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Abstract

We extend the Skorohod integral with respect to Gaussian processes that can be more irregular than

any fractional Brownian motion. This is done by restricting the class of test random variables that are

used to define Skorohod integrability. A detailed analysis of the resulting size of the space of test random

variables is given, and it is determined that this space is non-empty even for some Gaussian processes

which are not continuous on any closed interval. Despite the extreme irregularity of these stochastic

integrators, the Skorohod integral is shown to be useful: an Ito formula is established, it is used to derive

a Tanaka formula for a corresponding local time, linear additive and multiplicative stochastic differential

equations are solved, and an analysis of existence and regularity of the stochastic heat equation is given.

1 Introduction

The purpose of this paper is to establish a stochastic calculus for processes that may have longer-range
negative interaction than even fractional Brownian motions (fBm) with small Hurst parameters. This general
class of stochastic processes will encompass standard Brownian motion, (fBm), with Hurst parameter less
than 1/2, and more generally any class of Gaussian stochastic processes defined by any given scale of almost-
sure uniform continuity that is bounded below by the modulus of continuity of Brownian motion. For
processes that are more regular than Brownian motion, a different construction could be used, which we do
not discuss here.

The topic of stochastic calculus, which was originated more than sixty years ago, with legendary associated
names such as Levy, Ito, Stratonovich, saw a renewed interest in the late eighties, when, for example, a study
of stochastic integration of non-adapted processes with respect to Brownian motion first appeared in [14]
in the context of two-sided integration, and subsequently in [13] a general theory of anticipating stochastic
integration was developed using the connection to Skorohod integrals. Our work inscribes itself in this
context, which is now known as the Malliavin calculus (see for example Nualart’s book [12] on the topic).

The most recent trend in Malliavin calculus has been in the study of the so-called fractional Brownian
motion (abbreviated as fBm, see next section for a definition), anticipating stochastic integration being
particularly well-suited for the study of this process whose increments are not independent, but can still
be represented using standard Brownian motion. The theory of stochastic calculus for fBm is becoming
relatively solid and mature, with main results such as Ito formulas which can be found for example in [1] and
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[2]. Other approaches to stochastic integration w.r.t. fBm include the so-called Russo-Vallois integral, with
recent stochastic calculus results in [11] and ??. However both approaches have had difficulties in establishing
the so-called Ito formula (the chain rule for non-random functions of fBm), which is the cornerstone of the
stochastic calculus, particularly when the fBm’s regularity, as measured by its Hurst parameter H, is in the
range H ∈ (0; 1/4). The Russo-Vallois integral appears to have a limit of H > 1/6, according to the results of
??, a result which is confirmed in [5], despite some intriguing results for a special version of the Russo-Vallois
integral in ?? in which no restriction on H is needed. On the other hand, Cheridito and Nualart propose in
[5] a new, relaxed way of defining Skorohod integration which results in an Ito formula with no restriction
on H. The idea is to restrict the space of test random variable needed to define the notion of Skorohod
integrability. It is this idea which we adopt here, because of its success in establishing an unrestricted Ito
formula.

We begin our study in Section 2 by proposing a basic and wide class of Gaussian processes which contains
processes very close to fBm, as well as processes which may be much more irregular than fBm, including
processes that are neither uniformly continuous nor bounded. Section 3 shows briefly how to define Wiener
integration w.r.t. our processes. Before establishing the Malliavin calculus, Skorohod integral, and Ito
formula for our processes in Section 5, we take some time and effort in Section 4 to evaluate the precise size
of the spaces in which our test random variables will live; this is particularly important since there is no a
priori guarantee that the spaces will not be empty (except for non-random variables), which would result
in a failed definition of the Skorohod integral. As applications of Ito’s formula (Theorem 27), we establish
a Tanaka formula, and discuss related issues, for the local time of our processes in Section 6. Then we
solve some simple finite and infinite-dimensional stochastic differential equations in Section 7. The last two
sections of this article are meant as an illustration of our theory of Skorohod integration: we do not seek the
most general results that may be readily available at this stage, and we discuss a certain number of open
problems that our new class of processes raises, in the hope of encouraging further research on the topic.

2 Gaussian noise with arbitrary correlation

2.1 Definition

We begin by considering a class of Gaussian processes that may have arbitrary correlation between incre-
ments. First recall the scale of fBm is defined as the class of centered Gaussian processes BH on R+ such
that BH (0) = 0 and

E|BH(t)−BH(s)|2 = |t− s|2H . (1)

It is natural to generalize this class as follows. Let γ be a continuous increasing function on R+ or possibly
only on a neighborhood of 0 in R+, such that lim0γ = 0. The most naive idea is to attempt to define Bγ to
be the Gaussian process such that

E|Bγ(t)−Bγ(s)|2 = γ2(|t− s|),
Bγ (0) = 0.

However, the corresponding process may not exist because, depending on the exact form of γ, its covariance
function may not be of positive type (symmetric and non-negative definite). Therefore, for any fixed γ as
above, we will be satisfied with finding a Gaussian process B such that the following hold:

(i) defining the canonical metric δ of B on (R+)2 by

δ2 (s, t) := E |B (t)−B (s)|2
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and denoting that two functions f and g are commensurable (f ³ g) if there exist positive constants
c, C such that cg (x) ≤ f (x) ≤ Cg (x) for all values of a common variable x, we have

δ (s, t) ³ γ (|t− s|) ;

(ii) B (0) = 0.

If γ (r) À rH for all H > 0 then neighboring increments of B are negatively correlated, and the range of
correlation is longer than for any fBm. Consider for example the following choice of γ:

γ2 (r) ³ 1
log 1

r

. (2)

It is worth noting that the corresponding process B is not almost-surely uniformly continuous. We will
analyze this and other examples in more detail below. Stochastic integration with respect to the increments
of such a process B can be achieved by means of the Malliavin calculus, as we will see below. The first step,
however, is to understand the Wiener integral with respect to B. While our ultimate goal is to define a
stochastic calculus with respect to B, much work can be achieved using only the Wiener integral, including
linear additive stochastic evolution equations (see Section 7.2). It is most comforting to assume that B can
also be taken to satisfy the following:

(iii) B is adapted to a Brownian filtration.

Proposition 1 Let W be a standard Brownian motion on R+ with respect to the probability space (Ω,F ,P)
and the filtration {Ft}t≥0. Assume γ2 is of class C2 everywhere except at 0 and that dγ2/dr is non-increasing.
The following centered Gaussian process satisfies conditions (i), (ii) and (iii) with respect to {Ft}t≥0: for
any t ≥ 0,

B(t) = Bγ(t) :=
∫ t

0

ε (t− s) dW (s) (3)

where

ε (r) :=

(
d

(
γ2

)
dr

)1/2

.

In fact the constants c and C in (i) can be taken as 1 and
√

2 respectively.

Remark 2 The C2 assumption on γ is not restrictive in terms of the magnitude of the almost-sure modulus
of continuity of B, and can be achieved without loss of generality given the possibility of multiplying γ by a
factor that is bounded above and away from zero.

Remark 3 The modulus of continuity γ for a non-Lipshitz function γ(r) satisfies limr→0(dγ/dr) = +∞.
Thus, we can assume, again without loss of generality, that dγ/dr is decreasing. Moreover, since we are
aiming to study processes that are not more regular than Brownian motion (for which γ2 (r) = r), we can
assume without loss of generality that dγ2/dr is non-increasing.

Proof. (of the Proposition). Assume t > s. Then

E (Bγ (t)−Bγ (s))2 = E

(∫ s

0

[ε (t− r)− ε (s− r)] dW (r) +
∫ t

s

ε (t− r) dW (r)
)2

=
∫ s

0

[ε (t− r)− ε (s− r)]2 dr +
∫ t

s

drε2 (t− r) dr

=
∫ s

0

[ε (t− r)− ε (s− r)]2 dr + γ2 (t− s) . (4)
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because
∫

ε2 = γ2. Thus it is sufficient to show that∫ s

0

[ε (t− r)− ε (s− r)]2 dr ≤ γ2 (t− s) .

We calculate ∫ s

0

[ε (t− r)− ε (s− r)]2 dr

= γ2 (t)− γ2 (t− s) + γ2 (s)− 2
∫ s

0

√
ε2 (t− r) ε2 (s− r)dr.

We assumed that ε2 is non-increasing, so that∫ s

0

[ε (t− r)− ε (s− r)]2 dr

≤ γ2 (t)− γ2 (t− s) + γ2 (s)− 2
∫ s

0

ε2 (t− r) dr

= γ2 (t)− γ2 (t− s) + γ2 (s)− 2
(
γ2 (t)− γ2 (t− s)

)
= γ2 (t− s)− (

γ2 (t)− γ2 (s)
)

≤ γ2 (t− s) ,

which finishes the proof.

2.2 Relation to fractional Brownian motion

The fractional Brownian motion BH , which is defined by BH (0) = 0 and the formula (1), is a process that
also satisfies properties (i), (ii), and (iii). However, it does not quite satisfy a representation formula (3).
What we have shown above is that by letting γ (r) = γH (r) = rH , we have constructed a process BγH whose
covariance structure is commensurate with that of fBm, which is to say that it shares the same regularity
properties as fBm, and several other crucial properties ((i), (ii), (iii)); however, BγH is arguably easier to
work with in terms of stochastic calculus than fBm. This is an indication that for any other fixed γ, Bγ

is a good choice for a process with covariance structure satisfying (i). A reader who is familiar with the
technicalities inherent in the use of fractional integrals and derivatives needed to establish stochastic calculus
for standard fBm, may appreciate the ease with which we establish the Ito formula in this article.

Our process BγH shares another important property with standard fBm: that of self-similarity, a.k.a.
the power scaling property. We recall the relevant concept before stating the result.

Definition 4 A stochastic process X defined on R+ is said to be self-similar with parameter H if for any
a > 0, the law of {X (at) : t ∈ R+} and the law of

{
aHX (t) : t ∈ R+

}
are identical.

Proposition 5 BγH is self-similar with parameter H.

Proof. By construction, BγH is a separable Gaussian process. Therefore, we only need to check the
self-similarity property on the first two moments of the finite-dimensional distributions of BγH . In other
words, we need only to check that if f is a polynomial of degree 2 on (R+)m and t1, · · · , tm are fixed times,
we have

E [f (BγH (at1) , · · · , BγH (atm))] = E
[
f

(
aHBγH (t1) , · · · , aHBγH (tm)

)]
.

Since BγH is centered, it is thus sufficient to check this equality for monomials of degree 2. Equivalently, we
can calculate, for 0 ≤ s < t fixed, the following two second moments:

σ2
t := E

[
BγH (t)2

]
and δ (s, t)2 := E

[
(BγH (t)−BγH (s))2

]
.

