Efficient Generation of Exponential and Normal Deviates
by

Herman Rubin Brad C. Johnson
Purdue University Purdue University

Technical Report #04-02

Department of Statistics

Purdue University
West Lafayette, IN USA

April 2004

Efficient Generation of Exponential and Normal
Deviates

Herman Rubin and Brad C. Johnson

Department of Statistics, Purdue University,
West Lafayette, IN 47907-1899, USA

Abstract
‘We present efficient procedures for generating random exponential and
normal deviates based on the acceptance-complement method (Kronmal
& Peterson, 1981). The proposed procedures maintain good precision and
compare favorably with the Ziggurat method (Marsaglia & Tsang, 1984,
2000) for efficiency.

Keywords: Exponential deviates; Normal deviates; Acceptance-complement

1 Introduction

Two of the most important continuous distributions in probability and statistics
are the exponential and normal distributions. Simulations frequéntly require
large numbers of random deviates from these distributions and efficient methods
for generating such deviates are of great interest.

Kronmal and Peterson (1981) introduced the acceptance-compliment (AC)
method for generating random deviates from specified distributions (see also
Kronmal & Peterson, 1984; Devroye, 1986). In the present paper, we show

that this method can provide simple and efficient procedures for generating

random deviates with good precision from the standard exponential and normal
distributions. '

The remainder of this paper is organized as follows. Section 2 gives a brief
description of the acceptance-compliment method and an implementation for
bounded monotone densities. Sections 3 and 4 give the implementation details
for the standard exponential and normal distributions respectively with some C
code. In section 5 we present some timings and comparisons with the Ziggurat
method (Marsaglia & Tsang, 1984, 2000). Section 6 contains some concluding

remarks.

2 The Acceptance-Complement Method

The AC method can easily be described as follows. Suppose we wish to generate
random deviates X from some distribution with density f with respect to some
measure 7 (usually Lebesgue or counting measure). Decompose f into sub-
densities f; and f; (ie. f; > 0and [f;dp>0fori=1,2)so0that f = fi + fo
and choose a proper density g dominating f; (i.e. ¢ > f1 and [gdn =1). To

generate a deviate with density f we perform the following two steps:

Al. Generate a deviate X with density g and output X with prob-
ability f1(X)/g(X). On rejection, goto A2.

A2. Replace X with a deviate from the conditional density fa / [fadn

and output X.

See (Kronmal & Peterson, 1981) for a proof of the validity of this method. Since

g is a density, the rejection probability in step A1 (i.e. the probability step A2

/(g—fl)dn=/fzdn-

is required) is simply

2.1 Bounded Monotone Densities

A frequently encountered special case occurs when f is continuous, bounded
and non-increasing with support [ag,c0). In this case a suitable g may be
constructed as follows: Let n be a given positive integer and, fori =0,...,n—1,

let w; = [nf(a;)]~! and a;+1 = a; +w; and define the density

n—1
9(z) = D F(@i)Larai0) (@)- (2.1)
i=0
Taking f1(z) = f(2)1[eg,e,) and fo(z) = f(#)1[s, c0) We see that g dominates
fi and f = fi + fo as required. Intuitively, g covers f; by a sequence of n
equal-area rectangles with heights equal to the value of f; at their left end-
points. Figure 1 shows the construction for the standard exponential density
f(z) = exp(—2)1jp,c0)(z) With n = 32.

A candidate deviate, X, from density g, is obtained by generating I ~
DU{0,...,n— 1} and D ~ U(0,wy) and taking X = a; + D. The precision of
the resulting deviates (on [ag,an)) Will be at least log,(2°/w*) where b is the
number of bits used to form D and w* = max; w;. In implementation, it is

convenient to take n = 2° and, from a single 32-bit random integer R, let I be

the index formed from the least significant e bits of R and take D = Rw;232,

3 Exponential Deviates

We first apply the AC method to the standard exponential density f(z) =
exp(—x)1[,00) (). Let g, f1 and f; be as defined in section 2.1 with ap = 0 and
let I ~DU{0,...,n —1} and D ~ U(0,wy) so that X = ay + D has density g.
Then, if U ~ U(0, 1), we accept X if

b < 100 _ exp(=X)

<9 = epcan = exp(~D).

1.0

«Q
(e}
N
o
i
i
< S
o
N
© g9(z)
N
<
S 1 - | I T
0 1 2 3 4

Figure 1: The density g as defined in (2.1) with n = 32 and f(z) =
exp(—x)1o,00) (T).

