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Abstract

In the era of genomics, large scale trait mapping studies are conducted. These experiments involve
hundreds of markers and increasingly frequently they focus on complex traits. Complex traits are
interesting because of the inherent multigenic nature of the traits, and the possible interaction between
genes on the phenotype. Binary traits, such as disease resistance, have a simple phenotype but may
also be multigenic. Likelihood and regression methods for modeling genotype and phenotypic
relationships rely on underlying classical transmission genetics and the ability to implement
complicated models. In principle, the expansion from one to two, three and more loci is understood as
is the transmission probability from an F; to an F;. What is missing is a comprehensive, flexible
notation that allows for an arbitrary number of loci and the transmission for multiple generations. In
effect, the integration of theory involving mapping functions with the theory of quantitative
inheritance. We used classical genetics theory to construct a probability model for the joint distribution
of marker genotypes, trait genotypes and trait values for any number of marker and trait loci. This -
framework is described in detail for a binary trait where the trait probabilities are parameterized in
terms of a penetrance function. The transmission portion of the probability model is completely -
general and will apply regardless of the model employed for the trait values. We provide Maple code
that generates the marginal distributions as well as the joint distribution. The explicit mathematical
formulation described here will assist in implementing different models for the behavior of the
complex trait and provides a common set of useful notation that can be used regardless of the trait
model employed.
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Introduction

The development of map functions (Haldane 1919, Kosambi 1944) and the importance of correctly
modelling recombinational events have led to much interesting work on theories involving the
recombination model itself (e.g. Housworth and Stahl, 2003). Map functions provide an important
understanding about how adjacent maker loci behave and have been used as a jumping off point for the
creation of a rich literature in the mapping of quantitative traits extending recently to sophisticated
theory involving multiple loci, epistatic interactions, polypolids and binary traits. Applications in
human genetics from full pedigree analyses to simple transmission disequilibrium tests have
contributed to broad understanding in the inheritance and expression of phenotypeic data. With more
than 62,000 articles published in the last 5 years on applications of QTL mapping methodology, this
mature field is a rich resource for many scientists seeking to understand underlying genetic
contributions to complex traits.

The proliferation of the methodology in this arena is at times dizzying. Notation abounds and the
experimentalist seeking to make his or her way through the morass of options available is confronted
with a plethora of terminology, and mathematical notation. In addition many of the examples are
given for two or three loci with no general expansion. The mechanics of the theory upholding this vast
literature are often invisible and for that reason it becomes difficult to compare methods.

Previous models have been constructed around the effects of the QTL leaving a morass of models and
tests to navigate through. We propose a modular probability model that allows for separate discussion
of the transmission genetics and the genetic models for effects. This modular approach allows for a
clean separation of each of the underlying components and allows for direct comparisons between
methodologies by directly comparing which element of the probability model is being changed.

The goal of this paper is to provide a general set of vocabulary that can be used to unify the current
thinking about the probability models underlying much of the current statistical theory for detection of
QTL. We show in detail how to construct a probability model and give an easy to implement -
algorithm for constructing a joint probability distribution for trait values, marker genotypes, and trait
genotypes in the context of experimental crosses, for an arbitrary number of loci. This probability
distribution is a necessary first step in the construction of tests for association between markers and
phenotypic traits.

There has been a substantial amount of work done on the ordering of loci to make a genetic map.
(Lander and Botstein 1989, Lander and Green 1987) For this reason we do not address the formation
of the genetic map, but assume that the map has already been created. Once we have a map, then basic
transmission genetic theory tells us how markers are transmitted from one generation to the next and
this has been applied to develop a general matrix algebra application for understanding multi-
generational transmissions. This recalls the landmark theory of Thompson (1982) and provides a -
direct link between human and experimental populations.

Our goal is not to defend any one of our particular assumptions but rather to point out exactly at what
point specific assumptions enter and how in our modular approach it is easy to modify assumptions
and explore the impact of that modification on the final joint probability. We focus on binary traits but
also point how extensions to quantitative traits are easily achieved.
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Model Framework

Our goal is to construct a general probability model for markers, trait genes, and trait values. In
particular, we seek the joint probability distribution for these three quantities. The joint probability is
the most general function; from this, any related quantities such as the joint probability of markers and
trait values or the conditional probability of trait genes given markers are easily calculated. These
probabilities can subsequently be used in inference procedures such as maximum likelihood
calculations or Bayesian methods. :

Assumptions
We construct the probability distributions with the following assumptions:

1. The population of interest is ultimately descended from an ancestral population (set of parents)
with known genotype.

2. The mating system is known (e.g. backcross, Fs, Fs, ...)

3. Random gamete formation (No gametic selection or segregation distortion )

4. Mating is random within designated crosses (random union of gametes, no selection)
5. Markers are biallelic.

6. No interference in recombination.

7. Phase is known.

8. No mutation in markers or genes for the duration of the controlled crosses

In a typical application the original parents will be homozygous (RI lines), but this is not assumed,
only that their marker types are known (with phase). We have developed the notation and the model
with the understanding that it will be highly desirable to relax many of these assumptions. The model
is derived in a modular way so that the point at which each assumption is used is clear. We illustrate
the removal of an assumption in the section Relaxing Model Assumptions, where we show how to
change the model when phase is unknown, eliminating assumption 7 above.

Notation and Preliminaries

The word diplotype will be used to indicate a double haplotype, that is, a genotype which consists of
an ordered pair of haplotypes. A diplotype includes phase information and makes a distinction
between the two possible heterozygotes (0/1 and 1/0) at a locus. It is easiest to construct the
probability model when phase information is included. When phase information is not obtained in the
data, the probabilities can be collapsed by summing over the unknown phase, as will be shown later.
To avoid confusion, symbols which refer to phase-unknown genotypes will be designated with a prime
( "), while diplotype and haplotype symbols will not be primed. For example, the random variable M
refers to a marker diplotype, and M’ refers to a marker genotype with phase unknown.
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Denote by k the number of marker loci. Recombination rates between adjacent markers are denoted
0, and between markers and genes are denoted . All matrices and vectors are indexed from 0 up to
one less than their length, as is done in C/C++. While initially confusing to some, this greatly
simplifies the binary index representation.

Genes and traits

The main random variables of interest are M, the marker diplotype, G, the trait gene (or “gene”
diplotype), and 7, the trait value. One goal is to produce a joint probability distribution for these three
random variables. This probability distribution will be denoted Pr(Y, M, ). Probability distributions
for other combinations will be denoted similarly, for example, we use Pr(M) for the marginal
distribution of M, and Pr(¥M, G) for the joint distribution of M and G. For expository purposes we will
initially suppose Y is a binary trait, but will show later how to apply the technique to a quantitative
trait. Additional models for the behaviour of Y can be easily incorporated into the proposed
framework. Following the usual convention in statistics, we use upper case letters indicate random
variables, while lower case letters indicate actual realizations or outcomes of these random variables,
with subscripts on the lower case letters used to enumerate the different possibilities. For example, the
probability that the random variable M takes on a specific value m; is denoted Pr(M = m;), where i =0
... K-1.