4



We get by definition of ε that σ2
at =

∫ at

0
ε2 (t− s) ds = a2Hs2H = a2Hσ2

t , which is the self-similarity property
for this moment, while for the other term, the calculation in the proof of the previous proposition yields
immediately from (4):

δ (as, at)2 =
∫ as

0

[ε (at− r)− ε (as− r)]2 dr + γ2 (at− as)

=
∫ s

0

2H
[
(a (t− r′))2H−1 − (a (s− r′))2H−1

]2

adr′ + (a (t− s))2H

= a2H

[∫ s

0

2H
[
(t− r′)2H−1 − (s− r′)2H−1

]2

dr′ + (t− s)2H

]
= a2Hδ (s, t)2 .

This finishes the proof of the proposition.
With so many shared properties between standard fBm and our process BγH , one may ask what difference

there is between the two processes. It is well-known (see for example [15]) that fBm is the only stochastic
process with finite variance that is self-similar with parameter H and has stationary increments. Therefore
BγH cannot have stationary increments. Of course, we can easily calculate by how much our increments fail
to be stationary. We record this in the following

Remark 6 Standard fBm BH has stationary increments in the sense that for all s, t, h ∈ R+,

E
[(

BH (t + h)−BH (t)
)2

]
= E

[(
BH (s + h)−BH (s)

)2
]
.

However, the proof of Proposition 1 (line (4)) shows that

1
2
E

[
(BγH (s + h)−BγH (s))2

]
≤ E

[
(BγH (t + h)−BγH (t))2

]
≤ 2E

[
(BγH (s + h)−BγH (s))2

]
.

In other words BγH only fails to have stationary increments by factors no greater than 2.

3 Wiener integral with respect to Bγ

Let (Bγ (t))t∈[0,T ] be the centered Gaussian process defined by its Wiener integral representation as in (3).
We can formally take the differential of (3), to get

dBγ (t) = dt

∫ t

0

ε′ (t− s) dW (s) + ε (t− t) dW (t) .

However, we are well aware of the fact that ε (0) = +∞. Thus we formally perform the following transfor-
mation to properly define the Wiener integral: for a deterministic function f∫ t

0

f (t) dBγ (t)

=
∫ t

0

dsf (s)
∫ s

0

ε′ (s− r) dW (r) +
∫ t

0

f (s) ε (s− s) dW (s)

=
∫ t

0

ds

∫ s

0

(f (s)− f (r)) ε′ (s− r) dW (r)

+
∫ t

0

ds

∫ s

0

f (r) ε′ (s− r) dW (r) +
∫ t

0

f (s) ε (s− s) dW (s)
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=
∫ t

0

ds

∫ s

0

(f (s)− f (r)) ε′ (s− r) dW (r)

+
∫ t

0

f (r) dW (r) (ε (t− r)− ε (r − r)) +
∫ t

0

f (s) ε (s− s) dW (s)

=
∫ t

0

ds

∫ s

0

(f (s)− f (r)) ε′ (s− r) dW (r) +
∫ t

0

f (r) dW (r) ε (t− r) .

This justifies the following definition of the Wiener integral with respect to Bγ .

Definition 7 Let Bγ be defined as in (3). Let f be a deterministic measurable function on R+. We define
the operator K∗ = K∗

γ on f by

K∗
γf (r) :=

[
f (r) ε (T − r) +

∫ T

r

(f (s)− f (r)) ε′ (s− r) ds

]
.

If K∗
γf (·) is in L2 (dr) then we say that f belongs to the space L2

γ ([0, T ]), and we denote

‖f‖2γ =
∥∥K∗

γf
∥∥2

L2([0,T ])
=

∫ T

0

∣∣∣∣f (r) ε (T − r) +
∫ t

r

(f (s)− f (r)) ε′ (s− r) ds

∣∣∣∣
2

dr.

This L2
γ is the so-called canonical Hilbert space of Bγ on [0, T ]. For any f in L2

γ ([0, T ]) we define the
stochastic integral of f with respect to Bγ on [0, T ] by

∫ T

0

f (t) dBγ (t) =
∫ T

0

dW (r) Kγf (r) .

4 The canonical spaces H and H2

The above notion of Wiener integral, apart from being defined only for non-random integrands, has the
additional uninviting property that it is only defined for members of L2

γ ; we will see shortly that this canonical
space is uncomfortably small, since it may not even contain C1/2 when γ is very irregular. This implies that
there should be no hope of defining stochastic integrals of standard processes such as semimartingales, or
even standard Brownian motion, with respect to Bγ . However, when integrating a random function, the
notion of Skorohod integral can be extended to include such processes, and many more, including Bγ itself.
We therefore abandon the notion of Wiener integral for the time being, and introduce special spaces of test
functions that will be crucial for our purposes.

Definition 8 Let us fix the time interval [0, T ], with T < 1. We define the operator K∗,a
γ to be the adjoint

of the operator K∗
γ in L2([0, T ]). We denote by H the set

H = (K∗
γ)−1(L2([0, T ])

and by H2 the set:
H2 = (K∗

γ)−1((K∗,a
γ )−1(L2([0, T ])).

We note that H = L2
γ , which was introduced previously as the domain of the Wiener integral.

Remark 9 The space H endowed with the inner product

< f, g >H=< K∗
γf,K∗

γg >L2([0,T ])

is a Hilbert space.
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Remark 10 Observe that if we denote by H′ = {f ∈ L2([0, T ]),K∗,a
γ f ∈ L2([0, T ]) then by definition

< Ka,∗
γ f, g >L2([0,T ])=< f,K∗

γg >L2([0,T ]),

for every f ∈ H′ and g ∈ H.

Next we study the richness of the spaces H, H′, and H2 by showing that these spaces contain sets of
functions with specific moduli of continuity.

Definition 11 Let η be a continuous increasing function on a neighborhood of 0 in R+, with lim0+ η = 0.
The space Cη is defined as the space of all functions defined on [0, T ] that admit η as a uniform modulus of
continuity:

Cη =
{

f ∈ L2[0, T ] : sup
0≤r<s≤T

|f (s)− f (r)| /η (s− r) < ∞
}

.

Proposition 12 If η satisfies ∫
0

η (s) |ε′ (s)| ds < ∞ ((Cη))

then H contains Cη. Moreover condition (Cη) is equivalent to the following:

(Dh) There exists a positive function h defined and decreasing on a neighborhood of 0 in R+−{0} such that∫
0
h < ∞ and for small r > 0

η (r) =
∫ r

0

h (s)
ε (s)

ds. (5)

Proof. For the first statement, for fixed η, we only need to show that if f ∈ Cη, then K∗
γf ∈ L2([0, T ]).

We treat the two terms in the sum defining K∗
γf separately. First observe that if f ∈ Cη then f is bounded,

so that by definition of γ,

∫ T

0

f2(r)ε2(T − r)dr ≤ (‖f‖∞)2
∫ T

0

ε2(T − r)dr = (‖f‖∞)2 γ2(T ) < ∞.

For the L2[0, T ]-norm of the second term in K∗
γf , since there exists a constant Cf such that |f(s)− f(r)| ≤

Cfη (s− r), we have:

∫ T

0

[
∫ T

r

(f(s)− f(r))ε′(s− r)ds]2dr

≤ C2
f

∫ T

0

[∫ T

r

η (s− r) |ε′(s− r)| ds

]2

dr

= C2
f

∫ T

0

[∫ T−r

0

η (s) |ε′(s)| ds

]2

dr.

Note that if η is not defined up to T , we can simply extend η as an arbitrary constant by adjusting the
constant Cf since f is bounded. Now η |ε′| is integrable on all of [0, T ], including at 0, because of hypothesis
(Cη) and the assumption that ε is differentiable except at 0 and η is continuous everywhere. This proves
that K∗

γf ∈ L2([0, T ]).
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To prove the second statement, first note that we can assume that ε′ is non-positive (see Remark 3).
Now consider the following calculation, assuming (Dh):

∫ T

0

η (r) |ε′ (r)| dr =
∫ T

0

(∫ r

0

h (s)
ε (s)

ds

)
(−ε′ (r)) dr

=
∫ T

0

(∫ T

s

−ε′ (r) dr

)
h (s)
ε (s)

ds

=
∫ T

0

(ε (s)− ε (T ))
h (s)
ε (s)

ds

≤
∫ T

0

h (s) ds < ∞.

This proves (Dh) implies (Cη). The proof of the converse implication is more technical. However, the result
is less important since, with the first implication, we can already guarantee that Cη is contained in H as
soon as η is of the form (5). Thus we leave the details of “(Cη) implies (Dh)” to the reader.

Proposition 13 Let η and Cη be as in the previous definition and proposition. Then Cη is contained in H′
and the adjoint operator K∗,a

γ can be explicitly calculated for any f ∈ Cη according to

K∗,a
γ f(x) = f(x)ε(x) +

∫ x

0

[f(y)− f(x)]ε′(y − x)dy =: Gf (x)

Proof. We will show that for f, g ∈ Cη we have

< Gf, g >2
L ([0, T ]) =< f,K∗

γg >2
L ([0, T ]). (6)

First observe that the left-had side of the equality is well defined, i.e. for f ∈ Cη we have Gf ∈ L2([0, T ]).
Indeed, if f ∈ Cη then fε is bounded hence in L2([0, T ]). Moreover |[f(y)− f(x)]ε′(y − x)| is bounded above
by η (|y − x|) |ε′ (|y − x|)| which implies as in the proof of the previous proposition that the second term in
the definition of Gf is in L2([0, T ]). Thus we have Cη ⊂ H′. Now we only need to show equality (6). We
denote by P (T ) =< Gf, g >L2([0,T ]) and by Q(T ) =< f,K∗

γg >L2([0,T ]), then we have

P (T ) =
∫ T

0

[f(x)g(x)ε(x) + g(x)
∫ x

0

(f(y)− f(x))ε′(y − x)dy]dx

and

Q(T ) =
∫ T

0

[f(x)g(x)ε(T − x) + f(x)
∫ T

x

(g(y)− g(x))ε′(y − x)dy]dx

and we observe that P (0) = Q(0). Hence it is enough to show that P ′(T ) = Q′(T ) in order to conclude the
proposition. But

P ′(T ) =
δ

δT

∫ T

0

[f(x)g(x)ε(x) + g(x)
∫ x

0

(f(y)− f(x))ε′(y − x)dy]dx (7)

= f(T )g(T )ε(T ) + g(T )
∫ T

0

f(y)− f(T ))ε′(T − y)dy (8)
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while

