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Abstract

This paper studies the problem of option pricing in an incomplete market. The market
incompleteness comes from the discontinuity of the underlying asset price process, specifi-
cally. Since the price of any contingent claim cannot be defined uniquely under the market
incompleteness, we try to find some reasonable prices by adopting an asymptotic approach,
letting securities prices converge to continuous processes.

Assuming that we use the compound Poisson hedging strategy proposed in Song and
Mykland [10], three different choices for an option price are suggested in this paper as
the form of the initial investment of the compound Poisson hedging strategy. The classical
Black-Scholes price is a simple choice, and we study the case where we want to invest as little
as possible with the expected squared loss bounded by a certain level. Thirdly, we study to
find an equivalent martingale measure that converges to the minimal martingale measure.
The expected value under this equivalent martingale measure is another possible amount '

to invest at the beginning. The choice between these possibilities is left for practitioners.

1 Introduction

Unlike other derivative securities such as futures or forwards, options give the owner the right
to buy or sell the underlying securities, not the obligation. Therefore, options are traded at a
certain price and the price of an option is an important issue in a financial market. Even for

other derivative securities, how much we should invest to hedge the payoff completely is always



an important and interesting issue. In a complete financial market, the price of any contingent
claim is uniquely determined. It is the same as the initial investment of the replicating portfo-
lio, and also the same as the expectation of the discounted payoff under the unique equivalent
martingale measure. When it comes to an incomplete market, there are, in general, no repli-
cating portfolios for a contingent claim, and there may be many different equivalent martingale
measures. Therefore, the price of a contingent claim may not be determined uniquely.

Since we do not have the unique price for a contingent claim in an incomplete market,
there are attempts to find the price range for the actual market price of a given contingent
claim such as El Karoui and Quenez [3] and Eberlein and Jacod [2]. El Karoui and Quenez [3]
determined the price range and showed that the maximum price is the smallest price that
allows the seller to hedge completely by a controlled portfolio of the basic securities. They
developed the optional version of the Doob-Meyer decomposition which holds simultaneously
for all equivalent martingale measures. Kramkov [7] and Féllmer and Kramkov [4] studied
more about the optional decomposition and its usage for hedging contingent claims under
incompleteness. Eberlein and Jacod [2] found a price range for a general payoff function under
the incompleteness due to discontinuity of the asset price process. They showed that the prices
for such hedging strategies are impracticably high. Mykland [8] studied conservative hedging
price under the existence of unavailable assets for hedging. In a case study of convex European
options hedged in a stock and a zero coupon bond, he gave the explicit expression for the
conservative hedging price using upper limit of the cumulative volatility and upper and lower
limit of the cumulative interest rate. The upper bounds of a contingent claim appeared in
literature guarantee that we hedge the payoff completely, but they provide very high sta,i*ting
prices for hedging strategies.

On the other hand, since there can be many different equivalent martingale measures in
any incomplete market, there are attempts to choose a particular probability measure among
them. He and Pearson [6] introduced the notion of minimax local martingale measure. Under
this martingale measure, the investors do not want to hedge the unhedgeable uncertainty.
Since the investor can increase his/her utility by hedging the unhedgeable risks, they choose

the martingale measure to minimize the maximum attainable utility. Follmer and Schweizer [5]



introduced a minimal martingale measure, which is the martingale measure that preserves the
structure of the real measure as far as possible. They constructed the unique optimal strategy
that minimizes the intrinsic risk of a general claim using the minimal martingale measure.

In this paper, we study the pricing problem of a contingent claim in an incomplete mar-
ket. The market incompleteness specifically comes from the discontinuity of the underlying
asset price process. Section 2 describes the model of the underlying asset price process, and
sections 3, 4, and 5 propose several possible prices for European style derivatives. The choice
between suggested prices depends on the practitioner who needs to use the price. Section 3
suggests the classical Black-Scholes price, and section 4 studies the case where we want to invest
as small as possible with a certain constraint. Section 5 studies a problem of choosing an ade-
quate equivalent martingale measure under the discontinuity of the asset price process. Once
we select an equivalent martingale measure, we can use the expected value of the discounted

payoff of a contingent claim under this measure as the price of the contingent claim.