Taking the logarithm of both sides and negating, this is equivalent to accepting
X if T > D where T ~ Exp(l). Using an exponential random variable for
the test eliminates the computation of f;(X)/g(X). More importantly, when
T > D, we can avoid the overhead of generating a new test exponential T for
the next iteration of the algorithm since T — D is an independent (of D) Exp(1)
random deviate and we can set T =T — D. When T < D (i.e. on rejection) we
replace T with a new exponential deviate and generate a deviate in the [a,, 00)
tail of the exponential distribution. This is accomplished by letting T' = E;
and X = a, + E> where E; and E, are obtained from an alternate source of

exponential deviates. The entire algorithm is:

Algorithm E For a given positive integer n, Let ap =0,fori =0,...,n—1
let as41 = a; + exp(a;)/n and w; = {a;41 — a;). Generate T' ~ Exp(1) from
an alternate source of exponential deviates. Each time the following steps are

executed a new (random) exponential deviate is generated.

E1l. Generate I ~DU{0,...,n— 1} and D ~ U(0,wy)

E2. [Accept?.] T > Dset T = T — D, output X = a; + D and

terminate; otherwise goto E3.

E3. [Replace.] Generate E;,Ey ~ Exp(l) from an alternate source of

exponential deviates, set T' = E;, output X = a,,+F, and terminate.

Comment: Since, conditional on T'> D, T — D and ay + D are independent
standard exponential deviates, one could choosetoset X =T —D, T =aqa;+D

and output X in step E2.

The acceptance probability in the above algorithm is 1 — exp(—a,). For a

few values of n, these are:

n 8 16 32 64 128 256 512 1024

Gn 2,128 2.593 3.089 3.612 4.156 4.715 5.288 5.872
Pr(accept) 0.881 0.925 0.954 0.973 0.984 0.991 0.995 0.997 °
Precision 29.77 28.99 28.18 27.35 26.51 25.66 24.79 23.91

The precisions (in bits) reported above assume that I and D are formed from
a single 32-bit random integer R by taking the least significant log, n bits for I

and setting D = Rwy.

3.1 An implementation

As it stands, algorithm E is already fairly efficient. When n = 256, for ex-
ample, we require (on average) about 18 deviates from the alternate source of
exponential deviates per 1000 iterations. This being said, the procedure can be

significantly improved with the following two refinements:

i) Once T has been replaced in step 3, the algorithm itself can be used
recursively to generate the required tail deviate, thus reducing the num-
ber of deviates required from the (presumably slower) alternate source of

exponential deviates by a factor of 2.

ii) A second implementation of the algorithm can be used as the source of
alternate exponentials for the first, reducing even further the number of

deviates required from the alternate source.

Figure 2 shows how these improvements might be implemented in C when
n = 256. The numbers to the left of the line numbers give the average number
of times the line is executed per generated exponential deviate. The following

comments refer to the code:

1) The code assumes that rand_ulong() returns a random 32-bit unsigned

integer. The macro UNI transforms these to uniform deviates on (0, 1].

4

2)

4)

The function rexp_init () should be called before requesting any deviates.
It initializes the array ae[ne+1] with the constants ay,..., a0z and the
array we[ne] with the constants wo/2%2, ... wpe—1/2%2. It also initializes

the test exponentials Te and T1.

The function rexp(double *buf, int N) fills buf with N exponential de-
viates and returns a pointer to the last element inserted. When required,
it uses rexp_alt() for its alternate source of exponentials. By filling a
buffer, we avoid the overhead of a function call for each generated deviate

and the need to declare variables in the global name space.

The function rexp_alt () serves as an alternate source of exponentials for
rexp. When required, it uses the inverse CDF method for replacing the

test exponential T1 and then uses recursion to output a tail deviate.

Standard Normal Deviates

Generation of standard normal deviates proceeds similarly. Let ¢ and & denote

the density and CDF of the standard normal distribution respectively and, for
£eR,let

(@) = T2 1)

denote the density of X given X > ¢ where X is standard normal. Thus, ¢ is

the positive standard half-normal distribution. Taking g as defined in section 2.1
with ag = 0 and f(z) = fi(z) + f2(z) where fi(z) = ¢o(z) and fo(z) = ¢,, (z),
let I ~DU{0,...,n—1} and D ~ U(0,wy) so that X = a; + D has density g¢.

Then, if U ~ U(0, 1), we accept X if

b < S _ exn(x?/2)

D)~ ew(-atfz) - OPCX 2+ al/2).

