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Abstract

We study the local risk minimization hedging strategy when the model has
only jumps with Poisson arrival rate. Although models with jumps can be nicely
justified in economic point of view, the actual computation of an appropriate
hedging strategy is not easy in general. In this paper, we find a closed form
hedging strategy that is easily computed, using an asymptotic approach. We call
it as the asymptotic local risk minimization strategy. We also compare its hedging
error to those of other quadratic hedging methods. By numerical examples, we see
that the asymptotic local risk minimization strategy has smaller error in quadratic
sense than Black-Scholes hedging strategy.

1 Introduction

Although the Black-Scholes model [1] has been standard in mathematical finance litera-
ture for decades, its normality assumption on return distributions has been noticed as a
primary drawback. Empirical studies (e.g. Mandelbrot [11] and Fama [5]) showed that
the actual return distributions had heavier tails than those of the normal distribution.
Asymmetry of the return distribution was also often observed in empirical studies, (e.g.
Morgan [13] and Richardson and Smith [16]) which give even more reasons to inves-
tigate alternatives. One possible approach to an alternative is adding jumps to price
processes, as in Merton [12]. Unfortunately, adding jumps, in general, leads a market to
an incomplete world, where the standard hedging method in a complete market becomes
inapplicable.

On the hedging problem in incomplete markets, the local risk minimization and the
mean-variance hedging have been two major quadratic hedging approaches. The local
risk minimization sacrifies the self-financing property, but its terminal value is the same
as the payoff of a contingent claim. On the other hand, the mean-variance hedging
focuses on the self-financing property. Féllmer and Sondermann [3] studied the risk
minimization when the asset price process is a martingale under the original measure,
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and Féllmer and Schweizer [4] and Schweizer [14] studied the local risk minimization for
a general semimartingale case. Schweizer [15] provided the solution to the mean-variance
hedging for general claims with continuous price processes. While mean-variance hedging
gives a control over the total risk, the local risk minimization often gives a simpler
hedging strategy. (See Heath, Platen, and Schweizer [7], for example.) There have been
many studies on the two above quadratic criteria in an incomplete market since they
had been proposed. To name a few, Frey [6] studied a risk minimizing strategy when the
price process is a pure jump process with a stochastic jump rate and a martingale under
the original measure. Chan [2] found a local risk minimizing strategy when the price
process is driven by general Lévy processes. Lee [10] found the local risk minimizing
strategy when the price process has jumps with instantaneous feedback from the current
price.

The purpose of this paper is to provide a closed form of an asymptotic local risk
minimization strategy when the price process has jumps with possibly asymmetric re-
turn distribution. We assume that the underlying price process is a compound Poisson
process. Jumps occur at random times and the jump size can follow an asymmetric
or a fat-tailed distribution. In particular, we consider a sequence of compound Poisson
processes whose limit goes to the Black-Scholes model as the jump intensity goes to
infinity. Under this model, we try to find the local risk minimization hedging strategy.
A presence of jumps makes it difficult to get a closed form of a hedging strategy, even
in this relatively simple case. Thus, instead of finding an exact form, we calculate an
asymptotic local risk minimization hedging strategy. The main result is in Section 3.
We also show some numerical comparisons to other hedging strategies. As discussed
in Heath, Platen, and Schweizer [7], the local risk minimization is not usually the best
choice in terms of the quadratic hedging error, but it gives a rather simple and easy
form of calculation.

In Section 2, we explain our model. We show some theoretical results of an asymp-
totic local risk minimization in Section 3. Section 4 provides results of a simulation
experiment. We see that the asymptotic local risk minimization strategy improves the
mean square hedging error from the traditional Black-Scholes hedging strategy. Al-
though its hedging error is slightly bigger than that of the compound Poisson hedging
strategy by Song and Mykland [17], the asymptotic local risk minimization strategy has
a simpler form and involves less complicated asymptotics. See Section 4 for more details
on the compound Poisson hedging strategy.