Q′(T ) =
δ

δT

∫ T

0

f(x)g(x)ε(T − x)dx +
δ

δT

∫ T

0

f(x)
∫ T

x

(g(y)− g(x))ε′(y − x)dy]dx

=
δ

δT

∫ T

0

f(T − x)g(T − x)ε(x)dx + f(T ) · 0 +
∫ T

0

f(x)[g(T )− g(x)]ε′(t− x)dx

= f(0)g(0)ε(T ) +
∫ T

0

(fg)′(T − x)ε(x)dx +
∫ T

0

[f(x)g(T )− f(x)g(x)]ε′(T − x)dx

= f(0)g(0)ε(T ) +
∫ T

0

(fg)′(x)ε(T − x)dx +
∫ T

0

f(x)g(T )− f(x)g(x)]ε′(T − x)dx

where the last equality was obtained by the change of variable T − x → x. Therefore by denoting k(x) =
f(x)g(x), it is clear that k ∈ Cη, so we may write

P ′(T )−Q′(T ) = h(T )ε(T ) +
∫ T

0

[g(T )f(x)− g(T )f(T )]ε′(T − x)dx− k(0)ε(T )

−
∫ T

0

f(x)g(T )− f(x)g(x)]ε′(T − x)dx−
∫ T

0

(fg)′(x)ε(T − x)dx

= (k(T )− k(0))ε(T )

+
∫ T

0

[k(x)− k(T )]ε′(T − x)dx−
∫ T

0

k′(x)ε(T − x)dx

= (k(T )− k(0))ε(T ) +
∫ T

0

[(k(T )− k(x))ε(T − x)]′dx

= (k(T )− k(0))ε(T ) + [k(T )− k(x)]ε(T − x)|T0
= (k(T )− k(0))ε(T )− (k(T )− k(0))ε(T ) = 0.

The last equality follows from the fact that lim0 ηε = 0. To prove this last statement, note that by statement
(Dh) in the previous proposition, we have the existence of a positive decreasing integrable function h defined
on a neighborhood of 0 in R+ − {0} such that

η (r) =
∫ r

0

h (s) /ε (s) ds.

Therefore, since ε is also decreasing, we get

η (r) ε (r) =
∫ r

0

ε (r) h (s) /ε (s) ds ≤
∫ r

0

h (s) ds.

Since h is integrable at 0, the function r 7→ ∫ r

0
h (s) ds tends to 0 when r tends to 0, which proves the claim

that lim0 ηε = 0, and finishes the proof of the proposition.
For the next proposition on the size of H2, we need the following additional assumption on γ.

(A) Assume that near 0, ε is thrice continuously differentiable, ε′ is non-decreasing, and ε′′ is non-increasing.
This can be assumed without loss of generality. Also recall that ε(k) has the sign of (−1)k. Additionally,
assume that ε′′′ε′ (ε′′)−2 is bounded near 0. This last condition will be satisfied in all the examples we
will encounter below; it does not reduce the generality of the scale of processes that we may consider.

Proposition 14 Assume Condition A. Let ζ and Cζ be as in Definition 11. Assume moreover that ζ

satisfies the following condition:
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(Eh) There exists a positive function h defined, decreasing, and differentiable on a neighborhood of 0 in
R+ − {0} such that

∫
0
h < ∞ and for small r > 0,

ζ (r) = − 1
ε′′ (r)

d (h/ε)
dr

(r) .

Then H2 contains Cζ .

Proof.
Step 0. Setup. Observe that for any f ∈ H2, we have

K∗,a
γ K∗

γf(x) = K∗
γf(x)ε(x) +

∫ x

0

(K∗
γf(x)−K∗

γf(y))ε′(x− y)dy

In order to show that K∗,a
γ K∗

γf(x) ∈ L2([0, T ]) it is enough to show that∫ x

0

(K∗
γf(x)−K∗

γf(y))ε′(x− y)dy ∈ L2([0, T ]). (9)

Indeed,
‖K∗

γfε‖L2([0,T ]) ≤ ‖K∗
γf‖L2([0,T ])‖ε‖L2([0,T ]) = ‖K∗

γf‖L2([0,T ])γ(T ) < ∞.

From the proof of the previous proposition, we know that (9) holds as soon as K∗
γf is included in Cη

where η satisfies Condition (Cη) or (Dη). Again, this clearly reduces to requiring that the function J defined
by

J (r) :=
∫ T

r

(f (s)− f (r)) ε′ (s− r) ds

belongs to Cη. We must consider, for a fixed pair (x, y), with say x < y, the quantity L (x, y) = J (x)−J (y).
We rewrite L = L1 + L2 + L3 where

L1 (x, y) =
∫ y

x

ε′ (s− x) (f (s)− f (x)) ds,

L2 (x, y) =
∫ T

y

(ε′ (s− x)− ε′ (s− y)) (f (s)− f (y)) ds,

L3 (x, y) = (f (y)− f (x)) (ε (T − x)− ε (y − x)) .

Our assumption is that for some constant c, which we can take to be c = 1 to simplify the notation, we have
for all r, r′ > 0,

|f (r)− f (r′)| ≤ cζ (|r − r′|) = c
1

ε′′ (|r − r′|)
d (h/ε)

dr
(|r − r′|) . (10)

We only need to show the three Li’s are bounded in absolute value by η (y − x).
Step 1. ζ is acceptable. It would be well-advised to first check that the function ζ defined in

Condition (Eh) is a bona-fide modulus of continuity function. Since h is integrable at 0, we can assume that
(−h′) (r) ¿ (

r2 log
(
r−1

))−1 near 0. Then since (−h/ε)′ = (−h′) /ε+hε′/ε2 ≤ (−h′) /ε we get (−h/ε)′ (r) ¿(
ε (r) r2 log

(
r−1

))−1. If φ is a convex differentiable function that increases to +∞ as r decreases to 0, by
the mean value theorem, φ (r)−φ (2r) ≤ r max(r,2r) |φ′| = |φ′ (r)|, which implies |φ′ (r)| > φ (r) /r. Applying
this to both ε and −ε′ yields ε′′ (r) ≥ ε (r) r−2. This proves that lim0 ζ = 0. The continuity of ζ is trivial
given our hypotheses. The positivity of ζ near 0 can be obtained as follows. Note that we can choose h so
that h (r) À r−α for any α < 1, while by the definition of ε (since ε2 has to be integrable at 0), we must have
ε (r) ¿ r−1/2; therefore as r tends to 0, h/ε tends to infinity faster than r−α+1/2. Because of the flexibility
of choice for h, this limit can be attained in an increasing fashion, hence (h/ε)′ < 0; the positivity of ε′′,
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which is part of our hypothesis, now guarantees that ζ is positive. To guarantee that ζ is increasing, we can
again invoke the flexibility on the choice of h, combined with the fact that ζ = o (1).

Step 2. Estimate for L2. Using the notation δ = y − x, the fact that ε′ is non-decreasing, and the
hypothesis (10) on f , we have

|L2 (x, y)| ≤
∫ T−y

0

(ε′ (r + δ)− ε′ (r)) ζ (r) dr.

We can split up this estimate for L2 into two pieces:

|L2 (x, y)| ≤
∫ δ

0

(ε′ (r + δ)− ε′ (r)) ζ (r) dr +
∫ T

δ

(ε′ (r + δ)− ε′ (r)) ζ (r) dr

:= L21 (δ) + L22 (δ) .

For the second piece we obtain, using the mean-value theorem and the hypothesis that ε′′ is positive and
decreasing,

L22 (δ) ≤
∫ T

δ

δε′′ (r) ζ (r) dr = −δ

∫ T

δ

(h/ε)′ (r) dr

= δ [(h/ε) (δ)− (h/ε) (T )] ≤ δ (h/ε) (δ) ≤ η (δ)

where the last inequality follows from the definition of η (δ) =
∫ δ

0
h/ε and the fact that h/ε is decreasing.

To estimate the first piece we need an integration by parts. We write L21 (δ) =
∫ δ

0
udv where

u = (ε′ (r + δ)− ε′ (r))
(
− 1

ε′′ (r)

)
dv = (h/ε)′ (r) dr.

so that

−du

dr
=

1
ε′′ (r)

(ε′′ (r + δ)− ε′′ (r))− ε′′′ (r)
ε′′ (r)2

(ε′ (r + δ)− ε′ (r)) .

The first term in −du/dr above is negative. The second term is positive and bounded above by 2ε′ε′′′ (ε′′)−2,
which is bounded by Assumption (A), say by a constant c. Therefore

−
∫ δ

0

vdu ≤ c

∫ δ

0

h

ε
= cη (δ) ,

and since u is negative,

[uv]δ0 ≤ lim
r→0

h

ε
(r) (ε′ (r + δ)− ε′ (r))

1
ε′′ (r)

≤ lim
r→0

h

ε
(r)

2 |ε′ (r)|
ε′′ (r)

.

We can show that this limit is 0. Indeed, we know h ¿ 1/r. Moreover, using the argument with φ in Step
1, we have |ε′| /ε′′ < r. The required limit is then obtained since by assumption, 1/ε tends to 0. Therefore
we have proved

L21 (δ) ≤ cη (δ) ,

which implies
|L2 (x, y)| ≤ (c + 1) η (y − x) .

11



Step 3. Estimate for L3. By assumption (10), using again δ = y − x, and also using the estimate
(ε/ε′′) (δ) < δ2 which was proved in Step 1, we have

|L3 (x, y)| ≤ −
(

h

ε

)′
(δ)

ε (δ)
ε′′ (δ)

≤ −δ2

(
h

ε

)′
(δ) .

By definition η (δ) =
∫ δ

0
h/ε. Therefore, h/ε = η′ and (h/ε)′ = η′′. First we can see that η′ (δ) < η (δ) /δ

because η is increasing and concave and η (0) = 0, the concavity coming from the fact that η′ = h/ε can
be chosen to be decreasing by an appropriate choice of h since ε ¿ r−1/2 while h À r−1/2. Next, since η′

decreases from +∞, we can also assume that −η′′ is decreasing; then by the mean value theorem, we have
η′ (δ/2) − η′ (δ) ≥ −η′′ (δ) δ/2 which yields −η′′ (δ) ≤ η′ (δ/2) 2/r. Putting this together with the estimate
on η′ we get −η′′ (δ) ≤ 4δ−2η (δ/2). Since η is increasing, we finally get

|L3 (x, y)| ≤ −δ2η′′ (δ) ≤ 4η (δ/2) ≤ 4η (δ) .