2 The Model

Consider a sequence of discontinuous processes that converges to a geometric Brownian Motion
model. Each element of the sequence is a discontinuous process, indexed by n. n does not
have any practical meaning, but it is used for asymptotic operation. A larger n means that the
degree of discontinuity is smaller, i.e., the process is closer to a ggometric Brownian Motion
model. Although we consider a sequence of processes, we observe only one price process with
a certain degree of discontinuity from the market, for a given stock.

Let (£, 7™ P(™)) be a probability space with {F(™} generated by the stock price
process 5™ defined below. We suppose that for each n, the log stock price process follows a

compound Poisson process under P such that

N
log S = log S5 + > z{, (1)

i=1
where N(™ is a Poisson process with rate \,, and Z{™s are iid random variables that are

1
independent of N(®. We assume the initial stock price S(()n) is the same for all n. As n goes




) converges to 0 in distribution. Nt(n) is the number of jumps in

)

to 0o, A, goes to co and ZZ-(n
the log stock price process up to time ¢, and each Zi(n represents the size of the ith jump of
log S(™. Since Ant is the expected number of jumps up to time ¢, we can say that ), is the
jump intensity of the log stock price process. Practically, A\, is related with the level of the
trading activity of an individual stock. A large A\, corresponds to a heavily traded stock and a

small )\, corresponds to a rarely traded stock. We define the jump size distribution Z™ more

precisely as follows.

1 1

where @ is a random variable with EQ = 0, EQ? = 02, EQ® = ks, and FQ* = ks, under

7(n)

P®™ for all n. For integers p > 4, we assume F(|QJP) = o()\§2+p/2). i is a constant. It
is clear that Z(® converges to 0 in probability as well as in distribution as n goes to oo,
E(Z™) = L (u— 10%), B(ZM)P = O(P?) for p = 2,3 and 4, and E(ZM)P = o()\;2) for
p > 4. We can add o(\;!) term to Z(™ if we want, and it will not change anything. Consider
the asymptotics as n goes to co. The conditions above assure that as n goes to co, log S(™

converges in distribution to log S that is
1 o
log S; = log Sp + (1 — 50 )}t + o By (3)

where B is a Brownian Motion under the limiting measure P. (See Song and Mykland [10].)
Suppose we want to hedge a European style payoff 1 that expires at time T'. We assume

that the interest rate r is 0 for simplicity. Let C (an), t) and C(S;,t) denote the Black-Scholes

option price at time ¢ before the limit and in the limit, respectively. If X is the process of the

value of the Black-Scholes hedging portfolio, then
t
X, =C(8,0) + / Cs(S™ u)dsm.
0

By Song and Mykland [10], the scaled Black-Scholes hedging error, v/A,(C (S.(n), ) — X.) con-
verges to a continuous process and its limit at time 7" is decomposed into two parts, so-called
a replicable part and a non-replicable part. The replicable part is a stochastic integral with

respect to the limiting stock price process and the non-replicable part is a stochastic integral



with respect to a Brownian Motion that is independent of the stock price process under P.
We denote the non-replicable part by fOT Y, dW,, where the integrand Y is a function of S, and
W is independent of S under P. It can also be shown that W is independent of S under P*,
which is the minimal martingale measure proposed by Follmer and Scheweizer [5]. For more
details, see Song and Mykland [10].

What can we do with the limit of the Black-Scholes hedging error for the hedging pur-
pose? First, using the replicable part of the Black-Scholes hedging error, we update the

Black-Scholes hedging strategy as

7™ = x, +\/_/ =228 Ces(SY, u)dse \/_/ —u)gs(S™ wyds™.  (4)

To deal with the non-replicable part of the Black-Scholes hedging error, we find the hedging
portfolio, K, that makes the expected squared loss in the limiting market, E( fOT Yuqu—KT)z,
minimized for a given initial value Ky. Taking the non-replicable part into account, we end up

with the compound Poisson hedging strategy as follows. (See Song and Mykland [10])

L™ = C(50,0) \/_ / Cs(S™, u)dse
1 3 ln _ (n) (n)
+m/0 2025u_055 (5™ w)dst \/_/ w)gs(S™ u)ds¢

(n)\ ~2F O
T / | o Sé”_ e H Ut / Ss”" gy ey | dsi),
/\n 0 0_2Su7:?/_ 0 0 0 v u

(5)

where Cs, Css, and Csss denote the first, second, and third derivative of C(S;,t) with respect
to S, respectively, g(Sy,u) = %]fg, (355055(5%14) + 530555(Su,u)) — %%SZCSS(SU,U) gs is
the first derivative of g with respect to S, dVU( ") denotes dRU %%Sv_ CSS( ) ,v)dS

