;—yu:) =0,
variance E ((e;~1v:)?) = E(e2) and with fourth moment E (ef) < oo. Hence, from
applying a LLN for martingale difference sequences, see, e.g., White (1984), it follows
that plim% 23;2 €—1vs = E(et—1v;) and plim%,-z;";Q (et_l'ut)2 = E((et_lvt)2). This
completes the proof of consistency. O

Proof of Theorem 4 As ¢3T is a MINPIN estimator we will establish it asymptotic
distribution by verifying, that given the assumptions of Theorem 1, all the conditions of
Assumption N in Andrews (1994) is meet. According to Theorem 1 in Andrews (1994)
this will be sufficient to provide the desired result. In what follows we will verify each of
the conditions of Andrews (1994) Assumption N one by one:

Assumption N.a) Follows directly from Theorem 3.

Assumption N.b) In order to prove that Tlim P (f(m) € C|o, 1]) = 1 it suffices
—00

to show that i) f(z) 2 f(z) and i) D*f(z) 2 D*f(z) for k = 1,2. Condition i) has
already been established. In order to prove ii), consider differentiating the estimator in
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(7) w.r.t. z to obtain the following estimator

T-2
D*f(z) = h7F Y nDFWi(z)
t=1
where K (w)
= >Rk S
T SR () (55’
Taking expectations,
T-2
E (D*fla)) = h™* Y B (1) Wi(a) (56)

t=1

Define u; = #3% such that z; = z— hu;. Recall that Z;‘F:_lz K(us) ~ [ K(u)du =1 such
that asymptotically, as h — 0, T — oo and Th — oo we have

E(D’“f(x)) = hk / f(z — hu)DF K (u) du (57)
= / D*f(z — hu)K (u) du (58)

Using the Taylor series expansion of f(z), we immediately find that E (Dkf(:c)> =
D¥ f(z) + o(1) and from Chebyshev’s inequality we have

Jim B (|D*fle) - D*f(z))

Ji 2 (9716 2. :

IA

= 0 -

for any € > 0. This completes the verification of condition ii) and completes the verifi-
cation of the assumption.

Assumption N.c) Let ¢ denote the true value in the population of the parameter
¢. Verifying this condition simplifies to showing that

‘/Tm;’ (G¢1Gt—1, Yt Yt—1, P0) 250 (59)
where
1 X
VT (Gt Gem1, Yer Y1, $0) = ~= Y _E(m¢ (Gt, Ge—1, %1, Ye—1, b0))

VT =
1 Z

= —= )Y E(v:e_
ﬁz (Bi€i-1)

o
]
-

First notice that E (0;€;—1) will be a non-stochastic sequence (since the expectation is
wrt the probability measure P,), so only if E (U461) = 0 or E (%;€—1) = O(T~°) for

26




6 > % condition (59) will be satisfied. Consequently, we can also write condition (59)

simply as
lim vVImy =0
T—o0

Next, define
U = & — do€—1
& = 0;'y
G-1 = a;_11'!/t—1
Consider,
1 & 1 &
Wr = — (ﬁta—l)——'— Vi€i—1
1 I
= —F= (ﬁta—-l—'vtft—-l)
= Iir— I
where
1 I
Ly = _TZ( 716 — o7 tor) wye
t=1
1 I
Ir = —fZ(Ut 170 l)yt 1
t=1
Consequently,
-1l T
el < (mp@ES-IRpEa) | 753 Ea o
1 & 1 &
< in (G:0:_ i _ J— Ci0t_1 — _
< <rtrél,_,r,1 (040 1)%1%1(%% 1)) ﬁ;(am 1= 00; T;ytyt 1