Step 4. Estimate for L1. By assumption (10), still using δ = y − x,

|L1 (x, y)| =
∣∣∣∣
∫ y

x

ε′ (s− x) (f (s)− f (x)) ds

∣∣∣∣
≤

∫ δ

0

ε′ (s)
(

h

ε

)′
(s)

1
ε′′ (s)

ds

≤ cη (δ)

where the last inequality is established by repeating the method of estimation of
∫ δ

0
udv in Step 2.

This finishes the proof of the proposition.
The previous proposition is crucial in showing that H2 is non-empty (modulo constant functions), which

is a sine qua non condition for the validity of our stochastic calculus below. The next corollary aids in
showing how sharp the previous proposition is, and the examples following show precisely how large we can
expect H2 to be in specific cases of interest.

Corollary 15 Let

ζ̃ (r) = − 1
ε′ (r)

d
(
h̃/ε′

)
dr

(r) .

where h̃ satisfies the same hypotheses as h except that
∫
0
h̃ = +∞. Then h̃ can be chosen so that ζ̃ is a

bona-fide modulus of continuity, and H2 does not contain C ζ̃ .

Proof. The proof of the corollary uses the estimates in the proof of the previous propositions. We give
only the main parts of the argument, leaving some of the details to the reader, since the corollary is not used
in the remainder of the paper. First we can invoke the same argument as in Step 1 of the proof of Proposition
14 to justify that with h̃ (r) = r log−1

(
r−1

)
we do have ζ̃ non-negative, increasing and continuous at 0 with

ζ̃ (0) = 0. Recall then that the dominant term in the calculation of the H2-norm of a function f is∫ y

0

(K∗
γf(y)−K∗

γf(x))ε′(y − x)dx. (11)

We will show that f can be chosen in C ζ̃ so as to make the above term infinite for all x close to a fixed y.
We treat the case y = T ; smaller values of y are treated similarly, although the calculations are slightly more
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involved. The dominant term in K∗
γf(y)−K∗

γf(x) is

∫ T

x

(f (s)− f (x)) ε′ (s− x) ds−
∫ T

y

(f (s)− f (y)) ε′ (s− y) ds

=
∫ y

x

(f (s)− f (x)) ε′ (s− x) ds.

Since the integral of the above expression, as a function of x in the space L1([0, y], ε′ (y − x) dx), is required,
by definition of H2, to be a member of L2 ([0, T ], dy) after x-integration, we deduce that the expression must
be absolutely integrable except possibly for a null set of values of (x, y). There exists a function f in C ζ̃

such that for all 0 ≤ x ≤ s ≤ y, |f (x)− f (s)| ≥ ζ̃ (s− x). Thus

∫ y

x

|f (s)− f (x)| ε′ (s− x) ds ≥
∫ y

x

(
h̃

ε′

)′
(s− x) ds =

∫ y−x

0

(
h̃

ε′

)′

=
h̃ (y − x)
ε′ (y − x)

where the last step is because of the fact that in all cases which we study, ε′ (r) ≥ 1/r, since we study
only processes Bγ that are more irregular than Brownian motion. Integrating this last expression against
ε′ (y − x) dx in [0, y] yields infinity by definition of h̃. Since this holds for all x and y the expression in (11)
cannot be in L2 ([0, T ]).

Definition 16 Let β > 0 be fixed. Let γ be defined by

γ2 (r) = [log (1/r)]−β
,

so that
ε2 (r) = βr [log (1/r)]−β−1

.

We call the corresponding process Bγ , as defined in Proposition 1, the logarithmic Brownian motion (logBm)
with parameter β.

Note that since γ has a singularity at r = 1, it is safe to define logBm only on closed intervals in [0, 1).
For larger intervals, simple scaling can be used; for infinite intervals, it is best to modify the behavior of γ

for large r.

From Proposition 1, we have that the canonical metric δ of Bγ is commensurate with γ. It is then
well-known that if ξ (r) := γ (r) log1/2 (r) is continuous, it is almost-surely a uniform modulus of continuity
for Bγ , i.e. Bγ ∈ Cξ a.s. In fact this property is sharp: if Bγ ∈ Cξ then γ is bounded below by ξ log−1/2 (·);
this property was established for homogeneous Gaussian processes in [17]; here a slightly modified argument,
using the estimates in the proof of Proposition 1, can be invoked; we leave this to the reader, since the result
is only tangential to our main results. What we can see immediately is that Bγ is a.s. uniformly continuous
if and only if β > 1.

It can also be established that if β ≤ 1 then Bγ is unbounded. It is often quoted in the literature that
a homogeneous Gaussian process is either a.s. uniformly continuous or is a.s. unbounded, from which it is
sometimes inferred that in the unbounded case, the process is discontinuous. However, even though we know
of no proof of this fact, we believe that even if β ≤ 1, the logBm is still pointwise continuous a.s., even if
only at countably many points; this certainly does not contradict its unboundedness. But more importantly
it would explain, heuristically, why we are able to define a stochastic calculus and a non-trivial local time
with respect to it. We now summarize the above discussion, and give an indication of the size of H and H2.
For these sizes, we simply used Propositions 12 and 14, with h (r) = r−1 log−α (1/r) for some α > 1.
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• Fractional Brownian scale. The process Bγ has a canonical metric that is commensurate with that
of H-fBm if γ (r) = rH , or more generally if γ (r) ³ rH . In this case, our Skorohod integral defined
in Section (5.2) below has the same properties as that defined in [5]. It is interesting to note that
our results above prove that H2 is indeed non-empty in this case, although this question did not
seem concerning in [5]. According to our results, H2 contains C1−2H′

for any H ′ < H < 1/2. The
larger H is, the bigger H2 is. However, Corollary 15 shows that H2 does not contain the space C ζ̃

where ζ̃ (r) = r1−2H log−1 (1/r) . A slight historical digression on the Skorohod integral for fBm for
H ∈ (1/4; 1/2) might be relevant at this stage. However, we refer to the last paragraph in Subsection
5.2 below for such a development.

• Regular logBm: case β > 1. The logBm process Bγ is a.s. uniformly continuous with modulus of
continuity ξ (r) := log(1−β)/2 (r). H contains the space Cη for

η (r) = r1/2 logβ−α (1/r)

for any α > 1, so in particular it contains a space bigger than C1/2. H2 contains the space Cζ for

ζ (r) = r logβ+1−α (1/r)

for any α > 1, which is non-empty if 1 < α ≤ β + 1.

• Irregular logBm: case β ∈ (0; 1]. The logBm process Bγ is a.s. unbounded. H contains the space Cη

for η as defined in the previous case for any α > 1, which is never empty, but does not contains a space
bigger than C1/2. H2 contains the space Cζ for ζ as defined in the previous case for any α > 1, which
is non-empty if 1 < α ≤ β + 1; therefore H2 is non-empty, and a stochastic calculus w.r.t. Bγ will be
defined below.

• Highly irregular processes. One could study examples such as γ (r) ³ log−1 (log (1/r)), or even using
multiple iterations of the logarithm. One can check that H2 is non-empty in these cases, although
the size of H2 decreases “dangerously”. However, since the transition between the continuous and
discontinuous processes occurs within the logBm scale, we have not yet found any compelling reasons
to expand on these other examples.

5 Stochastic calculus

5.1 The derivative operator

We denote by S the set of smooth cylindrical random variables of the form

F = f(Bγ(φ1), · · ·Bγ(φn)), n ≥ 1, f ∈ C∞(Rn), φi ∈ H. (12)

We define the differential operator D on S by

DF =
n∑

i=1

δf

dxi
(Bγ(φ1), · · ·Bγ(φn))φi.

Remark 17 DF is an element of L2([0, T ]× Ω) = L2(Ω;H)

Remark 18 For all p ≥ 1 F → DF is closable from Lp(Ω) into Lp(Ω,H). The domain of D in Lp(Ω) is
denoted by D1,p, meaning that D1,p is the closure of the smooth random variables S with respect to the norm

‖F‖1,p = [E(|F |p) + E(‖DF‖p
L2(T ))]

1
p .
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Remark 19 For p = 2 the space D1,2 is the Hilbert space with the scalar product

< F,G >1,2= E(FG) + E(< DF,DG >H)

Theorem 20 Let Hm(x) be the m-th Hermite polynomial and let φ ∈ H be an element of norm 1. Then it
holds that

m!Hm(Bγ(φ)) =
∫

[0,T ]m
φ(t1)φ(t2) · · ·φ(tm)b(dt1) · · ·Bγ(dtm)

Note. The mth Hermite polynomial is given by

Hm(x) =
(−1)m

m!
e

x2
2

dn

dxn
(e−

x2
2 ), n ≥ 1

and H0(x) = 1.
This theorem is a direct application of the well-known result on multiple Wiener integrals, which can be

found in Nualart’s book [12], established for all isonormal Gaussian processes, and hence for our particular
class of processes and their associated Hilbert spaces H. Moreover using the same notation as we use, the
proof of the following chain rule can also be found in [12].

Proposition 21 Let φ : Rm → R be a continuous differentiable function with bounded partial derivatives,
and fix p ≥ 1. Suppose that F = (F 1, · · ·Fm) is a random vector whose components belong to the space D1,p.
Then

D(φ(F )) =
m∑

i=1

δφ

δxi
(F )DF i.

5.2 The divergence operator and its extension

Definition 22 The divergence operator δ is defined to be the adjoint of the derivative operator D viewed as
an operator from L2(Ω) → L2(Ω,H).

Remark 23 δ is an operator from L2(Ω,H) into L2(Ω), and its domain denoted by Dom δ is the space of
processes u ∈ L2(Ω,H such that F → E(< DF, u >H) is a bounded linear functional on (S, ‖ · ‖2). Since
for such u the functional F → E(< DF, u >H) is linear and bounded, we can write it as an inner product,
hence there is an unique element δ(u) in L2(Ω) such that

E(< DF, u >H) = E(δp(u)F ),

for all F ∈ SH.

Notation. We use the notation:
δ(u) =

∫
[0,T ]

utdBγ
t .

This integral will also be referred to as the Skorohod integral below.
It is now understood that for fBm BH with parameter H ≤ 1/4, BH is not in the domain Domδ of its

own Skorohod integral: see [5]. The same argument used therein can be applied to our process Bγ with
γ (r) ≥ r1/4. However, an extension of the Skorohod integral was developed in [5] for which BH is integrable.
We are about to see how to extend the Skorohod integral and the Ito formula in general to allow for all
our processes Bγ to be integrable. Our proofs use the same algebraic method based on Gaussian chaos
and Hermite polynomials as in [5], but they are both simpler, since they do not require the explicit use of
fractional calculus, and wider-ranging, since they are not restricted to the Hölder scale for fBm.
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Definition 24 We denote by SH2 the set of smooth cylindrical random variables of the form

F = f(Bγ(φ1), · · ·Bγ(φn)), n ≥ 1, f ∈ C∞(Rn), φi ∈ H2.