(T - v)gS(SQ(,_), )dS( ") and Rﬁ”) = \/X;(C'(St(n),t) — Xt). The compound Poisson hedging
strategy is determined uniquely for any given value of Ky, and its initial investment is the
Black-Scholes price plus Ky/v/A,. By choosing a reasonable value of Kp, we determine the
initial investment of the compound Poisson hedging portfolio. At the same time, we can use

it as the price of the European option. In the following sections, we try to find a reasonable

value for Kj.



3 Black-Scholes price

To invest only the Black-Scholes price at the beginning is a good choice in several ways. First
of all, it means that we choose Ky = 0 in the compound Poisson hedging in (5) and it makes
the hedging strategy simpler. Moreover, the investment of the Black-Scholes price minimizes
the mean square of the limiting hedging error over the values of Ky, as follows.

As we saw in section 2, the limiting stock price process S follows a geometric Brownian
Motion model such as dS; = uSidt + 0S;dB;. And the minimal martingale measure, P*, (See

Follmer and Schweizer [5]) is defined as

ar* L 1 2
P lFe = exp ( cBi—55t ), (6)
where {F;} is a filtration generated by (W,B). In the next proposition, we find the initial

investment that makes the expected squared loss minimized.

Proposition 3.1 II is an Fr-measurable random wvariable satisfying II € LP(P) for some
p > 2. Define G(8) to be {fot 0,dSy : 0 <t < T} where 0 is predictable with respect to F and
E(fg 6252du) < co. Then, the initial investment Ko that minimizes E(II — Ko — Gr(6))? is

E*(II), where E* is the expectation under the minimal martingale measure P*.

Proof. Define © to be a set {6 : predictable with respect to F, E( fOT 625%du) < oo}, and
define G* to be { fg 0r,dSy} where O, is the optimal hedging strategy minimizing F(II —
Ky — fOT 0,dS,)? over @. To find Ky that minimizes géiélE(H — Ko — G7(0))?, differentiate

%ﬂiélE(H — Ko — Gp(6))? with respect to K as follows.
€

a : 2 a * \2
I B = Ko — Gr(0))* = 57 B(I - Ko - Gf)
7]

= B(2(I1 - Ko ~ G)(~1 - 5-G¥)).

The differentiation under the expectation can be easily shown to be legitimate. By

Schweizer [9], G* is the solution of the stochastic differential equation

* A M ) *
dG; = (0; + gz‘gt(vt — Ko — GY))dS;



with G} = 0. V; is defined as E*(IT|Z;) and V; can be written as
~ ~ t ~ t o~
Vi=1lp +/ 0,dS,, +/ v, dW,,.
0 0

Schweizer only provides the above SDE, but it is easy to show that

4
G: = At /(; v (9u + O'QIUS (Vu - Ko))(dsu + ,uSudu)

where et = (5;/5,)"/7° eXp(‘Q%zg‘t + £t). Then, we can show that

9 Ay tAu H p
3K0GT— 2 /Oe (azSudSU+02du)

= —e At (et — ) = g7 A 1.

Thus,
0
Bl = Ko = GF)(~1 = 57-G7)) = BQ(IL - Ko - Gp)(~e™"))
. _ 2 dP*
= BQ(Ko + Gr — e T —= |5,

= B (20T (Ko + Gy —10))

= 2e‘5T(KO — E*(10)).
E*(G%) is 0 since G* is a martingale under the minimal martingale measure. g%iélE(H - Ky —
G7(0))? is convex in Ky, so E*(II) is the value of Ky that minimizes %réigE(H ~ Ko — Gr(6))%
O

Similar arguments will work for more general setting that is given in Schweizer’s [9].

In our setting, we have II = fOT Y,dW,. Since W is a Brownian Motion under the minimal
martingale measure P*, Ky = 0 makes the expected squared loss the smallest, assuming that
C(S.,) satisfies E*(fOT SEC24(St,t)dt) < co. Therefore, if we want E(fOT Y, dW, — Ky —

G7(0))? as small as possible, the Black-Scholes initial value C/(Sp,0) is the right amount to

invest in the pre-limiting stage, as long as we use the hedging strategy proposed in (5).