The probability distribution for a discrete random variable is a specification of the probability of every
possible outcome. For our purposes, it will be convenient to use matrices or vectors to represent the
probability distributions of our random variables. If the random variable M has a sample space of size
K, that is, there are K possible outcomes, then Pr(}), the probability distribution for M, is represented
as a vector of length K, where the i™ entry in the vector Pr(M) is the probability that M takes on the i
possible outcome, that is, Pr(M = m;). For this notation to be unambiguous it is necessary to define a
fixed, canonical ordering for all the possible outcomes of each random variable. We define such an
ordering below. The joint probability distribution of two random variables can similarly be described
with a matrix. For example, the joint probability distribution of M and G, Pr(M, G), is represented
with a matrix of size KK, whose i, /™ entry is the value Pr(M = m;, G = gj). Although markers and
genes are in reality interspersed along the genome, we consider them as separate random variables; this
is convenient since markers are observable and genes are not.

Several other random variables will be considered in the derivation. These are intermediate steps, and
are used because their consideration simplifies the derivation of probabilities of M and G. These
intermediate variables include N, the marker type of a haploid gamete, and H, the trait gene type of a
haploid gamete. Specific values of these haplotypes will be denoted »; and #;, (, j =0 ... L-1)
respectively, according to the convention previously described. The relationship between the
diplotypes M and G, and the haplotypes N and H will be clarified below. The other intermediate
random variables that will be considered are called “transmission indicators”, and will be defined in
the next section. These are denoted T and § for markers and genes respectively, with particular
outcomes 7, and s, (u, v=0... L-1). As with M and G, we will need to define a canonical ordering for
the possible outcomes for N, H, 7, and S, so that we are able to describe their probability distributions
with vectors and matrices. To assist the reader, a complete list of symbols and their meanings is
provided in Box 1.

Transmission Indicators
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A gamete haplotype is a random combination of its two parental haplotypes (parental diplotype). We
label the two parental haplotypes “a” and “b”, which could represent maternal and paternal origin. At

each locus 4, it is possible that either the first (“a”) or second (“4”) parental haplotype transmits its
genetic material to the gamete. We can therefore denote the transmission (or parental origin) for a
single gamete, T, as a string of k¥ 0’s and 1’s, in locus order, where a 0 in position £ indicates that the

first parental haplotype (“a’””) was transmitted to the gamete at that locus, and 1 indicates that the
second parental haplotype (“b””) was transmitted to the gamete at that locus. For example, with £ =3
loci, a transmission indicator 011 indicates that the first locus in the gamete came from the parent’s
first haplotype and the second and third loci from the parent’s second haplotype, so a recombination
occurred between the first and second loci. A transmission of all 0’s, i.e. 00...00, indicates that the
offspring gamete received an intact copy of the parent’s first haplotype, and that no recombination
occurred, whereas a transmission of all 1°s indicates that the offspring gamete received an intact copy
of the parent’s second haplotype, again with no recombination. A transmission indicator that alternates
0’sand 1’s, 0101...01 or 1010...10 indicates that recombination occurred between every adjacent pair

of loci. In general whenever the indicator at locus £ does not match the indicator at locus £ + 1, then

recombination occurred between those loci, whereas whenever they do match, recombination did not
occur. The probability of any transmission indicator can be calculated in terms of recombination rates.
A general formula for the probability of these events is given in a following section. As indicated
previously, in order to write down probability distributions in terms of a vector, it is necessary to
define a canonical ordering of all the possible outcomes. Thetransmission indicator is a string of £ 0’s
and 1’s and as such can be considered as an integer in base 2. This provides a natural ordering of the
possible outcomes. There are L = 2* possible outcomes for the transmission indicator for k loci, so the
transmission indicator 7 can take on the possible values fy, ... #;;. The subscript on the ¢ refers to its
position in this ordering, and is equal to the decimal representation of the binary number. For example,
with k = 3, the transmission indicator 011 = t; since 3 = 0x2% + 1x2' + 1x2°. More detail on this
representation and ordering is given in the next section.

It is important to stress that the transmission indicator does not refer to the value of the actual allele of
a gamete or its parents, only to the parental origin of the gamete at that locus, i.e. which parental
chromosome transmitted its information to the offspring. Of course, the transmission indicator cannot
unambiguously be determined at loci where parents are homozygous. However, inferring transmission
indicators has been addressed in other literature and those methods could be easily incorporated in the
framework we describe. For this work we consider all possible transmission indicators. When
transmission is known then recombination probabilities are easy to calculate. When transmission is
ambiguous at certain loci we simply sum over all the possibilities.

Binary index representation and ordering

The random variables M (marker diplotype) and G (trait gene diplotype) are discrete, each with gk=g
possible outcomes (diplotypes), since at each locus there are 4 possibilities for the two chromosomal
alleles a/b: 0/0, 0/1, 1/0, and 1/1. Since a diplotype is made up of two haplotypes, we can write a
diplotype random variable (M or G) as an ordered pair of two haplotype random variables (V or H).
Thus, we write M = [N, N,] and G = [H,, H;) where the “a” subscript refers to the haplotype consisting
of the chromosomes inherited from one parent (parent “a”) and the “5” subscript refers to the
haplotype consisting of the chromosomes inherited from the other parent (parent “5”).
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We define a canonical ordering of the possible diplotypes so that the probability distribution for each
of these random variables can be unambiguously stated as a vector of length K, and the joint
distribution of the two variables can be stated as a KxK matrix. Similarly, the random variables N
(marker haplotype) and H (trait gene haplotype) are multinomial with L possible outcomes, and require
arelated ordering. We first define the ordering for N and H, and then use that ordering to define the
ordering for M and G. It is the same as that used for transmission indicators. For example: with &
biallelic loci (0 or 1), haplotypes (i.e. N = n; or H = ;) can be written as a string of 0’s and 1°s, with the
order corresponding to the order of the loci. These strings have a natural ordering given by counting in

base 2. This ordering is 79 =00---00 <#n; =00---01 <n,=00---10< ... <mp,=11.--10<m; =

11---11. By ordering in this way, the subscript is equal to the value of the diplotype when considered

as a k-digit number in base 2. The outcomes kg ... Az.; appear identical to 7y ... n;.;, but they refer to
the gene haplotypes rather than the marker haplotypes. The haplotype outcomes look identical to
transmission indicators, but haplotypes refer to the actual allelic values of the gamete offspring,
whereas transmission indicators refer to their parental origin.