2 Model

We consider a sequence of price processes S™ defined on probability spaces (Q, 7, p)
with filtrations {F,fn),t > 0} generated by S™. We suppose that for each n, the log



stock price process follows a compound Poisson process under P such that

N
log ${™ =1og S§™ + 3 Z{™, (1)

=1

where N™ is a Poisson process with rate \,, and Zz-(n)’s are i.i.d. random variables
that are distributed as Z(™ and are independent of N . The initial stock price Sén)
is the same as Sy for all n. We assume that as n goes to oo, A\, goes to oo and Zi(n)
converges to 0 in distribution. N models the occurrence of jumps and Z™ models
the size of jumps. In other words, when we have a stock on which a contingent claim is
written, we model the stock price process as a compound Poisson process with a specific
jump intensity, which is to be determined based on the frequency of trading activities.
Then we construct a sequence of processes, indexed by n, including the orginal process.
This is the sequence of compound Poisson processes that we introduced in (1). And we
consider the asymptotics as n goes to infinity.
We define the jump size distribution more precisely as

1 1 1,
@+ 3 ) )
where @ is a random variable with mean 0, second moment o? and the third moment
ks, under P™ for all n. Q has a distribution that does not depend on n and it has
finite moments of all orders. We can interpret that u and o are the leading terms of the
expected rate of return and the volatility, respectively, and ks/+/A, is the leading term
of the skewness of the underlying price process, as, for instance,

7(n) —

n n kst 3ot 1 (n—Lo2)3
Bllog 5" — Bllog ™))" = =+ S—=(u = 30°) + ——h—

An is related to the level of the trading activity of an individual stock. A heavily traded
stock is modeled with a large value of A,, and a less heavily traded stock is modeled
with a smaller value of A,.

We note that the allowance of nonzero k3 enables us to consider asymmetric distribu-
tions of return processes, which is an advantage over models considering only symmetric
return distributions. If we consider a second order asymptotics in Section 3, the kurtosis
of the return distribution would be included in the proposed hedging strategy through
E(QY).

Notice that as n goes to co, log S™ converges in distribution to log.S which is

1
log S; = log So + (1 — 502)75 + o B4,

where B is a Brownian motion under the limiting measure P.(Proposition 2.1 in Song
and Mykland [17])



We can also write the model (1) as a form of a stochastic differential equation

ds™ = s™Map™, (3)
(n)
where R™ = S0 " (exp(Z™) — 1). It is useful to find the canonical decomposition of
S™ for calculation. Let us define B™ = R™ — X\,tE(e?™ — 1). Then we can easily
show that R™ is a martingale under P™ and S has the canonical decomposition

t t
S™ = 5o+ / SMAR™ 4 / SN E (™ — 1)ds
0

0

where M{™ = IN S™JR™ is the martingale part and A™ = fo SN E(eZ™ — 1)ds is
the predictable part.

3 The Local Risk Minimization

3.1 The Minimal Martingale Measure

In finding local risk minimization strategies, the minimal martingale measure plays a key
role. For the definition and examples in a continuous semimartingale case, see Follmer
and Schweizer [4]. Chan [2] found the minimal martingale measure when the process
is driven by Lévy processes. Lee [10] developed a method to find it when the process
allows non-Lévy type jumps as well.

The following theorem is a version of Lee [10], modified to fit in our model. We need
an additional condition

c*(exp(Z™) = 1) < 1 a.s. (4)

B(eZ™ 1)
Ee z(n) —1)2
condition (4) is equivalent to Z™ < log(1 + &) if ¢* > 0, and Z™ > log(l + =) if
< -1.If-1<c"<0,(4)is always satisfied.

where ¢* = to prevent a possibility of a signed measure. We remark that

Example 1 Suppose that @ in (2) is a binary random variable such as

1-p

Q=4 V[

—0

» W.D. D,

p

5 WP 1—0p

Then EQ = 0, EQ? = ¢?, and EQ® = %. If p # 1, @ has a nonzero skewness.

If o = 0.08, ¢ = 04, p =1, and A, = 10, then c¢*(exp(Z™) — 1) is either 0.0915 or



—0.0400 so that the condition (4) is satisfied. It is easy to check numerically that (4)
holds for larger \,’s.!

Theorem 1 Suppose that Z™ satisfies the condition (4). Define Y™ such that
t
Y™ =1 - / Y™t dR™,
0

(m)
where ¢* = % Then, Y™ > Oand E(Yy) =1 for allt € (0,T]. Furthermore,

Q™ defined by Zgg:)) = Yjs") is the unique minimal martingale measure of S™

~ ™ .
Proof: Recall B™ = Zlf_l (e% ) —1)=MtE(e2™ ~1). Y™ has a form of 1+ 7 Yy™ax,,

where X; = —c*ﬁgn). Then Y™ is the stochastic exponential of X, and thus, we have
N
n % n (n)
Y = exp(c"MtE(e?™ - 1) [[ (1 - ¢ B(e%" ~1)).
i=1