Definition 25 Let {ut, t ∈ [0, T ]} be such that E
∫ T

0
u2

t dt < ∞. We say that u ∈ Dom∗δ if there exists
δ(u) ∈ L2(Ω) such that for all F ∈ SH2 we have

∫ T

0

E(utK
∗,a
γ K∗

γDtF )dt = E(δ(u)F ).

The divergence operator defined for u ∈ Dom∗δ will also be called the Skorohod integral of u with respect
to Bγ .

Remark 26 The following properties are easily seen.

1) Domδ ⊂ Dom∗δ.

2) If u ∈ Dom∗δ then E(u) ∈ H.

3) If u is deterministic then u ∈ Dom∗δ iff u ∈ H iff u ∈ Domδ.

Before presenting the Ito formula, we finish this subsection with some remarks and questions on the
relation with standard Skorohod integration. Before the article [5] appeared, it was commonly thought that
Skorohod integration for fBm had a lower limit, and the threshold H > 1/4 was often quoted as the most
irregular level for which a Skorohod integration could be defined. Skorohod integration in [5] is pushed
beyond this level by modifying the size of the space of test functions needed to assert integrability. Our
results here show that in the range H ∈ (1/4; 1/2), the size of the space of test functions in [5] or in this article
is smaller than the original test space for Skorohod integration; indeed (compare line (12) and Definition
(24) below), the latter is based on H while the former is based on H2. In this sense, our Skorohod integral,
or that of [5], only generalizes the standard Skorohod integral for H ∈ (1/4, 1/2) insofar as the Skorohod
integrals themselves are equal as linear forms on SH2 Ã L2 (Ω). The fact that the Ito formulas coincide
in the standard case and in the case of [5] (Lemma 9 therein) shows that a lot can be deduced from the
coincidence of the two ways of defining Skorohod integrals. As such it is not surprising that a study of local
time may be possible, for example. On the other hand, our Ito formula (Theorem 27 below) has exactly
the same form again, even though our process BγH is not identical to fBm (see Remark 6); in other words
the Ito formula for deterministic functions of Bγ is clearly not an appropriate test for thoroughly comparing
Skorohod integrals. The precise extent to which standard Skorohod integration and the integration defined
in this article or in [5] actually coincide is not clear to us at this stage.

5.3 The Itô Formula

Following the arguments of Cheridito and Nualart in [5], in this section we will prove the basic result of
stochastic calculus. Our proof does not require the use of fractional derivatives – in fact we had to find a
way to do without them, since we do not work in the power scale. Some other aspects of the proof have
presumably well-known structures, and are very similar to some arguments in [5], such as the proof of the
algebraic identities using Hermite polynomials (19), (20), and (21). We have included brief proofs of all such
claims, for the sake of readability.

Theorem 27 Let f ∈ C∞(R) be a function such that for all n ≥ 0 there exist constants Cn and Dn with
Dn < 1

2 log 1
T such that

|f (n)(y) ≤ CneDny2
, y ∈ R.
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Then for all t ≤ T the process f ′(Bγ
s )1(0,t](s) ∈ Dom∗δ and we have

δ(f ′(Bγ
s )1(0,t]) = f(Bγ

t )− f(0)−
∫ t

0

f ′′(Bγ
s )γ(s)γ′(s)ds.

Proof. The process f ′(Bγ
s )1(0,t](s) ∈ Dom∗δ and the formula in the above theorem is true iff for all

F ∈ SH2 we have

∫ T

0

E(f ′(Bγ
s )1(0,t](s)K∗,a

γ K∗
γDsF )ds

= E((f(Bγ
t )− f(0)−

∫ t

0

f ′′(Bγ
s )γ(s)γ′(s)ds)F ). (13)

Since Hn(Bγ(φ)), n ≥ 1, with Hn being the n-th Hermitian polynomial, are dense in SH2 it is enough to
show (13) for F of this type.

However DsHn(Bγ(φ)) = Hn−1(Bγ(φ))φ(s); hence (13) is equivalent to

∫ T

0

E(f ′(Bγ
s )1[0,t](s)K∗,a

γ K∗
γHn−1(Bγ(φ))φ(s)))ds

= E((f(Bγ
t )− f(0)−

∫ t

0

f ′′(Bγ
s )γ(s)γ′(s)dsHn(Bγ(φ))). (14)

Since Hn−1(Bγ(φ)) does not depend on s we can rewrite (14) as

∫ T

0

E(f ′(Bγ
s )Hn−1(Bγ(φ))(K∗,a

γ K∗
γHn−1φ)(s))ds

= E((f(Bγ
t )− f(0)−

∫ T

0

f ′′(Bγ
s )γ(s)γ′(s)dsHn(Bγ(φ))). (15)

Let us compute E(f (n)(Bγ
t )).

If p(σ, y) := (2πσ)−1/2 exp(− 1
2

y2

σ ), σ > 0, y ∈ R. Observe that ∂p
∂σ = 1

2
∂2p
∂y2 . Then

d

dt
E(f (n)(Bγ

t )) =
d

dt

∫
R

p(γ2(t), y)f (n)(y)dy

=
∫
R

∂p

∂σ
(γ2(t), y)2γ(t)γ′(t)f (n)(y)dy

=
∫
R

∂2p

∂y2
(γ2(t), y)f (n)(y)γ(t)γ′(t)dy

=
∫
R

γ(t)γ′(t)p(γ2(t), y)f (n+2)(y)dy

= γ(t)γ′(t)E(f (n+2)(Bγ
t )) (16)

The fourth equality is obtained using the properties of f and integration by parts applied twice. Indeed,∫
R

∂2p

∂y2
(γ2(t), y)f (n)(y)dy =

∫
R

p(γ2(t), y)f (n+2)(y)dy

+
∂p

∂y
(γ2(t), y)f (n)(y)

∣∣∞
−∞ − p(γ2(t), y)f (n+1)(y)

∣∣∞
−∞ (17)

But ∂p
∂y (γ2(t), y)f (n)(y) ≤ − Cn

2γ(t)e
y2(− 1

γ(t)+Dn). Since Dn < − 1
γ(t) for all t ≤ T we conclude that the term

∂p
∂y (γ2(t), y)f (n)(y)

∣∣∞
−∞ = 0. Similarly p(γ2(t), y)f (n+1)(y)

∣∣∞
−∞ = 0. Hence the 4th equality.
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Now we proceed to verify equality (15). For n = 0, the left hand side of equality (15) is 0, and the right
hand side is

E((f(Bγ
t )− f(0)−

∫ t

0

f ′′(Bγ
s )γ(s)γ′(s)ds) · 1) = 0,

so the equality is verified. For n ≥ 1, for all s ∈ (0, t] we have

〈1(0,s], φ〉H = 〈Kα
γ 1(0,s],K

α
γ φ〉L2([0,T ])

= 〈1(0,s],K
α,a
γ Kα

γ φ〉L2([0,T ])

=
∫ s

0

Kα,a
γ Kα

γ φ(µ)dµ

and

d

ds
(E[f (n)(Bγ

s )]〈1(0,s], φ〉nH) =

γ(s)γ′(s)E[f (n+2)(Bγ
s )]〈1(0,s], φ〉nH + nE[f (n)(Bγ

s )]〈1(0,s], φ〉n−1K∗,a
γ K∗

γφ(s).

Hence,

E[f (n)(Bγ
t )]〈1(0,t], φ〉nH

=
∫ t

0

γ(s)γ′(s)E[f (n+2)(Bγ
s )]〈1(0,s], φ〉nHds

+ n

∫ t

0

E[f (n)(Bγ
s )]〈1(0,s], φ〉n−1K∗,a

γ K∗
γφ(s)ds. (18)

Now let us show that
E[f (n)(Bγ

t )]〈1(0,t], φ〉nH = n!E[f(Bγ
t )Hn(Bγ(φ))], (19)

and
E[f (n)(Bγ

t )]〈1(0,t], φ〉n−1
H = (n− 1)!E[f ′(Bγ

t )Hn−1(Bγ(φ))], (20)

and also
E[f (n+2)(Bγ

t )]〈1(0,t], φ〉nH = n!E[f ′′(Bγ
t )Hn(Bγ(φ))]. (21)

We know E < u,DF >H= E[δ(u)F ]. Also, by Theorem 1.1.2 in [12],

u = Hk−1(Bγ(φ))φ(t) =
1

(k − 1)!

∫
[0,T ]k−1

φ(t1) · · ·φ(tk−1)φ(t)Bγ(dt1) · · ·Bγ(dtk−1))

and

δ(u) =
1

(k − 1)!

∫
[0,T ]k

φ(t1) · · ·φ(tk−1)φ(t)Bγ(dt1) · · ·Bγ(dtk−1B
γ(dt)))

=
k!

(k − 1)!
Hk(Bγ(φ)) = kHk(Bγ(φ))

and u ∈ Dom(δ). Also observe that

E(f(Bγ
t )) < 1[0,T ], φ >H= E(f(Bγ

t )) < K∗
γ1[0,T ],K

∗
γφ >L2(),T )

=< E(f(Bγ
t ))1[0,T ],K

∗,a
γ K∗

γφ >L2(),T )

=
∫ t

0

E(f(Bγ
t ))1[0,T ]K

∗,a
γ K∗

γφ = E(δ(φ)f(Bγ
t ))

18



We prove the first equality by induction. The other two have the same proof. For n = 1 we have

E(f ′(Bγ
t )) < 1[0,T ], φ >H= E(δ(φ)f(Bγ

t )) = E[H1(Bγ(φ))f(Bγ
t ))

Now assume the equality is true for n = k and prove it is true for n = k + 1.

(k + 1)!E[f(Bγ
t )Hk+1(Bγ(φ))] = k!E[f(Bγ

t )δ(Hk(Bγ(φ))φ(t))]

k!
∫ t

0

E(f(Bγ
s ))Hk(Bγ(φ))K∗,a

γ K∗
γφ(s)ds

=
∫ t

0

E(f (k)(Bγ
s )) < 1[0,t], φ >k

H K∗,a
γ K∗

γφ(s)ds

=
∫ t

0

E(f (k)(Bγ
s ))K∗,a

γ K∗
γφ(s)ds < 1[0,t], φ >k

H

=E(f (k+1)(Bγ
s )) < 1[0,t], φ >k+1

H ,

where the last equality is deduce by the induction step.
Using (19), (20), and (21) into (18) we obtain:

n!E[f(Bγ
t )Hn(Bγ(φ))] =

∫ t

0

γ(s)γ′(s)n!E[f ′′(Bγ
s )]Hn(Bγ(φ))ds

+ n

∫ t

0

(n− 1)!E[f ′(Bγ
t )Hn−1(Bγ(φ))]K∗,a

γ K∗
γφ(s)ds,

which is equivalent to (15).