The ordering of the diplotypes M and G are derived from the ordering of their components N and H
respectively. A diplotype is made up of two haplotypes, one contributed from each parent. These are
designated as M = [N,, Np] and G = [H,, H;]. So each possible outcome m; (or g;) is made up of two

components: m; = [n,-a S H; :I ( g;= [h s hy ]) The ordering of the diplotypes can thus be derived from

W
the ordering of the haplotypes, if we define i =i,xL + i, (and j = j,xL + j,). Thus my=[ng, ng] <m; =
[0, n1] <mz2=[ng, 2} < ... <myp.;=[ng, np.1] <my={[ny, ng)l <mp+;=[n;, nj] <... <mgz=[ny.4, ny;]
<wmyg.; = [nr.1,n1-1], and similarly for g;, i =0 ... K-1. The subscript is equal to the value of the
genotype when considered as a 24-digit number in base 2, and the “a” haplotype is placed to the lefi of
the “b” haplotype. The transformation from i to i,, i; is unique (a bijection), since with 0 <i,, i, <L, i,
and i are just the quotient and remainder, respectively, when i is divided by L.

For example, if k= 3, so that L = 8 and K = 64, the usual recombinant inbred parents would be Py with
M = my = [ng,no] = [000,000] and G = gy =[000,000], and P; with M = mg3 = [n7,n;] =[111,111] and G
=g63=[111,111]. (Note that 63 =7x8 + 7). The F; offspring of the cross Py x P; would all be of the
type M = m; = [ng,ny] =[000,111] (and G = g7), while the F; offspring of the cross P; x Py would all
have M = ms¢ = [n7,no] =[111,000] (and G = gs5). If both these crosses were done in equal numbers,
then for the F; generation the probability distribution of M (or G) would be represented as a vector
with % in positions 7 and 56, and 0 in all other positions from 0 to 63.

This particular choice of ordering facilitates the construction of diplotype from haplotype probabilities
(shown later). While other orderings are possible and reasonable, the most important thing is to keep
the orderings consistent throughout so that the appropriate products are formed when assembling the
various desired distributions.

Model Derivation

We initially assume that the marker types of the original parents are known, with phase, and that their
trait gene types can be labeled. The most typical application of this will be crosses of inbred lines,
where one originating parent can be labeled “0” at all loci and the other originating parent can be
labeled “1” at all loci. The progeny examined will typically be the result of a backcross, F;, or
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subsequent design. The reader may wish to keep such an example in mind as the general derivation
proceeds.

- Road Map

We begin by calculating Pr(N) for a single gamete conditional on its parents. This will involve the
probability distribution of the transmission indicator 7, and the probability distribution of haplotypes N
conditional on 7. Then we combine the probabilities of its two component gametes N, and N to form
Pr(M). Next, we extend the method to derive the joint probability distribution of M and G. First, we
calculate Pr(NV,H) for a single gamete, conditional on its parents. This will involve the joint probability
distribution of the two transmission indicators 7 (for markers) and § (for genes), and the probability
distributions of haplotypes N conditional on 7, and H conditional on S. Then we combine the
probabilities of its two component gametes N, H, and N,,H} to form Pr(M, G). Once Pr(M, G) is
available, Pr(Y, M, G) is easy to obtain, from which we can easily derive any desired marginal or
conditional probabilities such as Pr(¥, M) and Pr(G|M). Then we will show how to apply the
calculation of Pr(M, G) recursively over generations, so that arbitrary designs can be used.

Probability of Marker Genotypes: Pr(M)

We first consider the probabilities of marker haplotypes, and then combine them to construct
diplotypes.

Marker Haplotypes

Suppose parent “a” in generation ¢ has marker diplotype m;, We wish to determine the probability that
an offspring gamete in generation #+1 has marker haplotype n;. Of interest is

Pr(N(t+1)=n;| M(t)=m),

where M({) is the parental marker diplotype and N(z+1) is the gametic marker haplotype. (Generation
indicators may be omitted when they are clear from context.)

Denote by T the transmission indicator random variable and by #y, ... #.; its possible values. We drop
the generation indicators for brevity, understanding that the M on which we condition is parental.
Then

Pr(N(r+1)=n; | M(t)=m)= LZPr(N n;,T=t,| M =m,)

L-1
=Y Pr(N=n;|M=m,T=t,)Pr(T=t,|M=m) (2.1)
u=0
L-1
=Y Pr(N=n;|M=m,T=t,)Pr(T =t,)
u=0

The last line holds under the assumption (3 that markers are equally likely to be transmitted to gametes
regardless of their actual allele values, that is, Pr( =t,|M =m;)=Pr(T =t,)Vm; (no selection). We
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can easily construct an L-vector ® whose entries are Pr(7'=1t,) as follows. Let t,f refer to the value of

the transmission indicator #, at locus £, that is, the £™ binary digit in the string representation of z,, and
0 tfeett
let I(u,?) ={ *

*  indicate whether (0) or not (1) recombination occurred between marker loci
£ and £ + 1 in transmission indicator #,. Then

1 tf=¢H

k
®, =Pr(T =:u)=_;_g(1—ee)’ (4) g, 1-10ut) 22)

Note that the vector @ does not depend on any genotypic values or the experimental design.

The transmission indicator #, dictates exactly which allele is passed from m; to »; at each locus.
Therefore, the expression Pr(N (t+D)=n; | M(t)=m;,T = tu) is either 0 or 1 depending on whether »;

is the haplotype that results when m; transmits its alleles according to #,. We construct a matrix A
whose j, ™ entry is that probability. Let i=i,L +i; and let

[0, Z, =0,n,-i ;tnf-

0, ¢, =1,nii #n

5t - / (2.3)
ol g, =0 =nt
Ll, ¢, =1,n,-i '-nf

denote whether (1) or not (0) the gamete allele at locus £ (nf) matches the transmitted parental allele

at locus £. Then let
k ‘
A (m)=]18 (2.4)
=1

In other words, A j, (m,) =1 if at every locus, the gamete haplotype j matches the parental haplotype
indicated by #,, and A ;, (m;) =0 if there is at least one locus where they do not match. Notice that for

any given my, the matrix A has exactly one non-zero entry in each column, placing a 1 in the row
corresponding to the gamete transmitted from m; through the transmission represented by that column.