4 Bounded Expected Loss

Suppose we have a certain upper bound U of the expected squared loss in mind and want to

invest the smallest amount possible while the expected squared loss bounded by U. In other



words, we want to minimize the starting value Ky subject to E(fOT Yy dW, — Ko—Gr(8))? <U
for a given level U. Note that if any pair (Kj, ) solves the problem of minimizing Ky subject
to E(fOT Yy dW, — Ky — Gr(8))? < U, then (Koy,0k,) also solves the same problem, where
0K, = areg%inE( fOT Y, dW, — Kg — Gr(6))%. Thus, we can restrict our attention to a smaller
set @ = 6{9 € © : 6 minimizes E(fOT Yy, dW, — Ko — Gr(6))? for some value of Ko} for the
proper set of hedging strategies.

C(S¢, t) is the Black-Scholes option price at time ¢ when the stock price S follows a

geometric Brownian Motion. Let us assume that C(S,-) satisfies
T
E( / SAC24 (S, t)dt) < oo (7)
0

It can be easily shown that this assumption is satisfied in case of a call option. The assumption
(7) assures that { fot Y, dW, : 0 < t < T} is a square-integrable martingale with zero means
and finite variances E( fot Y,2du). By Song and Mykland [10],

t _ T _
Gy(Ox,) = e (Ko — / eV, dW,) — Ko + / Y, dWy,
0 0

where et = (S;/S0)*/°" exp(—z’fyigt + £t). Under the assumption (7),
T B T ~
E( / Y, dW, — Ko — Gr(0xk,))? = E(e™*7 / e Y, dW, — e 4T K;)?
0 0

T
= K2E(e™247) — 29Ky E(e™ 24T /O e Y, dWy,)

T
+ B(e~24( / ANY, dT,)2)
0
2

T
= K2e"o*T — 2K E(E(e 247 / e Y, dWy,|(S.),0 < u < T))
0

2 T 2 2 7!
= K2e 07T 4 / B(Ss Ve T p(s- ¥ |5, ))du
0



Since our constraint is E(fOT Yy dW, — Ko — Gr(0x,))* < U,
2 T 2
K2 < eo2T <U - / E(e“if(T““)Yf)du> .
0
Therefore,

Proposition 4.1 The minimum investment subject to E(fOT Y dW, — Ko — Gr(0))2 < U is

- 2 T 2
Ky = —eéi"fT\/U —/ E(e~ 2T ¥y2)qy.
0

Thus, the minimum investment with the bounded loss constraint is C(Sg,0) + ;—%\;L

In case where the contingent claim is a call option, we can get a more explicit expression.

If the option is a European call with the strike price K and expiration time 7', then

T 2 2 T
_— o i & | B(T) + C(T)u
E(/0 YydWy — Ko — Gr(0k,))” = Kge T o2 /O a7 O o2(T + u) Jdu

where ¢; = 4/ky — (’%&)2, B(T) = (log(—g))2 + 02T log(SoK) — ‘—TZ;—TZ — u*T? and C(T) =

o?uT + 2(u + 0?) log K — 2plog So. And

2 T 2
K2 <eotT <U - / E(e_iT(T_u)Yf)du>
0

2 2 T
_ T g 1 B(T)+ C(T)u
=e <U - /0 Ny exp(——aQ(T ) Ydu | .

Thus,

fom e (0 B [ L PO )

Note that Ky is always negative. It means that we can reduce the initial investment from the
Black-Scholes price. It is reasonable in the sense that Ky = 0 minimizes E( fOT YudW, — Ko —
Gr(0xk,))? over the values of Ky. Here, we are willing to tolerate a higher level of error at the

end, so we should be able to lower the initial investment at the beginning.