Yt(") > 0 is obvious from the condition (4). Also, for all ¢ € (0,77,

N
E(Y{™) = exp(c At E(e”™ - 1)) B(][ (1 - ¢ B(e?” ~ 1))
i=1
p (n)
= exp(c"MtE(e”” — 1)EB(E(]] (1~ ¢ B(e%” - 1))|N™))
i=1
¢ Nt(n) (n)
= exp(¢ MntB(e”” — 1))~ B "B(e%" —1))IN™ = k)P(N™ = k)
k=0 i=1
=1 (5)
We follow analogous steps of Theorem 2 of Lee [10] to show the remaining part. |

We recall some useful results of F6llmer and Schweizer [4]. They showed these results
when the price process has continuous sample paths, but we can easilty check that
these still hold when the price process is a special semimartingale with the canonical
decomposition of the local martingale part and the predictable part. (See Lee [9].)
Suppose that H (S( )) is our contingent claim and M (™ denotes the martingale part of
5™ under P™. We also assume that V™ = Eqw[H (S| ™) has a decomposition

Vt(”) =V + fot ¢H ds™ + L§"), where L™ is a square integrable P(™-martingale that is

INotice that c*(exp(Z(™) — 1) is Op(/\ﬁl/Q). Thus, P(c*(exp(Z(™) — 1) > 1) converges to 0 as n
goes to oo.



orthogonal to M (™ under P™. Then the local risk minimization strategy £ exists and
is obtained by

(v 5(n)>t
H __ )
S = 2[5, gy, (6)

where the quadratic variations are calculated under P,

Therefore, with the decomposition of V(™ it remains to calculate d(Vm), S(n))t and
d(S™, S™),. The latter is relatively simple, but the former, in general, does not give an
explicit form for computation. Instead of finding its exact form, we try to approximate
(V™ S(M), as the jump rate gets larger. It will be discussed in Section 3.2. We close
this subsection with the existence theorem of the decomposition of V(). The proof of
the following theorem is analogous to Theorem 6 of Lee [10] and omitted here.

Theorem 2 Let M™ be the martingale part of S™ and £ be as above. Then, V™ =
Eqm[H (SEN|F™) has a decomposition

t
VO =Vt [ elias + 1,
0

where L™ is a square integrable P™ martingale such that (L™, M(™), = 0 under P®™,
In other words, there exists the local risk minimization strategy.

3.2 An Asymptotic Local Risk Minimization

Let H (S:Swn)) be a European style contingent claim that expires at time 7. We assume
that the interest rate r is 0, for simplicity. We denote C(z,t) the solution of the Black-
Scholes PDE at time t < T with the terminal condition C(z,T) = H(z). For each n,
we calculate C (S§"), t) with the corresponding stock price process S™. In other words,
C (St(n),t) is calculated by the Black-Scholes PDE but is not the market price of the
contingent claim. With further approximation, we can assume that C(z,t) is infinitely
differentiable with respect to the state variable. Cg, Cgg, and Cgsss denote the first,
second, and third derivatives of C(z,t) with respect to z, respectively. Cép ) is used for
the pth derivative of C(z,t) with respect to z, for p > 3.

Theorem 3 Suppose that for every positive integer v,
T
/0 Eqem (C (5™, £)(S™M)*)dt < oo,

and T
/ Eqom (K (S, u) (S| F™M)du < oo,
t



where K (z, ) Css(z,t). The local risk minimization strategy of a European contingent
claim, C(S ,T), is written as

1
An

n k n
6 = Cs(S2,0) + —=5 50ss(S2, )5 + o(A;172).

Proof: To find the local risk minimizing strategy, it is enough to find (V™ S™) and
(S S by (6). One can easily see

t
(s, 8™, = E(exp(2™) — 1) /0 (S&))2Andu, (7)

by the uniqueness of Doob-Meyer decomposition, (Karatzas and Shreve [8], p.24-25)
because the second order optional variation of S is

Nt(n) Nt(n)
(5™, 5™, = > (AST)? = (8 (exp(2) - 1)?,
i=1 E i=1

where 7™ is the time of the sth jump of S™, and

N ;
(82 (exp(2) - 1)? — B(exp(2™) - 1)? / (S™2), du
i=1 Ti- 0

defines a martingale.
We can show that

ksT
2v/ A
——Clss55(So, )53 + o(A, 1/2)

Vi = EqmC(SE,T) = C(S™,0) +

k‘3T
6\/>\_

(See Song and Mykland [18] for details.) Similarly, for any 0 < ¢ < T,

1- -;‘—2)055(50,0)55

Vi = Bqu(C(S7, 1)) = C(5(™,1) + @%a ~ £5)Css(S. ()2
®)
ks(T — 1) (n) -1/2
=57 Coss(SD,O(ST) + 00012,

where K (z,t) = Css(z,t). We use the notation V,™ for Eq(n)(C(Sq(qn),T)Lﬂ(n)) to be
consistent with notations that we used in Section 3.1. From (8), it is clear that

(V™ 58y = (0(SM, 1), 5™,

forallt < T.