Then, according to these definitions, the value Pr(N (t+D)=n;|M(t)= m,-) is the /™ entry of the L-
vector I'(m; )= A(m;)x®, using ordinary matrix multiplication. This is true because
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r(m), =(8(m)<e), - S:a(m), e,
=§Pr(N=nj|T=tu,M=m,-)Pr(T=tu) (2.5)
=;0(N=nj | M =m,)

For short, we write Pr(N) = I'(m;).
Marker Diplotypes

From the possible gametes n; we can construct the marker diplotypes in generation #+1, by random
union of gametes. The probability of a marker diplotype is simply the product of the probability of the

two component gametes. Let m; =|:n L jz] where j = jL+ j,. Then
Pr(M (t+1)=m, | M, (t)=m, M, (t)=m,)
=Pr(N, (t+1)=n; | M, (1) =m, )-Pr(N,(t+1)=n, | M,(t)=m,) 2.6)

= rji (mia ) .rjz (mib )

Kronecker Product: The Kronecker product C of two matrices, A and B, where A is pxq and B is
rxs, is a matrix of size prxqgs defined as follows: C = 4® B has entries

Cj=4,,B,; ,where i=jr+i, andj = jis+ j,
1=0...p-1i,=0...r-1,4,=0...q-1,j, =0...s 1. 2.7
i=0...pr-1,7=0...qs-1

In terms of block matrices, this is

ApB o Ay, B
A®B=| I - : (2.8)
Ap——l,OB e Ap-—l,q-—lB

For the special case when A and B are both column vectors of length L (g =s =1, p =r = L),
C = A® B becomes a vector of length L = K with entries

Cj = Aj]sz, Wherej=le+j2

2.9),
iy =0, L=1,7=0..K~1 2.9)

or more explicitly,

A®B= [AoBoaAoBla' "AoBL-vAlBo»“ 4B, 'AL—IBO"”’ AL-IBL—]] (2.10)
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Using this definition we see that Pr(M) is constructed from the two L-vectors I"(m,-a ) and T’ (m,-a )

via a Kronecker product, so that Pr(M)=T (m,-a )® r (m,-b ) . Pr(M) is a K-vector valued function

which takes the parental marker diplotypes m; and m; as input.

In summary, the K-vector Pr(M) gives the probabilities of marker diplotypes for offspring, given that
the marker diplotypes for parents are m; and m, , according to the formula

Pr(M) =(A(m,-ﬂ)x®)®(A(mib)x®) 2.11)

The parental genotypes m; and m, in the previous generation are assumed known and fixed in the

previous derivation. If the parental diplotypes are not fixed but rather are given by a probability
distribution, then Pr(}/) for the offspring is obtained by a weighted average of the values for all
possible parental diplotypes.

Joint Probability of genotypes and markers: Pr(M, G)

For simplicity of notation, it is assumed that there is one potential gene to the right of each marker.
The probability of recombination between marker £ and gene Z is r,, and the probability of

recombination between marker £ and marker £ + 1 is 6,. Since we assume no interference in

recombination, the recombination probability between gene £ and marker £ + 1 is therefore

eg—re . 9—7‘)
=—+—= wherer, <0, |since 1-0=(1-r){l-q)+rg=>q= .
1-27, : e[ (1-r)(-g)+ra=q=1—>

4

Of interest is Pr(M, G): the joint probability of a particular set of markers and a particular set of genes.
This probability can be represented as a 4* x 4* matrix where rows refer to markers and columns refer
to genes. The ij™ entry of the Pr(M, G) matrix is the joint probability that the marker type is m;, and
the gene type is g;. It is also implicitly conditional on the parental marker and gene diplotypes, and the
experimental design.

Haplotypes

For every marker locus £ there is a gene locus to its right separated from it by recombination rate 7, <
0,. A parent a, with marker diplotype M, (¢) = [N o ()N, (t)] and gene diplotype

G,(?)= I:H o (t).H, (t)] produces gametes with markers N, (#+1) and genes H, (t+1). (The
derivation for parent b is identical.) We now consider the joint probability distribution for the random
variables N, (t+1), H, (¢t +1)| M, (¢),G,(¢). As in the derivation for Pr(M), we consider possible

transmission indicators. In this case, however, we need to consider transmission for both markers and
genes. Let T denote the transmission for markers as before, and S denote the transmission for genes
(these are not independent). We drop the generation notation and the “a” subscript for brevity.
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Pr Na(t+1)=n,-,Ha(t+1)=hj[Ma(t)=m,-a,Ga(t)=gja)
L-1L-1

—

il

L
Y. Pr(N=n,H=h,T=1,S=s,|M=m,G=g,)
=0

=
(=]

]
—

L-1
=Y > Pr(N=n,H=h|T=1,,S=s,,M=m,G,=g,)Pr(T=t,,S=s,| M, =m,,G, =g )

v=0

=

—-— O

t~

L-1
=Y Y. Pr(N=n|T=t,,M=m,)Pr(H=h;|S=5,G=g,)Pr(T=1,S =5,
u=0v=0

2.12)

The last line holds because conditional on transmission indicators, markers and genes are independent,
and transmission is independent of the parents’ alleles. The components

Pr(Ha =h;|S=5,,G, =gja) and Pr(Na =n|T=t,,M, =m,-a) are simply A(gja )jv and A(m,.a )iu

respectively, as defined in the derivation of Pr(M/). The component Pr (T =1,,8= sv) depends only on
the recombination rates, and is derived next.

0, st=tt 0, s

Let R(u,v,£)= Y7 ¥ and Q(u,v,£) = v ¥  indicate whether (0) or not (1)
0_ e _ 4l
1, s, =t 1, s, =t

recombination occurred between marker £ and gene £, or gene £ and marker £ + 1, respectively,
according to the transmission indicators #, (markers) and s, (genes). Then let

Q,, =Pr(T=t,,S=s,)
1 k u,v. — I UV, k1 uy. ~-Olu.v
2'2_(1—[(1_72)12( R re(l R(u, ,L’))J[H(l_qz)Q( v.d) qz(l O(x, ’E))J,(Z.l?y)
=1 £=1

0,—1n
1-27,

where g, =

define a matrix with the necessary components; that is, the joint probability that markers have
transmission indicator T = ¢, and genes have transmission indicator § = s,. (Q is independent of all
genotypes and the experimental design, depending only on the recombination parameters » and

0. Notice also that the sum over columns of Q is ®, i.e. ® is the marginal.)

Thus, we can define
A(m, g, )=Pr(N,H|M=m, G=g, )

= A(m, Jx0x(A(g,, ))‘r .

since the 7,/™ entry of that matrix is
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u=0 v=0
L-11-1

) u=0 v-—.OA(mln )iu QWA(g-’a )jv

] ngr(N =l =t,M=m, )PT(T =1,,8 =sv)Pr(H =h;|S=5,G= gja)
u=0vy=0

=Pr(Na :ni’Ha =hj 1Ma=mia,Ga=gja)
(2.15)

For short, we write Pr(N,H) = A(m,-n .85, ) :

Diplotypes -

To obtain the probability for diplotypes, we multiply the probabilities for the corresponding
haplotypes, again assuming random union of gametes.