= (mpGapaEe) Vom0

= op(1)
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since (6:3¢—1 — 0v04_1)° = Op(T™3), (y2y?_,) satisfies a CLT and (minyer (3:6;-1) minger (oe0¢-1)) "

is bounded by the assumptions of Theorem 1. Similarly,

T

1
TZ CHIES ‘7?—1) Y1

t=1

|[lar] < <mm(0t 1) m E%‘("t2 1)>_1

- T T
1 1
< min (62 m1n [erill o2 . — o2 1 4_
< (teT(Ut 1) (t 1)) \l Tt§=1: t—1 t— 1 \]\/T;:lyt 1
= op(l)
Consequently,
plimWp =0
T—o0

Secondly, notice that since E(vie;—1) = 0 we have that

E(Wr) = ZE Dy€t-1)

which is the expression we are interested in. Since, it is easy to verify that the ran-
dom variable Wr is dominated (as required by Theorem A.DCT) we have according to
Theorem A.DCT

lim E(Wr) = E(plimWT>
T—o0 T~ 00

= E(0)

= 0

which completes the verification of Assumption N.c.

Assumption N.d) Let m,; be given by (16) and define
1o 1<
vp = VT (szt - TZE(mt)>
t==1 t=1
=
—_= V€t—1.
\/T t=1

Notice that vie;..1 is a martingale difference sequence. From straightforward application
of CLT for martingale sequences, see, e.g., White (1984), we have that

vr ~2 N (0, 5)

_ 1
where S = pers
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Assumption N.e) Define

W, = {ytyt—1:|

and since (W; — E (W;)) - as just defined - can easily be shown to (depending on the
independent stochastic components v;e;—1 and e2_; only) satisfy CLT’s, Condition (e) is
satisfied according to equation (2.4) page 46 in Andrews (1994).

Assumption N.f) Trivially satisfied.

Assumption N.g) Let m; be given by (16). First we verify that m; and dm;/8¢
satisfy the UWLLN over © x C[0, 1] using Andrews (1987). We begin by looking at m; :
Assumption Al in Andrews (1987) is trivially satisfied. As

mMy = VUg€t—1

o0
Ut Z P V-1

=0

and m; -2+ 0 uniformly on the interior of © x C[0,1] (not only locally in a closed
ball around ¢) Assumption A2 in Andrews (1987) is satisfied. Next define m} =
my (0F,0F_ 1Yt Yi—1; ¢*) and consider

oo oo
*7, 1
vy E 1 — E V14
i=0

=0

Z (¢*z¢7 ¢1) ¢‘i'Ut—1—z"0t

=0

o0 X ¥ pi\ 2
\’Z¢2ivt2~—l—ivtz\} D <¢ = ¢ )

=0 i=0

*

Imi —me| =

IA

Defining

i=0

[
bi(ve, v-1,4) = quf’zi”f-pivtz

W = 3 [ ‘bi)z

=0
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and noticing that

1 T 1 T o
= il 2092 o2
S%PT;Ebt(Ut,’Ut—h(ﬁ) u TZ E(Z¢ Ut—l—zvt)

IA
0
=
d

and d(¢*,¢) | 0 as ¢* — ¢ we see that Assumption 4 in Andrews (1987) holds and
according to Corollary 2 in Andrews (1987) we can conclude that my satisfy the UWLLN
over © x C[0,1]. Next, we turn to &m;/8¢. Notice that

6mt N
B—qb =t ; O V24

and using similar steps as above it follows straightforwardly that also for Om;/0¢ As-
sumptions A1,A2 and A4 in Andrews (1987) applies hence it satisfies the UWLLN uni-
formly on © x C|[0, 1]. As m; and Om./d¢ does not depend on g, Corollary 2 in Andrews
(1987) also establishes uniform continuity of m; given as

T
.1
m= Tl-l—rvnoo T ;Emt(d), o)

and M given by

1 & om |
- L omy
M = aliiréo:rt;E(w) (60)
_ 1
- =

Finally notice that m; is twice differentiable in ¢ uniformly on © which completes the
verification of Assumption N.g).

Assumption N.h) Trivially satisfied on the interior of ©.

Consequently, we have verified that all the conditions of Assumption N in Andrews
(1994) holds which completes the proof.
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