On the other hand, by Itd’s formula,

C(S™, 1) = C(S,,0) / Cs(8™, u)dS™ + / Co(S™  w)du
—/ Oss(sﬁi,u)d[sn,sn];
+>(C( — C(S™ u) — C5(S™, ) AS™).
u<t

Since S™ is a pure jump process, it becomes

dC(S™, 1) = Cs(S™, )dS{™ + C,(S™  t)dt + AC(S™, t) — Cs(S™, ) AS™
= C,(S™, t)dt + AC(S™, 1).

We apply the Taylor expansion to C(S; () ,t) to get

n n = v n n 1
dC(Si™, 1) = Cuy(S™, tydt + > CP (5™, 1) (AS )~

!
=1

= Cy(S™ t)dt + ZC (S™ 1) d[s<n),... LS.

where [S™ ... S()]¥ is the vth order optional variation of S™. Again, since S™ is a
pure jump process,

Nt(n) Nt(n)
[S™, -, S0 = S (AT = D (S (exp(20) — 1),
i=1 : =1 "
where Ti(n) is the time of the ith jump of S™. As in (7), by the uniqueness of Doob-Meyer
decomposition,
t
(St ... SN = B(exp(Z2™) — 1)° / (SS)2 A,
0
Thus,
n n > v n 1 n NI\
ao(S™, 1), S = Zoy(st(_’,t)adw( ), S
v=1
A, (9)
— Zc(v) St(T_l n )v+1 . E(ez(") — 1)t



Note that

02 k3

E?™ —1)2 = ot o(A73/?),
(n) k
E(e” —1)° = AJZ +0(A;*?),

E(eZ(n) _ 1)p — O(An3/2),

where p is an integer greater than 3. Combining this with (7) and (9), we get the locally
risk minimizing strategy

1 k n
6 = Os(82,1) + —5=55Css(S7, S + oA
This ends the proof. |
We will call L
& = Os(S{2,8) + —=55Css(S, £) S

VA 2
as the asymptotic local risk minimization strategy of C (S}n), T).

The asymptotic local risk minimization strategy has the Black-Scholes delta hedging
strategy as its leading term, which is sensible because the underlying stock price process
converges in distribution to the geometric Brownian motion. As we noted earlier, the
asymptotic local risk mlnlmlzatlon strate§y allows us to incorporate the nonzero skew-
ness. The first order term 1 Css St St_ corrects the Black-Scholes strategy so

that we can deal with asymmetrlc return distribution.? On the other hand, the expected
rate of return is still not involved in the asymptotic local risk minimization. Consider-
ing that it is hard for us to estimate the expected rate of return from the data, it is an
advantage that we can avoid this estimation problem.

4 Numerical Results

This section presents numerical results on the asymptotic local risk minimization strat-
egy. Consider a European call option that expires in 3 months. The interest rate is
assumed to be 0, u is set to be 0.15 per annum, and ¢ is set to be 0.2 per annum. We
try the strike price K = $65 and the initial stock price Sy = $60. We use three different
jump intensities, A, = 1,000, 10,000, and 100, 000. A, = 10,000 means that we expect
10,000 jumps per year in the stock price on average. Larger A, implies that the stock is
more heavily traded. The hedging interval is .0001 years which means that we rebalance
the hedging portfolio once in approximately one hour.

When k3 = 0, the asymptotic local risk minimization strategy does not make any difference from
the Black-Scholes hedging strategy. We follow the Black-Scholes delta hedging strategy when the
distribution of the stock return is symmetric up to the order of \/A,.