Pr(M(t+1)=m,G(t+1)=g, |G, () =g, .M, (£)=m, .G, (t) =g, . M, () =m, )
=Pr(N, =n,H,=h; |G, =g, , M, =m, |xPr(Ny =n,,Hy=Hh; |G,(t)=g,,M,(t)=m, ) (2.16)
=A(m. n; )

Ia’ ja

xA(m,.b',njb )izj2 ,wherei=#L+i, andj = j,L + j,

WA

Therefore, the K x K matrix Pr(M, G) is the Kronecker product of the haplotype matrices from the two
parents:

Pr(M,G)="Pr(N,,H,)®Pr(N,,H,)
=A(m,.g;, )0 A(m,.g,,) 2.17)

=(A(mia)xQX(A(gja))TJ®(A(mib Jxx(4(e, ))T)
Penetrance: p

A binary trait Y is a Bernoulli random variable that can take on only two possible values Y, denoted 0
and 1. The penetrance parameter is the probability that Y= 1 for each trait gene diplotype. Since there
are K possible genotypes, the penetrance parameter p is a K-vector of probabilities, where the j®

elementof pis Pr(Y =1|G =g ;). The most general genetic model allows a different penetrance
7 ;

parameter for each genotype. Constraints among the elements of p indicate particular genetic models.
In particular, consider four genotypes g; ...g;, that are identical except at a specific locus £, and
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which at locus £ have the four possible types 0/0, 0/1, 1/0, and 1/1. If the elements of p are equal for
these four genotypes, so that « j =M, =n, =n; depends only on the genotypes at the other loci, then
that locus has no effect on the trait.

If the penetrance does not depend on which parent contributed the genotype, then the genotypes with
0/1 or 1/0 at a particular locus will always have the same penetrance parameter. Such a constraint
reduces the number of free parameters in p from 4% to 3. Since this case is expected to be particularly
common, we define a constrained penetrance p’, a 3* vector whose entries are penetrances for phase-
unknown genotypes, in the order described in the section on phase. Further assumptions about the
genetic model (e.g. dominance, additivity) can further reduce the dimension of the penetrance, and thus
the number of free parameters to be estimated.

Joint Probability: Pr(¥, M, G) and Pr(Y, M)

We now have the building blocks by which to construct the joint probability distribution of ¥, G, and
M. We seek the probability

Pr(Y=1,M=m,G=g,)
=Pe(r=1|M =m,G=g,)Pr(M=m,G=g,)

=Pr{Y=1|G=g,)Pr(M =m,G=g,) 19
=[Pr(M.G)], p;
This can be represented as a KxK matrix whose ij/™ entry is the above quantity:

Pr(Y =1,M,G) =Pr(M,G)xdiag p) 2.19)

Summing over all possible values of G gives the joint probability of the two observable random
variables Y and M:

K-1
Pr(Y=LM)=) PriY=LM,G=g;
(r=t.0) =2 e{ ) a0

= Pr(M,G)xp

where p is a column vector, and the matrix multiplication sums over the possible (unknown)
genotypes. This probability could be used in a likelihood calculation.

Chaining Generations Together
The derivation above assumes that the genotypes and marker types in the previous generation were
fixed and known. However, the results easily generalize to the case where the genotypes and marker

types are described by a probability distribution. In this way, it is possible to “chain” the generations
together to create the distribution for specific experimental designs. If the parental genotypes in
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generation ¢ are described by the probability matrices 4 =Pr(M,(t),G, (r)) and
B=Pr(M,(),G,(r)) whose elements are

4 .= Pr(Ma (l‘)A= m; ,G, (t) =&j, )

B

@2.21)
ity PI'(M[, (t) =m .Gy (t) =& )

then probabilities in generation ¢ + 1 are given by

Pr(M(r+1)=m,G(1+1)=g,)

K-1 K-1
=> > 4 B, Pr| M(1+1)=m,G(1+1)=g,
ia’ja=0ib’jb=0

M, (t)=m, ,G,()=g,,
ot)=m,.G. () =g, (2.22)
Mb(t)=mib,Gb(t)=gjb

K-1 K-l
Z Z AiajaBibjb (A(mia 28, )®A(mib & ))i, i

iy =01y,jp=0 J

Since the matrices A and B are the result of calls to the formula for Pr(M,G) based on known parents,
for complex designs it is possible to start with known parents and repeatedly calculate Pr(M,G),
combining results with the above formula. We give examples of such calculations in a following
section,

Relaxing Model Assumptions

We made several assumptions in constructing our model. In this section we consider how the model
makes use of these assumptions, pointing out at which point each assumption is used. We briefly
consider the consequences to the model of modifying each assumption, and, where appropriate,
indicate

Phase Unknown

In this section we show how the probabilities calculated for diplotypes with phase known can be
combined to form probabilities for genotypes with phase unknown. Our initial derivation distinguished
between genotypes of different phase, that is, considered separately the two possible heterozygotes 0/1
and 1/0 at each locus. Since this derivation is about probability distributions and not statistical
inference, it does not actually require that which parent contributed each gamete can be determined
unambiguously, (or that the phase is known) for any particular dataset. Here’s an analogy to clarify
the situation: consider repeated Bernoulli trials. In order to discover the probability distribution
(binomial) for the number of successes, it is necessary to distinguish, and thereby count, all possible
different orderings of successes and failures. If we ignore the fact that SSF is conceptually distinct
from SFS and FSS, we will miscount the possible outcomes, and come up with the wrong probability
distribution. However, once the binomial distribution has been derived, we can collapse these cases
together as *'two successes”. If we have an actual data set then we are able to estimate the parameter
just from the total number of successes, even if for some reason it is not possible to observe the
ordering. In a similar way, our derivation of the probability distribution has treated the case where 0 is
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maternally inherited and 1 paternally inherited as distinct from the reverse. However, since in
practice it is often not possible to observe phase in actual data, in preparation for a future statistical
inference step we show how to reduce the phase-known case to the phase-unknown case by the use of
a phase matrix C, a 3 x 4* matrix. This involves grouping together indistinguishable genotypes and
adding their probabilities.

Phase Matrix

Sometimes certain diplotypes are indistinguishable in practice (heterozygotes 0/1 vs. 1/0 at same
locus). This reduces the sample space from a 4* space of diplotypes to a 3* space of phase-unknown
gl?notypes. Before showing how to convert between these spaces, we must define an ordering on this
3" space.

The genotype at a single locus can take one of three different values, which we label by the total
number of “1” alleles at that locus. The diplotype 0/0 is labeled 0, the diplotypes 0/1 and 1/0 (the two
heterozygotes) are both labeled 1, and the diplotype 1/1 is labeled 2. The phase-unknown genotype for
all loci is thus a string of £ 0’s, 1°s, and 2’s. This corresponds to a k-digit number in base 3, which has
3* possible values. We use the natural ordering of numbers in base 3 to define a canonical ordering of
phase-unknown genotypes, just as was done with haplotypes in base 2. Thus the marker genotypes are

ordered as my =0:-00<m =0---01<m, =0---02 <m, =0:-10<...<my [ =2...22

Now we need to map the existing phase-known probabilities based on diplotypes into the phase-
unknown setting. This is accomplished by the left and right-multiplication of an appropriate matrix,
which combines the appropriate rows and columns of a probability matrix. This phase matrix, denoted
Cr, indicates which rows and columns are to be combined. It is a 3* x 4% matrix and operates on 4*
column vectors whose rows are indexed by phase-known genotypes. Therefore, if G” and M’ indicate
the phase-unknown versions of G and M, we have