.01809
.01809
.00016

.01793

o OO0 O

.00000
.00000
.00896

.99104

o OoORrK

W O~NDUTD W

#include <math.h>
#define two32i 0.232830643653869628906E-9 /* 2~(-32) as double */
#define UNI (two32i%rand_ulong()+two32i) /* Uniform(0,1] */
#define ne 256 /* table size */
#define ne_mask 255 /* index mask */
static double Te, Ti, welnel], ae[ne+1];
double rexp_alt(void) {
register unsigned long R,I; register double D;
R=rand_ulong(); I=R&ne_mask; D=we[I]*R;
if(T1<D)
{ T1=-1og(UNI); return ae[neJ+rexp_alt(); }
else
{ T1-=D; return ae[I]+D; }

double *rexp(double *buf, int N) {
register int j; register unsigned long R,I; register double T=Te;
for(j=0; j<N; j++) {
R=rand_ulong(); I=R&ne_mask; buf[jl=we[I]*R;
if (T<buf[j1)
{ T=rexp_alt(); buf[j] = ae[nel+rexp_alt(); }

else
{ T-=buf[j}; bufljl+=ae[I]; }

¥
Te = T;
return &buf{N-1];

void rexp_init(void) {

register int i;
for(ae{0]=0.0, i=0; i < ne; i++) {
ae[i+1] = ae[i] + exp(ae[i])/ne;
weli] = (aefi+1] - ae[i])*two32i;
T1 = -log(UNI);
Te = rexp_alt();
3

Figure 2: A possible C implementation of algorithm E with improvements

If T ~ Exp(2), this is equivalent to accepting X if T > X2 — a?. As before, on
the event 7' > X2 — a? we have T — X? + a? ~ Exp(2) and a new exponential
test deviate need not be generated on each iteration of the algorithm. On the
event T' < X2 — a? we replace T with a new Exp(2) deviate and generate a

deviate with density ¢,,. The algorithm becomes:

Algorithm N For a given positive integer n, let ag =0 and, for k=0,...,n—

1, let ag+1 = ax + 1/ne¢o(ar) and wy = ag41 — ak. Generate T ~ Exp(2).

N1. Generate I ~ DU{0,...,n—1}, D ~ U(0,w;) and S ~ DU{-1,1}.
Set X =ar+Dand T =T - X?+al.

N2. [Accept?] If T > 0 output S - X and terminate, otherwise goto N3.
N3. [Replace T'.] Generate a new T ~ Exp(2).

N4. [Generate Tail Deviate.] Generate a deviate X with density ¢,, and
output S - X.

The acceptance probability in the above algorithm can be calculated as 1 —

2®(—ay,) and, for a few values of n, these are:

n 8 16 32 64 128 256 512 1024

an 1.746 1.940 2.135 2.328 2.518 2.703 2.883 3.058
Pr(accept) 0.919 0.948 0.967 0.980 0.988 0.993 0.996 0.998
Precision 29.35 28.74 28.08 27.38 26.66 2591 25.14 24.35

The precision reported is the precision (in bits) of the deviates accepted in step
N2 of algorithm N (i.e. on (—an,a,)). As we will see below, the precision
of the tail deviates will be at least as good as the precision of the exponential

deviates.

4.1 Generating tail deviates.

In order to complete the algorithm, we need an efficient method for generating

deviates with density ¢¢. We now describe an accept-reject algorithm for this

purpose.
Let Y ~ Exp(1), let ¢ = (£/2)++/(£/2)2 + 1 and consider the transformation
X =g+ (Y —1)/q so that X has density

9(z) = gexp(q® — gz — 1)1 o0)().

Then

Pe(z) _ -9\ o - exp(-d?/2)
4(2) —cexp() here c¢= (e

Whence, ¢¢(z) < cg(z) (and ¢¢(q) = cg(q)) and, by the same arguments as
before, we let 7' ~ Exp(2) and accept X if

T>(X-q?= (}—’q;l-y

This leads to the following algorithm for generating a deviate from the den-

sity ¢¢(z):

Algorithm TN Generate T' ~ Exp(2) and let ¢ = (£/2) +1/(£/2)2 + 1.

TN1. Generate Y ~ Exp(l) and set U = (Y — 1)/q.

TN2. [Accept?] T > U%2set T = T — U?, output X = ¢+ U and
terminate.

TN3. [Reject] Generate T' ~ Exp(2) and goto TN1.