9



Table 1: Mean squares of hedging errors, unit=3%2

Ap = 1,000 A, =10,000 A, = 100,000
Black Scholes 0.059271 0.007787 0.002269
Asymptotic LRM 0.044443 0.006064 0.002098
Compound Poisson | 0.037228 0.005408 0.001964

Any distribution with the moment conditions given in Section 2 can be used as the
jump size distribution for the compound Poisson model. For example, Unif(—+/30, v/30)
can be used for the distribution of ¢ in (2) as a symmetric jump size case and o —Exp(%)
can be used as a left skewed jump size case. We use o — Exp(<) as the distribution of Q
in the simulation experiment. In this case, k3 = —20°. Note that it is easy to check that
this jump size distribution satisfies the condition (4). The simulation size is 5,000, that
is, the number of generated sample paths is 5,000 for each jump intensity. For reference,
the Black-Scholes initial price is $0.75.

We compare the performances of Black-Scholes and the asymptotic local risk min-
imization strategy obtained in Section 3.2 by calculating the mean squares of hedging
errors (abbreviated by MSHE). For convenience of the comparison, we assume that the
initial investments of both hedging strategies are the same, which is the Black-Scholes
price. By hedging error, we mean the option payoff subtracted by the value of the
hedging portfolio at the expiration. For example, MSHE of the asymptotic local risk
minimization strategy is

T
B(H(S7) = C(5,0) - / Eds™)?,
0
and MSHE of the Black-Scholes strategy is
T
E(H(S®™) = C(Sp,0) — / Cs(5™) ds™Y2.
0

In general, both of the hedging strategies perform better as A, gets larger in terms of
the magnitude of MSHE, because the stock price process is getting closer to a geometric
Brownian Motion. The asymptotic local risk minimization strategy provides smaller
MSHE than the Black-Scholes hedging strategy overall. It means that the value of the
asymptotic risk minimization hedging portfolio at the expiration is closer to the payoff in
the sense that the mean square of the difference is smaller. In the presence of asymmetry,
it makes more sense to use the asymptotic local risk minimization than the Black-Scholes
hedging strategy.

We also compare the asymptotic risk minimization hedging strategy with the com-
pound Poisson hedging strategy proposed by Song and Mykland [17]. Let us call it as

10



7. Then

- 1 n
=&+ \//\—(T - t)95(5§—), t)
M\~ & M\ | (10)
P oSt / g b eCczrmvgym ||
\/EUZS}(E) So o \ %o
where ke O
gS(iC,t) = 63‘55 (3$2CSS($,t) + 1'305'55'(37,t) - EZE:EZCSs(JI,t)) ’
n n k n n n n "
Qv = R _ %%ggjoss(sg_),t)dst( (T~ t)gs(S, v)dS{™,
and

i
R = \/A(C(8M,8) — C(S0,0) — / Cs(S5, u)ds(M).
0

The idea of the compound Poisson hedging strategy is that we keep the Black-Scholes
hedging strategy as the leading term and find the correction term. They first found the
law limit of the Black-Scholes hedging error and decomposed it to a part that can be
replicated by trading the underlying stock and a part that is purely nonreplicable. They
included the replicable part as a part of the correction term to the Black-Scholes hedging
strategy, and then applied the mean-variance hedging method to the nonreplicable part
to get the final correction term. They showed that the compound Poisson hedging
strategy minimizes the mean square of the hedging error asymptotically. See Song and
Mykland [17] for details. Because it minimizes the mean square of the hedging error in
the limit, we expect that the asymptotic local risk minimization strategy would have
larger MSHE than the compound Poisson strategy, which we can see in Table 1.

The absolute terms of the mean square of hedging errors in Table 1 are small, but
the difference in MSHE between strategies is not negligible in terms of percentage. For
example, the percentage gain in MSHE by using the asymptotic local risk minimization
over the Black-Scholes when A, is 1000 is 25%. Moreover, if we have different values of
parameters, then we may also obtain more reduction in absolute terms.

As mentioned earlier, the hedging error of the asymptotic local risk minimization
strategy is slightly bigger than that of compound Poisson hedging strategy, which has a
little more complicated form. However, asymptotics that we used to obtain two strategies
are a bit different. We may say that we use a weaker type of asymptotics for the local risk
minimization strategy. Compound Poisson hedging strategy is obtained by looking at
the limit of the Black-Scholes hedging error. Thus, what to hedge in the first place is the
limit of the hedging error. On the other hand, the asymptotic local risk minimization
strategy is obtained by applying asymptotics to Equ (H (Séqn)|.7-"tn)). What we try to
hedge is the option payoff itself in this case. It turns out that the compound Poisson
hedging strategy has the form of the asymptotic local risk minimization strategy plus
some other terms, as in (10).
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