Pr(M',G')=C, xPr(M,G)xC] 3.1)
Ci can similarly be used to collapse a probability column vector with a single multiplication.
Pr(M')=C, Pr(M) (3.2)
A conditional probability matrix (Pr(G|M)) is row normalized (entries in each row sum to 1). In order

to maintain the row-normalization, the left multiplication must in this case be by a row-normalized
version of Cy, which we denote C;. (Note that CiC'=1I) Thus

Pr(G'|M')=CyxPr(G| M)xC] (3.3)

Examples:

Fork=1:
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This corresponds to the two heterozygotes being indistingnishable.
Fork=2:

o o |loio

0 0 0 0 O 0 0 0 01 0 0 0 0 O

6 0 06 00 0 0 0 0 01 0 01 O

6 0 0 06 0 0 00 0 0 O0 0 0 0 0 1

The outlined row 4 shows, for example, that the four different diplotypes [00,11], [01,10], [10,01],
[11,00] (columns 3, 6, 9, and 12) all correspond to the same phase-unknown genotype, namely the base
three number 11 (row 4 since in base 3, 11 = 1x3 + 1 = 4), that is, heterozygous at both loci.

General Formula for Cy:
The i, /™ entry of the matrix Cj is given by
k .

Lo = (i +if )x3*

=1

0, otherwise

(Ce )y = , where i =i, L+i, and i’ is the allele at locus £~ (3.4)

That is, each column 7 (representing a diplotype) has a single non-zero entry in the row corresponding
to its phase-unknown genotype. Correspondingly, each column j (representing a genotype) has one or
more non-zero entries corresponding to its possible diplotypes.

Probabilities when phase is unknown

Summary of how to do it.

Other Assumptions

Assumption (1) of known ancestors can only be relaxed to the extent that a probability distribution for
the ancestral generation can be used instead of the exact ancestral genotypes. If no ancestral

- information is known, the probabilities cannot be chained forward. Likewise assumption (2) of known
mating system is necessary, although a wide variety of models can be used (e.g. selfing).
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The assumption (3) of no gametic selection is used to calculate the probabilities of gamete
formation. In particular, in (2.12), it is used to equate Pr(T =t,S=s,|M,=m,,G, =g ja) and

Pr(T =t,,85= sv). If selection causes some alleles to be more frequently transmitted, this equation

would have to be modified. The assumption (4) of random union of gametes is used in (2.17), where
the probability of a diplotype was the product of its haplotype probabilities. This equation would have
to be modified if that assumption were to be relaxed.

The assumption of biallelic markers (5) is central to our notation and ordering for markers and
diplotypes, where the number of alleles dictates the size of the arrays. This assumption is justified in
any of the standard crosses of inbred lines. If the parents are instead known to be multiallelic, this
would mean working in that base, rather than in binary. In principle, this is a straightforward extension
of the present work, although one could imagine that if the number of alleles varied from marker to
marker the bookkeeping would be difficult.

Interference models of recombination eliminate the assumption (6) that recombination events at linked
loci are independent. This assumption was used in the formula (2.13) for Q,, =Pr (T =t,8= sv) ,In

which transmission probabilities are calculated as a product across loci. This formula would change in
an interference model; however the resulting Q could be used in the same way.

The assumption of no mutation (8) is used to define A ;, = Pr(N (t+)=n;|M(t)=m,T = tu) in (2.3)

and (2.4) as either O or 1 depending on whether the parent’s alleles transmitted via transmission
indicator ¢, give the gamete’s alleles. If mutation were allowed then in this matrix each 0 entry would
be replaced by the probability of achieving that gamete through mutation, while each 1 entry would be
replaced by the probability of no mutation. For example, a simple mutation model could consider a

probability of mutation p at each locus. Then the 1’°s would be replaced by (1 - p)k and the 0’s

replaced by p raised to the power of the number of mutations needed to achieve the corresponding
gamete. An even simpler model (an approximation for small p) would only permit those gametes
achievable by a single mutation, so that the £ gametes “one step” away would have probability p while
the “no mutation” gamete would have probability 1 — Ap.

Specific Crosses of Inbred Lines: Examples

In the traditional cross of inbred lines, Parent, is defined (at ¢ = 0) to have G(0) = gy and M(0) = my,
while Parent; is defined to have G(0) = gx.; and M(0) = mg.;. The F; offspring of the cross where

parent a = Parent, and parent b = Parent; has G(1)=[hy, k)= g, , and M (1) =[m,n,]=m; ;.
(The reciprocal cross with a = Parent; and b = Parent, would produce F; offspring of type

G(l) = [hL-—l’hf)] =8k-1> and M(].) = [nL,l,no] =Mg._L ).

For the backcross to parent a = Parenty and the F; as above, probabilities are obtained using the

formulas for Pr(Y, G(2), M(2)) with the a and b parents as G,(1) = go, Ma(1) = myg, Go(1) =g1, Mp(1) =
mr-g.
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Probabilities for the F; population are obtained similarly, with both a and b parents (F;) as either
G(l) = [hO’hL-l] = gL—] 5 and M(l) = [no,nL_l] = mL_l or G(l) = [hL—l’hO] = gK—L’ and

M (1) = [”Lvl’”o] =my_; , as appropriate.
Next we give some examples of the probability matricies for small values of k.

1 gene 1 marker (k=1)

The following are Pr(M, G) for several common breeding schemes, as derived by the above formulas.

1 000 0 00O
0 000 0 000
Parent, : Pr(G,M )= , Parent,:Pr(G,M)= 3.5
nlo :Pr(G.M)= o o o Pt Pr(GM)= ) GS)
0 000 0 0 01
0 00O 0 0 00 0 00O
01 00 0 0 0 0 0100
F:Pr(G,M)= or or 2 (3.6)
0000/ fo0107]001o0
0 0 0O 0 0 00O 0 0 0O
z(-n) 4r 00
L 1(1-
Backcross Parent x F;: Pr(G,M)=| 2 i z(1-r) 0 0 (3.7)
0 0 0 0
0 0 00

Next we give the matrix Pr(M, G) for Fy, ..., Fs. In eaéh case the matrix has the same overall structure,
but with different entries as shown.