For a given ¢, the acceptance probability is given by pe = ¢™! and the average

number of exponential deviates required per iteration is u¢ = 2¢ — 1. For step

10

N4 of algorithm N we use ¢ = a,, and for, for a few values of n we have

n 1 4 8 16 32 64 128 256 512

& 1.253 1.559 1.746 1.940 2.135 2.328 2.518 2.703 2.883
pe 0.895 0.914 0.923 0.931 0.939 0.945 0.950 0.955 0.959 °
pe 1234 1.189 1.167 1.148 1.131 1.117 1.106 1.095 1.086

Since Y ~ Exp(1) and ¢ > 1 the tail deviates will have at least the same
precision as Y.
4.2 TImplementation

As in the exponential case, the implementation is straight forward. Figure 3
shows one possible implementation which makes use of rexp() from Figure 2 as

the source of exponential deviates. The following comments refer to the code:

1) The function rnorm.init must be called before requesting any deviates.

This initializes the arrays an[nn+1] with the constants ag,...,ann; the
array an2[nn] with the constants a2, . ..,a2,_;; and the array wn[nn] with
the constants wo /232, ..., wu—1/2%2. It also initializes the test exponential

Tn and the constants qn = q and qn_inv = ¢~ ..

2) The function rnorm_tail implements the algorithm T given the constants

q (qn) and ¢! (qn_inv).

3) The function rnorm fills the buffer buf with N normal deviates using

algorithm N.

4.3 Variation of algorithm N

It turns out that algorithm N is quite efficient even when n = 1 since the many
of the memory accesses and operations may be avoided. The following variation

of algorithm N shows how this is accomplished.

11

#include <math.h>
#include "rexp.h" /* include rexp interface */
#define two32i 0.232830643653869628906E-9 /* 27(-32) as double */
#define phi0 0.79788456080286535588 /% sqrt(2/pi) */
#define nn 266
#define nn2 255
static double Tn, gn, qn_inv, wn[nn], an2[nn], an[nn+1];
double rnorm_tail(register double gn, register double qun_inv) {
register double X; double E[2];
do { (void) rexp_fill(E,2);
X = gn_inv#E[0] - gn_inv; Tn = 2.%E[1] - X*X; } while(Tn<0);
return X+=qn;

double *rnorm(double *buf, int N) {
register int i;
register unsigned long R,I; register double D;
for(i=0; i<N; i++) {
R=rand_ulong(); I=R&nn2; bufl[il=wn[I]*R+an[I]; D=buf[i]*buf[i]-an2[I];
if(Tn<D) bufl[il=rnorm_tail(qn, gn_inv); else Tn-=D;
if(Renn) buf[i] = -buf[il;

}
return &buf[N-1];

void rnorm_init(void) { /* Initialize tables for normal */
register int i; double m = 1.0/(phiO+nn);
anf[0] = an2{0] = 0;
for(i=0; i < nn; i++) {

an2[i] = an[i)+*an[i];
an[i+1] = an[i] + exp(.5*an2[i])#m;
wnl[i] = (an[i+1]-an[i])*two32i;

¥

gn = an[nn)/2. + sqrt(an[nn]*an[nn]/4.+1.);
gn_inv = 1.0/qn;

Tn = 2,*%rexp_alt();

Figure 3: A possible C implementation of algorithm N

12

Algorithm NV Define ¢ = /n/8++/7/8 +1,v=1/gand u = \/m/2%2732
and generate T' ~ Exp(2).

NV1. Generate a random 32-bit integer R and let S = 41 depending on
the least significant bit of R. Set X =uxRand T =T — X * X.

NV2. [Accept?.] If T > 0 output S * X and terminate; otherwise goto
NV3.

NV3. [Tail] Generate B, Fy ~ Exp(l), set X = v+ Ey —vand T =
2x By — X % X.

NV4. If T > 0 output S(X + ¢) and terminate; otherwise goto step NV3..

5 Timings

The time it takes for a particular algorithm to produce deviates from a given
distribution is one measure of its usefulness (others include: ease of implemen-
tation, precision, and memory requirements). In general, these timings can be
quite sensitive to the specifics of implementation, including the amount of code
and the memory requirements of the calling program(s). This being said, we
compare the timings for the exponential and normal generators proposed in
this paper (rexp and rnorm respectively) with similarly implemented versions
of the Ziggurat generators proposed in (Marsaglia & Tsang, 2000) (zexp and
znorm). For comparison, we also provide the timings for the inverse CDF expo-
nential generator (— In(U)). Each of these generators were tested with 3 differ-
ent underlying pseudo-random number generators: the SHR3 generator found in
(Marsaglia & Tsang, 2000); the XORWOW generator proposed in (Marsaglia, 2003);
and the Mersenne Twister generator proposed in (Matsumoto & Nishimura,
1998).