Remark 4.1 Since we have two interesting values for the initial investment, which are C'(Sg, 0)

and C(Sp,0) + —I—(Q—, we want to compare two different cases in order to see which one is more

oo
appealing. Let us see the limiting case, where we compare Ky = 0 and Ky = K. Suppose we



invest Ky at the beginning. Then we gain [f{o[ in the initial investment over the other case.
How much do we lose in terms of the mean square of the hedging error at the end? Note that

T

- T ~ N . N 2
B(Ro+Gr(Oz,) — | YudW) = E(Gr(60) = | YudW) = Ble™7 o) = Roe 57,
0 0

T 2

- T . N 5 2
Var(Ko + Gr(0z,) / YodW,) — Var(Gr(6o) — / Yodi,) = R3(e 2T — %7y,
0

0

Since Ky is negative, we lose in both of expectation and variance over Ky = 0 case. But the
loss at the expiration is less than the gain at the beginning in the sense that when we invest
Ky = Kgatt =0, our squared gain over Ky = 0 is K’g and the expected squared loss over

Ko =0att=T is less than K2, because
T . B . ZT T 5
E(/ YudWy — Ko — Gr(0,))* = KT 4 E(/ Yy, dW,, — Gr(80))2.
0 0

Remark 4.2 Let us compare numerically the gain and loss we will have in cases of investing
Ko =0 and Ky = K. In both cases, we use the compound Poisson hedging strategy obtained
in (5). The contingent claim is a European call and Q ~ N(0,0?). The parameter values are
T =025 0=021, p =0.15, Sy = 950, and K = 1000.

Suppose A, = 10000 and U = 15000. If we invest Ky = f(o, then we gain 0.93373 dollars
at the beginning. But at the end, we lose 0.76744 square dollars in the mean square of the
hedging error, E( fOT Yy, dW, — Ko — G;,’ ffo)2' We lose 0.82191 dollars in terms of expectation of
hedging error and lose 0.09190 square dollars in terms of variance of hedging error. The most
of the loss at the end is coming from the bias part, so Ky is not mﬁch more attractive than 0
in this case. However, when the time to expiration is longer and the volatility is small relative
to the level of the expected rate of return, Ky becomes more attractive.

Suppose = 0.5, 0 = 0.21 and 7" = 0.5. Then when we invest Ky at t = 0, we gain
4.63739 dollars at the beginning and we lose 1.2634 square dollars in the mean square hedging

error at the end. The loss in terms of the expectation is 0.2724 dollars and the loss in terms

of the variance is 1.1892 square dollars.

10



5 Equivalent martingale measure in the pre-limiting stage

As we saw in section 2, the limiting log stock price process is a Brownian Motion with drift as
(3) under P. Under the minimal martingale measure P* defined as (6), the limiting log stock
price is

1
log S; = log Sy — iazt + oBj,

where B* is a standard Brownian Motion under P*. We still assume that the interest rate r
is 0.

Since the fair price of a contingent claim in a complete market is the expected value of
the payoff under the unique equivalent martingale measure, we can try to find an appropriate
equivalent martingale measure in the pre-limiting stage for the pricing purpose. One reasonable
choice will be an equivalent martingale measure, P*™) which converges weakly to the minimal
martingale measure P* for the stock price process in the limit. Let us start with the following

assumptions.

Assumption 1 (Distribution of the stock price process under P*("))
(1) {Nt(n)} is a Poisson process with the compensator N5t under P*™),
(1) Q has the density f* under P*™ and f under P™, for all n.

(iii) N and Q are independent under P*™) | for all n.

dp*(n)
Define 4505 | Fm) a8

(n)

*(n) * Nt(n) . N, . .
o = (35) s 1 5199, ’
dP(n) Fy /\n 11 f(QZ)

where {.7-}(”)} is a filtration generated by S(™). Under the assumption 1, we can easily check

dp*(m)

5w | zm } is a martingale under P For P*(™ to be a martingale measure, we need {St(n)}
t

11



to be a martingale under P*(™ because the interest rate r is 0. For any 0 fu<t<T,

N
B (SPIFM) = SPE (T A7 IFD)
=N 41

= (M) B (B (2™ )N - | £
) k7 ok (n) (n) _ ps(n)
=SB (B (7)) N T

= S&n)E*(eXp((logE*(eZ(n)))(Nt(n) _ N(n))))

U

= S{M exp(An(t — u)(B(e7™) - 1)).
Therefore, in order for E*(S§")[f,8”)) = S&n) forany 0 < u <t < T, we need

E* (") = 1. (10)

dp*n)

Spmr = Op(1) because we want P*(™ to converge to the minimal martingale

We also want log

measure. It is also necessary for the asymptotic equivalence between two measures.