6 Local time

6.1 Existence

There are two distinct “natural” ways of defining the local time of a Gaussian process. If one attempts to
keep the highest possible analogy with the standard Brownian case, one can define λt as the occupation
measure λt (A) =

∫ t

0
1A(BH

s )ds and use the same notation abusively to define its density with respect to
Lebesgue measure. This was done for example originally in Berman’s paper [3]. On the other hand, and
more recently, several stochastic analysts working on fractional Brownian motion have chosen to consider a
different occupation measure because it yields a connection to stochastic calculus via the Itô-Tanaka formula:
see for example [7]; also see the summary on local time for fBm-based processes in [18].

We use herein the same type of definition, since our motivations are of the same nature. Specifically, we
let La

t be the density at point a of the occupation measure

A 7→
∫ t

0

1A(Bγ
s )d

(
γ2

)
(s) =

∫ t

0

1A(Bγ
s )2γ (s) γ′ (s) ds.

This is the same definition as for fBm in articles such as [7], since then γ2 (s) = s2H ; the existence of this
occupation measure can be established in the same way. In particular, we state the following result, leaving
its proof to the reader:

La
t =

∫ t

0

2γ (s) γ′ (s) λa (ds) . (22)

While Lt can be interpreted as the density of an “occupation time measure”, it is important to note that
the word “time” cannot have the same interpretation as for λt since for Lt time is heavily weighted at the
origin. Note also that from Proposition 29 below, L has a version that is jointly continuous in t and a on
any set bounded away from the line t = 0.
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6.2 Tanaka formula

Theorem 28 Let x, y ≤ T . Then 1(y,∞)B
γ
t 1(0,x](t) ∈ Dom∗δ and

δ(1(y,∞)(Bγ
. )1(0,x](·)) = (Bγ

x − y)+ − 1
2
Ly

x.

Proof. For ε > 0, denote by pε(x) = (2πε)−1/2 exp
(−x2/2ε

)
and by

fε(α) =
∫ α

−∞

∫ v

−∞
pε(z − y)dzdv, α ∈ R.

Observe now that fε(α) → (α− y)+ and f ′ε(α) =
∫ α

−∞ pε(z− y)dz → 1
21{0}(α) + 1(y,∞)(α). Hence fε(Bγ

x) →
(Bγ

x − y)+ in L2(Ω) and f ′ε(B
γ
t )1(0,x](t) → 1(y,∞)(B

γ
t )1(0,x](t) in L2(Ω×R).

Moreover, since the functions fε satisfy the conditions of Ito formula we deduce that f ′ε(B
γ
t )1(0,x](t) ∈

Dom∗δ and
δ[f ′ε(B

γ
. )1(0,x](·)] = fε(Bγ

x)− fε(B
γ
0 )−

∫ x

0

f ′′ε (Bγ
s )γ(s)γ′(s)ds. (23)

Therefore if we show that
lim
ε→0

δ[f ′ε(B
γ
. )1(0,x](·)] = δ(1(y,∞)(Bγ

. )1(0,x](·)) (24)

and that
lim
ε→0

∫ x

0

f ′′ε (Bγ
s )2γ(s)γ′(s)ds = Ly

x (25)

the theorem will be proved.
The convergence (24) follows from the fact that δ is a closed operator on Dom∗, i.e. if un, u ∈

Dom∗δ ∩ L2(Ω, L2(R+)) are such that limn→∞ un = u in L2(Ω, L2(R+)) and if there is U ∈ L2(Ω) such
that limn→∞ δ(un) = U in L2(Ω) then u ∈ Dom∗δ and δ(u) = U .In our case uε = f ′ε(B

γ
. )1(0,x](·) and using

Cauchy convergence in (23) we obtain the convergence of δ(un) hence (24).
In order to prove (25) we remark first that for continuous functions g with compact support we have:∫ t

0

g(Bγ
s )ds =

∫
R

g(y)λy
t dy.

Indeed, this is true for simple functions. Then by writing a continuous function with compact support g as
limit of simple functions we obtain the desired equality. Now using the definition of La

t we obtain in the
same fashion: ∫

R

g(y)Ly
t dy =

∫ t

0

g(Bs)γdγ2(s),

for any function g with compact support.
The validity of formula (22) can be used to establish the following convergence, whose proof is also left

to the reader:
∫ t

0
pε(Bs−y)dγ2(s) converges uniformly in y. We can write now, for each continuous function

with compact support:∫
R

(
lim
ε→0

∫ t

0

pε(Bs − y)dγ2(s)
)

g(y)dy = lim
ε→0

∫
R

(∫ t

0

pε(Bs − y)dγ2(s)
)

g(y)dy

= lim
ε→0

∫ t

0

(∫
R

pε(Bs − y)g(y)dy

)
dγ2(s)

Since g is continuous with compact support it will have a maximum on [0, t] and applying dominated
convergence we obtain

lim
ε→0

∫ t

0

(∫
R

pε(Bs − y)g(y)dy

)
dγ2(s) =

∫ t

0

(
lim
ε→0

∫
R

pε(Bs − y)g(y)dy

)
dγ2(s)

=
∫ t

0

g(Bs)dγ2(s)
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Therefore for each continuous function g with compact support we have∫
R

(
lim
ε→0

∫ t

0

pε(Bs − y)dγ2(s)
)

g(y)dy =
∫
R

g(y)Ly
t dy,

which implies (25).

6.3 Regularity

It is often quoted that the more a stochastic process is irregular, the more its local time will be regular
in the time parameter. This was noticed already in Berman’s original article [3]. A slightly more careful
analysis shows that in fact the oft quoted idea above needs to be taken with a small grain of salt in the case
of L because of the singularity at the origin in the definition of L when Bγ is more irregular than standard
Brownian motion.

Proposition 29 Let t0 > 0 be fixed. Then L has a jointly continuous version in (t, a) on the set [t0, 1]×R.
In particular, uniformly in x, this version is θ-Hölder-continuous in t ≥ t0 for any parameter θ < 1/2;
however, in the case of logBm, we can increase this to any θ < 1.

Proof. We have the following limit: for some δ > 0 and for some θ′ < 1

lim
h→0

h−θ′
∫ h

0

(γ(t))−1−δdt = 0.

Indeed, we can assume that γ (t) ≥ t1/2 (see Remark 3), so that we can choose and θ′ < 1/2. In the case
of logBm, we have of course that for all α > 0, γ (t) ≥ tα, so that we can choose any θ′ < 1. By Theorem
8.1 in [3] we deduce that here is a continuous version, in the two parameters (a, t), for the density λa

t of the
occupation measure λt, and that uniformly in a, the version is θ-Hölder-continuous for any θ < 1/2 in the
general case, and for any θ < 1 in the logBm case. Since the local time, as defined above, is related with the
density λa

t by (22) we can use integration by parts to express L as follows:

La
t = ε2 (t) λa (t)− lim

0+
ε2λa −

∫ t

0

dε2

ds
(s) λa (s) ds. (26)

Since the above limit is 0 (follows from 22 and integration by parts) it is true that away from 0 La and λa

share, up to a constant, the same modulus of continuity, since ε2 is smooth and bounded there.
The modulus of continuity at 0 is not the same as in the above proposition, however. Indeed, one can

quote, for example, Yimin Xiao’s result in [19], which implies that in the case of fBm for some constant K,
a.s.

|λa (t)| ≤ Kt1−H (log log (1/t))H
.

One then sees that we can only guarantee the following behavior for the local time for fBm: close to 0, for
some constant K, almost surely,

|La
t | ≤ Kε2 (t) λa (t) = Kt2H−1λa (t) ≤ KtH .

When H < 1/2, we see that the uniform Hölder behavior of La on any interval containing the origin
deteriorates to the exponent H instead of 1−H.

In any non-Hölder case, for example with the scale of logarithmic Brownian motion (logBm) defined by
γ2 (r) = log−β (1/r), we cannot exploit any existing results. Even Yimin Xiao’s sharp uniform continuity
result which states that in the fBm case in [19], almost surely, for all t and all small r

|λa (t + r)− λa (t)| ≤ Kr1−H (log (1/r))H
,
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(or her pointwise continuity result where t is fixed and the log is replaced by log log) cannot be extended
beyond the Hölder scale, since her proofs rely heavily on the fact that γ should be regularly varying. In
accordance with her results, however, we state the following conjecture, which we will investigate in another
publication.

Conjecture 30 There exists a constant K such that almost surely, for all t ∈ [0, 1], for all small r > 0

|λa (t + r)− λa (t)| ≤ Kr/γ (r/ log (1/r)) .

With this conjecture, the integration-by-parts formula (26) will yield the same modulus of continuity for
La (away from 0) if lim0+ ε2λa = 0. This limit is trivial in the Hölder scale, and is easily seen otherwise:
indeed when γ is larger than any power function the relation γ (r/ log (1/r)) > γ (t) γ (1/ log (1/t)) holds
trivially; coupled with the convexity relation tγ′ (t) ≤ γ (t) , we get

ε2 (t)λa (t) ≤ γ (t) /γ (1/ log (1/t))

hence the required limit, and the following additional conjecture.

Corollary 31 Let I be a closed interval in (0, 1]. There exists a constant K such that almost surely, for all
t ∈ I, for all small r > 0 ∣∣La

t+r − La
t

∣∣ ≤ Kr/γ (r/ log (1/r)) .

To establish this conjecture, we cannot expect to be able to use the Tanaka formula:

L0
t = (Bγ

t )+ −
∫ t

0

1[0,∞) (Bγ
s ) δBγ (s) . (27)

Indeed, neither of the two terms in this formula should be more regular than Bγ itself. Specifically, in the
case where γ is bigger than any power, it is well-known that Bγ has γ (r) log1/2 (1/r) as a uniform modulus
of continuity, and it has been established in [17] that this modulus is sharp, so that the same holds for
(Bγ

t )+. We expect that the Skorohod integral above should not be more regular than Bγ . In fact this has
been established in [1], in the Hölder scale at least, in the case of fBm. Thus no soft argument can be used
to see why L0 would be so much more regular than either of its two components.

However, if the above conjecture and corollary can be established, then we could get an important
result by exploiting the Tanaka formula: we could prove that Bγ and the Skorohod integral process∫ t

0
1[0,∞) (Bγ

s ) δBγ (s) share the same modulus of continuity, since the local time L0, being much more
regular than Bγ , cannot effect the latter’s via the additive relation (27). More generally, working with
approximations, we would have the following.