Each generator was tested on two platforms: an IBM F50 server with 4

326MHz R6000 CPU’s running AIX, and a 933Mhz Intel Mobile Pentium III

13

Table 1: Comparative generator timings (in seconds)

Uniform Generator
Platform/Generator SHR3 XORWOW Mersenne Twister

Windows/GCC
rexp 40.3 48.2 69.6
ZeXp 41.1 45.2 69.3
rmorm 61.1 64.6 93.9
znorm 39.4 40.8 75.1
—In(U) 261.5 261.5 282.7
AIX/GCC
rexp 103.2 117.8 196.3
Zexp 99.0 133.0 195.0
rmorm 134.4 163.1 240.3
Znorm 103.6 139.4 203.6
—In(U) 404.1 413.5 501.9
AIX/CC
rexp 104.9 119.0 190.5
ZeXp 100.0 155.7 189.6
rmorm 128.7 138.7 212.8
ZRorm 103.7 134.0 197.7
—In(U) 384.9 392.4 491.5

running Microsoft Windows XP. Compilers used on the AIX system included
both the GNU gcc and the AIX cc compilers. The GNU/Cygwin gcc compiler
was used on the Windows system. The following compiler flags were used:

cc -03 -qinline

gcc -03 -finline-functions

For each test a 10% element buffer was filled 108 times for a total of 10°

deviates generated per test. Table 1 presents the average timings (in seconds)
of five test runs for each generator/platform/compiler combination.

As expected, the AC and Ziggurat generators (both exponential and normal)
ran significantly faster than the inverse CDF generator. The AC exponential
generator (rexp) and the Ziggurat exponential generator (zexp) are fairly even

in terms of timings. The rnorm generator was slower than the znorm generator

14

on all platform/uniform generator combinations ranging from only 3% slower
on the ATX/GCC platform using the XORWOW generator to about 58% slower on

the Windows/GCC platform using the XORWOW generator.

6 Conclusions

The AC algorithm, combined with the reuse of exponential deviates and an
efficient dominating density results in very efficient procedures for generating
exponential and normal deviates which are easy to set up and implement. The
proposed generators also maintain good precision over the entire supports of the
densities in question (> 25 bits as implemented here). When greater precision
is required one may use two 32-bit integers, say R; and Ry, form I from the
least significant bits of Ry and take D = R; /232 + R, /2% (of course, one could
exploit the floating point representation used by the compiler/architecture to
accomplish this efficiently).

These methods can also be used for vector and parallel machines. There
are many different types of vector machines, on some of which different “tricks”
can be used, so let us look at the procedure up to the point of acceptance-
rejection for a vector machine. We have a vector of input indices I and a vector
of input uniform random variables U (these can be obtained from an original
vector by decomposition at run time), and the jth candidate random variable
is A[I[5]] + U[j] * W[I[]]. We also have a vector of test exponentials T, and
the test is to form T[i] — f{A[X[J]), Ulj] * WI[j]]), and set this to be the new
value of T[j]. If T[j] < 0, this leads to rejection.

At this point, one method (perhaps the best for SIMD machines) is to just
store the j’s for which rejection occurs in an array. One can then use the
correction methods for the elements pointed to by that array and store the

results in the appropriate places.

15

References

Devroye, L. (1986). Non-uniform random variate generation. New York, New

York: Springer-Verlag.

Kronmal, R. A., & Peterson, A. V. (1981). A variant of the accept-rejection

method for computer generation of random variables. Journal of the Amer-

ican Statistical Association, 76, 446-451.

Kronmal, R. A., & Peterson, A. V. (1984). An acceptance-complement analogue
of the mixture-plus-acceptance-rejection method for generating random

variables. ACM Transactions on Mathematical Software, 10, 271-281.

Marsaglia, G. (2003). Xorshift RNGs. Journal of Statistical Software, 8, issue
14, 1-6.

Marsaglia, G., & Tsang, W. W. (1984). A fast, easily implemented method
for sampling from decreasing or symmetric unimodal density functions.

SIAM Journ. Scient. and Statis. Computing, 5, 349-359.

Marsaglia, G., & Tsang, W. W. (2000). The ziggurat method for generating

random variables. Journal of Statistical Software, 5, issue 8, 1-7.

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.

ACM Transactions on Modeling and Computer Simulation, 8(1), 3-30.

16