Dy oo B P2

PI'(M,G)= P by P2 D (38)
Dy P Py P
D2 hh b Dy
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(1 1 1 1, ]
20=n) Zn(t-n) Zn(t-n)  of RV
1 1 1, 1 po=5(1-1)
7i=n) 2(=n) on on(l-n) .
Fy:Pr(G,M)= Jie. pp==r(1-n) (3.9)
Lia-n) 2 la-nyp Llha-n 4
4 1 g 2 1 r i 1,
1 2 1 1 2 Pz—zf‘l
gt gilen) ga(ten) S (-n)
1(n,2 2
p0=—-(2r1 -3 +2)
Fy:p = (3-24)(2 - 34 +2)
P2 =1 (3-2n)"
o %(2 4n + 517 -21"1)
Fy: pr=1sn (26 —5n+4)(2-45 +57" - 27 ) (3.10)

py =t (22 =51 +4)
2
Do = T%(Zr{1 ~7r +91% - 57 +2)
s pl=%r1(5—9r1+7r12——2r13)(2r14——7r13+9r12—5r1+2)
2
p2=%r12(5—9r1+7r12—2r13)
3.11)
—-1—(2~6 2 16,3 4 0ph 9,5\
po=15(2-6n +141" 165 +95* - 217 )
Fy: pr=15n(2r - 9% +1672 —14n +6)(2- 61 + 1452 —161" +95' - 2 ) (3.12)
Dy = 167‘1 (2;'1 —9r'1 +161% 14 +6)

Considering phase unknown combines the two heterozygotes, which sums the two middle rows and
Po 2p, %]

columns, so that in each of the above cases Pr(M',G')=|2p, 2(py+p,) 2p; |. For example,
§ 7] 2p, Py
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F,:Pr(M',G')=

20

1 1, ]
L8y Q- o
In(l-n) 3r°+3(1-n) $r(1-n)
1 1
0 wil-n) ;(l—n)z_

2 genes 2 markers (k = 2)

Parent has (M, G) = (0,0) and Parent; = (15, 15). The F; is (3,3) if a is Parenty and b is Parent, or is
(12, 12) if a is Parent; and b is Parenty;. The 16x16 matrix Pr(34, G) is in general too large to typeset

easily.

Backcross

Pr(M',G')=

1
BCO ZP[(M,G)=-2(—1_—-2—,1—)'

Katy L. Simonsen

2(1-

-(1‘91 _’i)(l_’i)(l“rz)
(6:-5)(1-1)r
0
(1-6,-n)r(1-n)
27’1) (91 "'(7)'1)"1"2

0
0
0

(3.13)

-(1“91 ~7)(1-n)(1-n) (1-8-r)(1-n)n

(@ -n)(1-n)n

(6 -1)(1-n)(1-7)

(1-8,-5)n(1-7) (1-6, 1)
(8, ~n)7in, (6-5)n(1-r)
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
(3.14)

(1“61 _ﬁ)(l_’i)rz

(6 -r)(1-r)(1-r)

(1_91 _’”1)"1"2
(6,-r)rn(1-7)

(& -n)n(l-n)
(i-6, "1)_"1’2
(& -n)(1-n)(1-7)
(1-6,-n)(1-4)r,
0

[= BN~ NE N« I« BN I~ B~ 2N = 2N -~ o }

0 (6,-n)n(l-r)
0 (1-6-r)nn
0 0
0 (6,-5)(1-r)(1-7)
0 (1-6,-n)(1-7)r
0 0
0 0
0 0
0 0
(61 -n)nr 0000O0O0GO
(1-6,-r)s(1-n) 00000 0
©-r)1-A), 0000 0 O
(1-6,~5)(1-r)1-n) 0 0 0 0 0 0
0 0000O0CO
0 000000
0 000000
0 000000
0 0000O0CO
0 000000
0 0000O0O0CO
0 000000
0 000600090
0 000000
0 0000O0TO0
0 00000O0O0
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SO OO0 OO0 000000000
OO QOO 0O 00000000 0O
DO O OO OO0 00 OO0 00 OO
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F2

[ Po 2p P, 2p3 4p, 2ps ps 2p; pg ]

2p, 2py  2py 2py 2Py 2py

Pu 2pp P 2ps 4py 2py P 2Pis P

1 2p; 4D 2py 4Py 2pyp
Pr(M’,G’)=Ii——2——2 4p, 4p, 4p, 4p,
( - rl) 2pn Apy 2py 2py 4ps 2py

D 2ps Pu 2ps 4py 2ps P 2pn Py

2py 2p 2py 2py 2py 2p,
| ps 2p; ps 2ps 4p, 2ps P, 2p Dy |

Po =(1"”1)2 (1“”2)2 (I-n “91)2

b =(1_r1)2 ry(L-1)(1-A ‘91)2

p=(1-r) 7} (1-r;-6,)°

Ps =”1(1—’”1)(1"'2)2 (6,-%)(1-7-9)

Py =n(1-1)r(1-r,)(6; =) (1~ ~6,) pyy =1 (1-1)n (l_rZ)(1+2912 ~20, +27 _2’"1)
ps=r(1-1)73 (6, -1 )(1- -6,)

pe=r"(1-1,) (8, -n)

pr=rr,(1-1,)(8, _"1)2

Dy = "12"22 (91 —h )2

Statistical Inference

Likelibhood

Likelihood methods require the specification of a probability model. In this section we illustrate how
the probability model developed above can be used to construct a likelihood. We anticipate that
statistical inference will frequently be performed in the context of phase unknown marker types, M’,
and so these are used in this section; however, diplotypes could also be used.

For a single observation with Y =y (0 or 1) and M’ =m;, the contribution to the likelihood is
Pr(Y=y,M' =m]| r,0,p’) . If y=1, this is the i element of the vector
Q, =Pr(Y =1,M")=Cy xPr(M,G)xp=Pr(M,G')xp', whereas if y = 0, this is the i" element of
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Qy =Pr(¥Y=0,M)=Pr(M,G')x(1-p'). The Q’s are functions of the parameters r, 6, and p. For

a given sample, let z; be the observed number of individuals of marker type m; who exhibit Y=1, and

let »; be the total number of individuals of that marker type. Thus the number of individuals of type
K-l

m; who exhibit Y =0 is n; - z;, and the total sample size is ZniThe observ ed variables n and z are
i=0

equivalent to knowing Y and M for all individuals. The likelihood for this sample is

K-1
L(r,6,p)=Pr(nz|n0,p) =] [(2)" (@)™, and the log likelihood is
i=0

K-l
log L(r,0,p) = zlog(Q,) +(n ~z)log(£y,) .
=0

The observed mean of marker class i is simply &, = % | We denote the vector of expected means for

all marker classes by n. The expected mean of marker class i is
m=E(Y|M =m)=Pr(Y=1| M =m))
_Pr(Y=LM'=m)  Q
~ Pr(M'=m)  Pr(M'=m)

The vector 7 can be computed via an elementwise division of the two vectors £, =Pr(¥,M') and
Pr(M"),ie. w =2, +Pr(M'), where we specify ;= 0 if Pr(3"=m])=0 for the design in question.
We also note that I-a =Pr(Y =0|M') =8, +Pr(M') where division is again done elementwise. (It
follows that £, =Pr(M")-£,.) Since Q;; =m;xPr(M'=m]) and Q), =(1-m,)xPr(M'=m;]), the

log likelihood can be written in terms of marker class means as
K-1
logL(r0,p)=) .z (log(n,.)+log(Pr(M’ = m{)))+(n,. —zi)(log (1-m,)+log(Pr(M' = m,’)))

i=0

K-l
= > z,log(m;)+(n —z,)log(1-m,)+n, log(Pr(M' =m))
=0 |

The first two terms depend on the parameters r, 6, and p via 7, while the last term depends only on the

parameter 0. The maximum likelihood estimators for the m; are easily obtained to be the observed
marker class means:

V4

K, =—L 3.15
1-m, m(1-m;) DA™ (3.15)

i

5 M=% _% (1-m)+(z, - n)m,

n

5
0= logL=
on. 8

1

This result is natural since the z; are simply binomial random variables.
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Since & =Pr(Y,M')+Pr(M')= (Pr (M',G)x p) +Pr(M') (elementwise division), we have
moPr(M')=Pr(M',G)xp,andso p= I:Pr (M, G)]—] (7[ oPr(M ’)) , Where o indicates elementwise

multiplication. Recall that Pr(A') depends only on 6, while Pr(2’,G’) depends on r and 6.. In

many realistic experiments, the marker map 6 will be known (or accurately estimated) from previous
experiments, so that Pr (M " G’) can be considered a function of r. In such a case, the invariance

property of MLE’s can be used to obtain the MLE p for p in terms of the estimates # and the
unknown parameters r, whenever the matrix Pr(M’,G') is invertible, that is,

b= [Pr (M ’,G):|_l (#oPr(M")). Ina design such as a backcross in which certain genotypes cannot be

observed, those rows and columns of zeros must be removed from all matrices and vectors, or the
matrix will not be invertible. In addition, certain regularity conditions (such as r; < %, 1; < 8) are
required, which makes sense since the penetrance of unlinked genes cannot be estimated.

(Section to be added here on simultaneous estimation of r and p)

Alternative Trait Models

While our derivation focuses on binary traits using a single penetrance parameter, the above models
could be applied to Xu’s liability model by replacing the penetrance vector with the appropriate vector
of liability functions, and most of the derivation can also be applied to a quantitative trait.

Quantitative Traits

Suppose that all genotypes have the same known variance ¢ and that genotype g; has trait mean p ;,

thatis, p, =E (YI G=g j) . These means can be arranged in a vector p with the same ordering as the

genotypes g;. Then the contribution to the likelihood from an observation (y, m;) is f{y, m;), calculated
as follows. For any gene diplotype g;,

f(y:mi’gj);_f(ylmi’gj)Pr(M=m1"G=gj)=f(ylgf)(Pr(M’G))y'

f(y,mi)=2f(y,mi,gj)=I§f(y|g,-)(Pr(M,G)),,. (3.16)
-3, O)e(04.0), = (e (.0)x0 ),

where ¢u,- is the normal pdf with mean p; and variance o, and ® is a vector of those pdf’s.
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The mean of marker class m; is
K=1 K=

YuPr(M=m,G=g,) > p,Pr(MG),,

_ _ _ J=0 _J=0 _ i
M=E(Y|M=m)= B3 =) = ) = Pr (i), (3.17)

=(Pr(G|M)xp),

Thus, the means for all marker classes can be represented as a vector A =Pr (G | M )x B, where the

rows of p and the columns of Pr(G|M) refer to gene diplotypes g;, and the rows of A and Pr(G|M) refer
to marker diplotypes m;.

The major difference between the present matrix formulation and those previously found in the
literature, is that previous attempts have focused on specific cases of additivity, dominance and
epistasis. (See, for example, Falconer and MacKay, 1996.) However, in this formulation, no explicit
genetic model is assumed. Conventional models are a subset of the present model, where the free
parameters are reduced in number according to the constraints of the assumed genetic model. For
example, under certain assumptions trait means are often represented in terms of additive and

dominance factors; that is, assuming no epistasis, trait locus £ is often assumed to contribute additively
to the trait mean, by a factor of +g, if the genotype is 0, by +d, if the genotype is 1, and by —a, if the
genotype is 2. How does this correspond to our notation? Let gf represent the allele (0, 1, or 2) of

genotype g; at locus £ (the £™ digit in the base 3 representation of j). Then
k k k -
Bj= p+2a38(g§ = 0)+Zd58(gf = 1)—Za48(gf = 2) , where W is the base trait mean and § is an
=1 =1 £=1

indicator function. The 3* free parameters in an unconstrained p are thus reduced to 24+1 parameters
by these assumptions. A less constrained p permits the introduction of epistasis into the model but
does not force epistasis to be present. Thus, the full set of parameters can be estimated, and
equivalences tested to determine the genetic model.

Discussion

We use classical transmission genetics to derive a general mathematical framework for the
transmission of an arbitrary number of marker and trait loci. This notation is particularly useful in the
study of complex fraits, where the underlying factors are assumed to be multigenic. We explicitly
assume no interference and random union of gametes in this particular formation. Also omitted are
mutation and selection effects. However, the mathematics will hold together even when these
assumptions are relaxed.

We present the solution for an arbitrary number of generations in a direct line, that is, F2, F3, F4

assuming random mating between the individuals in the parental generation. This model is easily
modified to allow for selfing down the generations simply by restricting the probability of the
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transmissions and to allow for other mating designs by constructing appropriate parental matrices
and forming the correct product.

We have coded the model into Maple for ease of use and to allow easy access for researchers seeking
to implement this model. This code is available on request from the author
(simonsen@stat.purdue.edu). Maple allows symbolic representation and is an easy to use package that
integrates well with other programming languages.

Katy L. Simonsen A general probability model for binary taits




26

End Matter

marker £ . gene ¢ marker £+1

Figure 1: Map
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Box 1: Notation

Random Variables

M: marker diplotype (random variable); possible values my ... mg;

N: marker haplotype (random variable) possible values #p ... ny.;

G: trait gene diplotype (random variable); possible values g ...gx.;

H: trait gene haplotype (random variable); possible values %y ... k;.;

Y. binary trait value random variable; possible values y =0 or 1

T transmission indicators for marker haplotypes, possible values #, ... #.;
S: transmission indicators for gene haplotypes, possible values sy, ..., 51/

Parameters

k: number of marker loci = number of potential trait genes

L=2% number of possible haplotypes

K =4"=I?: number of possible diplotypes

6,: recombination probability between marker £ and marker ¢+1,£4=1, ..., k-1

r,;. recombination probability between marker £ and gene £, £=1, ...,k

g, recombination probability between gene £ and marker /+1,£=1, ..., k-1
p; =Pr(Y=1|G=g;): penetrances,i=0, ..., K-1

£: index for loci

Ck: phase matrix

Operators

® : Kronecker product of matrices or vectors
X : matrix multiplication

( ) : phase-unknown

( )T : matrix (or vector) transpose

Probability distributions

©: transmission probabilities for marker haplotypes (4)

Q: joint transmission probabilities for marker and gene haplotypes (2¥ x 2¥)

A: probability of haplotypes conditional on transmission indicators (marker or gene) (2* x 2¥)
A: joint probabilities of marker and gene haplotypes

I': probabilities of marker haplotypes

Pr(M): vector of probabilities; i™ entry is Pr(M = m,)

Pr(M, G): matrix of probabilities; i/ entry is Pr(M=m;, G = g)
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