Corollary 32 For appropriately smooth and/or bounded functions f on R, the Skorohod integral process

t 7→
∫ t

0

f (Bγ
s ) δBγ (s)

admits the function γ (r) log1/2 (1/r) as an almost-sure uniform modulus of continuity.

7 Finite and infinite-dimensional stochastic differential equations

A well-known difficulty with Skorohod stochastic integration w.r.t. fBm is that solving even the simplest
non-linear differential equation is yet an open problem. There are two notable exceptions, however: the
linear additive and the linear multiplicative equations, yielding the so-called fractional Ornstein-Uhlenbeck
and Geometric fractional Brownian motion processes respectively. In this section, we show that this can
be done for integration with respect to our processes Bγ . We keep our formulations to a minimal level of
complexity. Additional non-linear terms in the drift parts can be considered using variants of the arguments
given in some of the references cited in the introduction; we will not investigate these details here.
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7.1 Finite-dimensional equations

Proposition 33 Let γ and Bγ be fixed as in Proposition 1. Consider the stochastic differential equation

X (t) = X0 +
∫ t

0

bX (s) ds +
∫ t

0

σX (s) δBγ (s) , t ≥ 0, (28)

where X0, b, σ are fixed non-random constants, and where
∫ t

0
σX (s) δBγ (s) represents the Skorohod integral

δ
(
1[0,t] (·) σX

)
as in Definition 25.

This linear multiplicative stochastic differential equation (28) has a solution given by the following geo-
metric γ-Brownian motion (GγBm):

X (t) = X0 exp
(

σBγ (t) + bt− 1
2
σ2γ2 (t)

)
. (29)

This solution is unique in the class of processes Z such that Z (t) = g (t, Bγ (t)) where g is a deterministic
function in C1,2 satisfying the conditions of Theorem 27 uniformly in t.

Proof. Ito’s formula (Theorem 27) can be extended to include functions that depend also on time. This
can be proven by approximation of such functions with respect to the time parameter. We omit the details.
We thus have for any function f of class C1,2 on R+ × R satisfying the hypotheses of Theorem 27 with
respect to the second parameter uniformly in the first parameter, that ∂f

∂x (·, Bγ (·))1[0,t] is in Dom∗δ and
for all t ≥ 0:

f(t, Bγ (t)) = f (0, 0) +
∫ t

0

∂f

∂s
(s,Bγ (s)) ds

+
∫ t

0

∂f

∂x
(s,Bγ (s)) δBγ (s) +

∫ t

0

∂2f

∂x2
(s,Bγ (s)) γγ′ (s) ds. (30)

We apply this with f (t, x) = X0 exp
(
σx + bt− (1/2) σ2γ2 (t)

)
which immediately yields equation 28.

For the uniqueness, let Y be another solution to (28). Since Y (t) = g (t, Bγ (t)) for some g, we can use
Ito’s formula to show that for any function h such that h ◦ g is of class C1,2 and satisfies the conditions of
Theorem 27 uniformly in t, the following version of Ito holds for Y :

h(Y (t)) = f (Y (0)) +
∫ t

0

h′ (Y (s)) δY (s) +
1
2

∫ t

0

h′′ (Y (s)) d [Y, Y ]γ (s) ,

where the notations δY (s) and d [Y, Y ]γ (s) are defined as follows:

δY (s) := g′ (Bγ (s)) δBγ (s) + g′′ (Bγ (s)) γγ′ (s) ds,

d [Y, Y ]γ (s) := |g′ (Bγ (s))|2 2γγ′ (s) ds.

With this Ito formula in hand, we can now consider the processes U = log X and V = log Y . A trivial
calculation then yields that both U and V are solutions of the following equation in Z:

Z (t) = log X0 + σBγ (t) + bt− σ2

∫ t

0

γγ′ (s) ds.

Obviously, this is a trivial equation since the right-hand side is explicit, which proves uniqueness.

Remark 34 We are not able to find a simple proof of uniqueness for the above equation in a wider space,
because of the restrictive range of our Ito formula, valid only for deterministic functions of Bγ . Extending
the validity of the Ito formula will be the subject of another article.
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Proposition 35 Let γ and Bγ be fixed as in Proposition 1. Consider the stochastic differential equation

X (t) = X0 +
∫ t

0

aX (s) ds + Bγ (t) , t ≥ 0, (31)

where X0 and a are fixed non-random constants.
This linear additive stochastic differential equation (28) has a solution given by the following γ-Ornstein-

Uhlenbeck process (γOU):

X (t) = X0e
at +

∫ t

0

ea(t−s)δBγ (s) . (32)

where the last integral is in the Wiener sense (section 3). The solution is unique, up to indistinguishability,
in the class of all separable processes in L2 (Ω).

Proof. Although this proposition can be considered as a consequence of the results presented in the next
section, we include a quick proof for completeness. First note that the Wiener integral in (32) is well-defined
since the smooth function exp (−as) is obviously in H which contains any Cα, α < 1/2. Assume that X

exists satisfying (31). Then we define Y by Y (t) = exp (−at) X (t). Then Y is the sum of a differentiable
process ae−at

∫ t

0
X (s) ds and of e−atBγ (t) which is of the form g (t, Bγ (t)) where g is deterministic. By

Ito’s formula (30) and equation (31) we see that

Y (t) = X0 −
∫ t

0

ae−asa

[∫ s

0

X (r) dr

]
ds− a

∫ t

0

e−asBγ (s) ds

+
∫ t

0

e−as (aX (s) ds + δBγ (s)) .

Now from (31) again, we may replace a
[∫ s

0
X (r) dr

]
by X (s)−Bγ (s), yielding simply

Y (t) = X0 +
∫ t

0

e−asδBγ (s) ,

which proves uniqueness. This same calculation also shows that X given by (32) solves (31).

7.2 Stochastic heat equations

An equation is commonly called the stochastic heat equation on R if it is of the form

u (t, x) = u0 (x) +
∫ t

0

∆xu (s, x) ds +
∫ t

0

σ (u (s, x)) dW (s) (33)

for some Gaussian noise term W and some possibly non-linear function σ. As announced above, because
of the difficulties inherent in Skorohod integration, we restrict ourselves to σ = Id or σ = 1. For the case
σ = Id, we present our results as conjectures.

The additive stochastic heat equation

u (t, x) = u0 (x) +
∫ t

0

∆xu (s, x) ds + Bγ (t, x) (34)

can be interpreted in its evolution form, as is often done, in the manner of Da Prato and Zabczyk [8], as

u (t, x) = Ptu0 (x) +
∫ t

0

Pt−sB
γ (δs, ·) (x) . (35)

where Bγ (t, ·) is an infinite-dimensional version of our Bγ (t). Obviously here, since the right-hand side of
the equation does not contain u, this u given by (35) is the unique (evolution) solution to (34), when it
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exists. It is well-known however that u may exist even if a strong-sense solution of (34) fails to exist, hence
the use of the terminology evolution solution.

To be specific, let us assume Bγ is a centered Gaussian random field on R+ × S1 where S1 is the
circle (parametrized by [0, 2π)) with a given covariance structure Q in space and the same behavior as our
one-dimensional Bγ defined in Proposition 1. In other words it can be written as

Bγ (t, x) =
∫ t

0

ε (t− s) W (ds, x)

where W has covariance E [W (t, x) W (s, y)] = Q (x, y) min (s, t). The operator P is the semigroup generated
by ∆. In other words, for any test function f in L2 (R)

Ptf (x) =
∫
R

(2πt)−1/2 exp
(
− (x− y)2 / (2t)

)
f (y) dy.

The notation
∫ t

0
Pt−sB

γ (δs, ·) (x) is best understood if W (and consequently Bγ) can be expanded in a basis
of a convenient space of functions. We use the trigonometric basis for L2 (R), which are also the set of
eigenfunctions of the Laplacian ∆. To make matters as simple as possible, we assume that u0 = 0 and that
W is spatially homogeneous. In this case, we know W can be expanded along the trigonometric basis, with
identical coefficients for like sine and cosine terms. Consequently we have

Bγ (t, x) =
√

q0B
γ
0 (t) +

∞∑
n=1

√
qnB̄γ

n (t) sin (nx) +
∞∑

n=1

√
qnBγ

n (t) cos (nx)

where (Bγ
n)n and

(
B̄γ

n

)
n

are independent families of independent copies of the Bγ in Proposition 1, and
(qn)n is a sequence of non-negative numbers. Since sinnx and cos nx share the eigenvalue n2 with respect
to ∆, they have the eigenvalue exp

(−n2t
)

for Pt. Consequently, we can rewrite (35) as

u (t, x) =
√

q0

∫ t

0

e−(t−s)n2
Bγ

0 (δs)

+
∞∑

n=1

√
qn cos (nx)

∫ t

0

Bγ
n (δs) e−(t−s)n2

+
∞∑

n=1

√
qn sin (nx)

∫ t

0

B̄γ
n (δs) e−(t−s)n2

.

This shows in particular that for fixed t, u (t, ·) is a homogeneous Gaussian process. It is worth noting
that the above solution u may exist as a bona-fide Gaussian process even if Bγ (t, ·) is not a bona-fide
process in the space variable. The random element Bγ (t, ·) may be generalized-function-valued (Schwartz-
distribution-valued). For a precise description of such an object, the reader is referred to Section 3, and
in particular Paragraph 3.1., in [16]. However, it is enough to notice that if

∑
qn = ∞ then Bγ (t, ·) is a

random generalized function. The next theorem gives a precise result in this direction.

Theorem 36 Let γ and ε be as in Proposition 1. Assume moreover that ε′ satisfies

−ε′ (r) = |ε′ (r)| ³ r−3/2f (r)

where f is an increasing differentiable function. Also define

F (x) =
∫ x

0

(
1
s

∫ s

0

ε (r) dr

)2

ds.

Assume also that f satisfies the following technical assumptions:
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1. f ′/f is bounded by λ on the interval [1/ (4λ) , 1];

2. for some a > 0, for all r ≤ a, f ′ (r) ≤ f (r) / (2r) ;

3. with g (x) = (xf ′ (x) f (x))1/2, g′ (r) ≤ g (r) / (2r) .

Then the evolution solution u (t, x) to equation (34) exists and is unique as a random field in L2
(
Ω× [0, t]× S1

)
as soon as ∞∑

n=1

qn

(
F

(
n−2

)
+ f2

(
n−2

))
< ∞. (36)

The second statement in the following corollary shows that the above theorem is sharp, since it reproduces
the sufficient condition of [16] which was also shown therein to be necessary in the case of fBm itself. It also
shows that in the two basic scales of regularity, the functions F and f2 are commensurate.

Corollary 37 The functions f and F can be estimated in the cases of logBm and fBm scales. Specifically we
have that in the following two cases, the technical conditions on γ and ε all hold, and the theorem translates
as follows:

• logarithmic Brownian scale. If ε′ (r) ³ r−3/2 log−(β+1)/2 (r) for some β > 1/2, so that γ (r) ³
log−β/2 (r), then (36) can be replaced by

∞∑
n=1

qn log−(β+1) (n) < ∞.

• fractional Brownian scale. If ε′ (r) ³ rH−3/2 for H ∈ (0, 1/2], so that γ (r) ³ rH , then (36) can be
replaced by

∞∑
n=1

qnn−4H < ∞.

Proof. (Theorem 36). The proof’s structure is identical to the general theorem relative to infinite-
dimensional fBm in [16], proved in Section 3.3 therein. We give only the main difference in the calculation.
It is regarding, in the notation of [16], the bounding of the term I2 (λ, t). In our context, one can check that
the only relevant values of λ are λ = n2, n ∈ N, and that we have

I2 (λ, t) =
∫ t

0

e−2λs

(∫ s

0

(
eλr − 1

)
ε′ (r) dr

)2

ds.

We will assume in this proof that t ≤ 1, and we will indeed replace t by this value for all upper bounds
below. More generally, to be able to consider arbitrary bounded intervals [0, T ], cases such as logBm must be
modified in consequence to ensure that γ is defined and bounded on such intervals, e.g. in the case of logBm
by replacing γ (r) by γ (r/2T ) say. The results in the theorem hold for the existence of u for all t ∈ [0,∞) as
long as one begins with a locally bounded γ. We omit the details.

We rewrite

I2 (λ, t) ≤ I2 (λ, 1) =
∫ 1/λ

0

e−2λs

(∫ s

0

(
eλr − 1

)
ε′ (r) dr

)2

ds

+
∫ 1

1/λ

e−2λs

(∫ 1/λ

0

(
eλr − 1

)
ε′ (r) dr

)2

ds

+
∫ 1

1/λ

e−2λs

(∫ s

1/λ

(
eλr − 1

)
ε′ (r) dr

)2

ds

:= I2,0 (λ) + I2,1 (λ) + I2,2 (λ) .
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The first term I2,0 (λ) is controlled as follows. Up to universal constants, we bound eλr − 1 above by λr,
and e−2λs by 1, yielding:

I2,0 (λ) ≤
∫ 1/λ

0

λ2

(∫ s

0

r |ε′ (r)| dr

)2

ds.

By integration by parts we get that∫ s

0

r |ε′ (r)| dr =
∫ s

0

ε (r) dr − sε (s) + lim
h→0

hε (h) .

The limit above is 0 since ε (r) ¿ r−1/2. Since ε is decreasing,
∫ s

0
ε (r) dr exceeds sε (s), and thus we decide

to ignore the smaller of the two, yielding an upper bound. It follows that

I2,0 (λ) ≤
∫ 1/λ

0

λ2

(∫ s

0

ε (r) dr

)2

ds

≤
∫ 1/λ

0

(
1
s

∫ s

0

ε (r) dr

)2

ds,

which is the required estimate.
For the second term, using the integration by parts calculation above,

I2,1 (λ) ≤
∫ 1

1/λ

e−2sλ

(∫ 1/λ

0

λr |ε′ (r)| dr

)2

ds

≤
∫ 1

1/λ

e−2sλ

(
λ

∫ 1/λ

0

ε (r) dr

)2

ds

=
1
2λ

(
e−2 − e−2λ

) (
λ

∫ 1/λ

0

ε (r) dr

)2

≤
∫ 1/λ

0

(
1
s

∫ s

0

ε (r) dr

)2

ds,

where the last inequality comes from the fact that the function h (s) = s−1
∫ s

0
ε (r) dr is decreasing on [0, 1/λ].

This fact can be see as follows: h′ (s) = s−2
(
sε (s)− ∫ s

0
ε (r) dr

)
< 0 since ε itself is decreasing.

The last term can be rewritten using a scalar change of variables, and then integration by parts, as
follows:

I2,2 (λ) ≤ λ−3

∫ λ

1

e−2s

(∫ s

1

er
∣∣∣ε′ ( r

λ

)∣∣∣ dr

)2

ds

Now we use the representation |ε′ (r)| ³ r−3/2f (r) with f differentiable and increasing, and |ε′| decreasing:

I2,2 (λ) ≤
∫ λ

1

e−2s

(∫ s

1

err−3/2f
( r

λ

)
dr

)2

ds.

We decompose the inside integral into three parts, and exploit the monotonicity of the integrands in each
corresponding interval:∫ s

1

err−3/2f
( r

λ

)
dr

=
∫ s/4

1

err−3/2f
( r

λ

)
dr +

∫ s/2

s/4

err−3/2f
( r

λ

)
dr +

∫ s

s/2

err−3/2f
( r

λ

)
dr

≤ es/2f
( s

4λ

)
+ es/2

(s

4

)−3/2

f
( s

2λ

)
+ es

(s

2

)−3/2

f
( s

2λ

)
= I2,2,0 (s, λ) + I2,2,1 (s, λ) + I2,2,2 (s, λ) .

27



To deal with I2,2,0 (s, λ), we first integrating by parts, using the condition that f ′/f is bounded by λ on the
interval [1/ (4λ) , 1]:

I2,2,0 (λ) :=
∫ λ

1

I2,2,0 (s, λ)2 e−2sds =
∫ λ

1

e−sf2
( s

4λ

)
ds

= e−1f2

(
1
4λ

)
− e−λf2 (1/4) +

1
4λ

∫ λ

1

e−s2f
( s

4λ

)
f ′

( s

4λ

)
ds

≤ e−1f2

(
1
4λ

)
+

1
2

∫ λ

1

e−2f2
( s

4λ

)
ds

= e−1f2

(
1
4λ

)
+

1
2
I2,2,0 (λ) .

This implies that

I2,2,0 (λ) ≤ f2

(
1
4λ

)
.

For the next term we can see that can be dealt with exactly as I2,2,0 (λ); in fact, it is of smaller order because
of the factor s−3.

The last term is more delicate. We begin by noting that

I2,2,2 (λ) :=
∫ λ

1

I2,2,0 (s, λ)2 e−2sds = 8
∫ λ

1

s−3f2
( s

2λ

)
ds

= 8λ−2

∫ 1

1/λ

r−3f2 (r/2) dr.

To bound this quantity, we introduce a modified version of it: for fixed a > 0, we let

Ia
g (x) := x2

∫ 1

x

r−3g2 (r) dr

where the function g will be chosen to be equal to g (x) = (xf ′ (x) f (x))1/2
. With this choice we do see

that according to the hypotheses of the theorem, for some a > 0, assuming λ > a−1, for all r ≤ a,
g′ (r) ≤ g (r) / (2r). We calculate Ia

g by integration by parts, using the parts v = r−2 and du = r−1g2 (r) so
that u (r) =

∫ r

0
y−1g2 (y) and dv = −2r−3dr:

Ia
g (x) = x2u (1)− u (x) + x2

∫ 1

x

r−32u (r) dr. (37)

Now let Ja
g (x) := x2

∫ 1

x
r−32u (r) dr. By hypothesis, 2g (r) g′ (r) ≤ g2 (r) /r for all r ∈ [0, a], which implies

for all such r that
g2 (r)− g (0) =

∫ r

0

2g (y) g′ (y) dy ≤ u (r) .

We have that g (0) = lim0 g = 0. Indeed, by hypothesis, g2 (x) = 2xf ′ (x) f (x) ≤ f2 (x) which tends to 0 at
0. This implies

Ia
g (x) ≤ x2

∫ 1

x

r−3u (r) dr =
1
2
Ja

g (x) . (38)

Combining (37) and (38) we obtain

Ja
g (x) = Ia

g (x)− x2u (1) + u (x)

≤ 1
2
Ja

g (x)− x2u (1) + u (x)
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which implies
Ja

g (x) ≤ 2u (x) . (39)

Returning now to the definition of Ja
g and u we have

u (x) =
∫ x

0

r−1g2 (r) dr

=
∫ x

0

r−1rf ′ (r) f (r) dr

=
1
2
f2 (x) (40)

and

Ja
g (x) = x2

∫ 1

x

r−3f2 (r) dr.

With x = λ−1, we recognize a piece of the integral defining I2,2,2 (λ). In fact we have by (39) and (40) that

I2,2,2 (λ) = 8λ−2

∫ 1

1/λ

r−3f2 (r/2) dr

≤ 8λ−2

∫ 1

1/λ

r−3f2 (r) dr

= 8Ja
g

(
λ−1

)
+ 8λ−2

∫ 1

a

r−3f2 (r) dr

≤ 4f2

(
1
λ

)
+

1
λ2

Kf .

where Kf is a constant depending only on f . The second term above is negligible compared to the first,
since we know that f (r) À r−1/2.

In conclusion we have for large λ and for all t ≤ 1, with F (x) =
∫ x

0

(
1
s

∫ s

0
ε (r) dr

)2
ds,

I2 (λ, t) ≤ F

(
1
λ

)
+ 48f2

(
1
λ

)
,

which is the result required to obtain the first statement of the theorem.
(Proof of the Corollary).The statements in the corollary regarding the fBm and logBm scales are

readily verified by trivial estimations of f and F in these cases.
We finish this article by mentioning a conjecture on the multiplicative stochastic heat equation. This is

the case σ (u) = u.

Conjecture 38 The evolution for of equation (33) with σ (u) = u, namely

u (t, x) = Ptu0 (x) +
∫ t

0

Pt−s [Bγ (δs, ·) u (s, ·)] (x) ,

has a unique solution in L2
(
Ω× [0, t]× S1

)
as soon as

∑
qn < ∞, and it is given by the following Feynman-

Kac formula:

u (t, x) = Eb

[
u0 (x + bt) exp

(∫ t

0

Bγ (δr, x + bt − br)−Q (0) γ2 (t) /2
)]

,

where b is a standard Brownian motion independent of Bγ and Eb is the expectation with respect to b.

A joint paper in preparation by one of the two authors of this paper establishes this Feynman-Kac formula
for fBm in the case of H > 1/2. It uses a Wiener chaos decomposition and some associated estimates. We
do not believe that these estimates are yet available for H < 1/2, making proving the above conjecture
non-trivial, although the result is readily believable.
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[2] Alòs, E.; Nualart, D. Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch.
Rep. 75 (2003), no. 3, 129–152.

[3] Berman, S. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23
(1973/74) 69-94.
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