Define £2(Q2) £2(@)
- _ log o) — Flog g
T *
Var log —ﬂ——J}((Q%)
ap*) )
and look at log PIION | Fim mOTE closely.
(n)
lo @—(ﬂl =N(n)(10'/\* —log An) + (A —/\*)t+Nt210g fa(Qi)
& apmy \F = 108 R (o))
N
falQs) Q)
= lo — Elog ~—~
2 (o gy ~ Bl Fgp)
+ Nt(”)(log Ay, — log Ap + E'log fn(Q)) —t(A} — An)-

@)

12



Using the variable X;,

(n)

dp*n) N ™
log Wlﬁ(n) = \/ AnVar log J;:‘((g)) \/1/_\_ Z z,
™ o=1
(n) )
+ :]L\/;_nén_t\/;\;(log Ay —log A\, + Elog J;Zz((g)))
+ Ant(log A, — log Ay + E log fn(Q)) n )
Q)
() (1)
v, B@ 1 R
= \/)\nVa log H0) T ;Xz
Nt(n) — Ant X Q)
TV n(log X, — log M + Blog Joat)

Based on (11) and the lemma 6.1 in Appendix 6.1, we can find a set of sufficient conditions

for log %(%) = 0p(1) as

/(@)
Q)

log A — log Ay = O(A;1/2),

An Var(log ) = 0(1),

(%) N
Elog 0) =O0(\;").

Now, suppose

Q) = f(Q)e9)
\/—/\-n(log Ay —log Ay) — 1,
A Var(gy, (@) — lal,

ME(9x,(Q) — B.

Theorem 5.1 Subject to the assumption 1, (10), and (12), (log %,log S converges

jointly in distribution to (§,log S) where & = —£B, + nW} — %(oz2 + n?)t, where W' is a

Browninan Motion under P and is independent of B.

Proof. See Appendix 6.1.

13



Let us check if the measure defined by the limit of log ‘fi};;(%) is a martingale under the

limiting measure P. For any 0 < u <t < T, we want

1 1
E(exp(~EB; +qW} = (0 + )1 F,) = exp(=£ B, + Wi} = S (0 +n?)u),

2
and hence, we need o = & or |a| = J%{’ because

1
E(exp(—%Bt + 77th - 5(042 + 772)t|fu)

1 1
= eXP(—EBu +nW, — 5(042 + ﬂZ)U)E(eXP(*g(Bt = Bu) + (W} — W) — 5(052 +1%)(t — u))
= exp(——B + nWl - —1—(012 + 772)u) exp(=— W
2 202

- %(09 +1%)u) exp(§(u

)+ 3n(e = w) — (o + )t~ w)

o®)(t ~ u)).

[y

5(t—
2
= exp(—;Bu + UWJ 3

It can be easily shown that the limiting stock price process S is a martingale under the measure

P* defined by the limit of log 42 Using o? = ﬁ; forallt <T,

dp(n)
dp) DL 12 1,
logm|ft(n) — —=B; — 5o —t+ Wl — St

If n = 0, in other words, A, and X} are very close in the sense that A7 = A, (1 + o(A, - 2)),

then

dP*(n) D L 1 ,U,2
log Zpmy =0 = 5B~ 53t

i.e., P converges to the minimal martingale measure in (6). In particular, if there is no

") permy.
change in the Poisson process under the measure change, then vaztl ifﬂ% converges weakly to

the minimal martingale measure assuming A, Var(log ]}:((g))) = O(1) and FElog ]?((QQ)) = 0(\;1).

Now, we have another candidate for the price of the option.

Proposition 5.1 Suppose we choose an equivalent martingale measure P*™) that converges
to the minimal martingale measure for the pricing purpose. Then the price of a European

contingent clatm C’(S;n),T) is

k3T

1
i3 ~Css5(S0,0)55}

6
))Css(Sa,0)S2 + o(A71/3).

E*C(S$),T) = C(S0,0) + { Css(So,0)52 +

14




Proof. See Appendix 6.2.

In the above proposition, we need the limit of E(Q?g,,(Q)) for general distribution of
Q. Let us take the distribution of Q such that F(Q%g,,(Q)) is \/—4 +o(Ap S ). The reasoning
behind this assumption is the following.

In the limit, the quadratic variation of log S at t is 02t under P and P*. But before the

limit, the predictable quadratic variation, < log S(,log S(™ >, is not the same under P(™

and under P*(™_ It is easy to see that

1
< log 8™ 1og S™ >, = (62 + i(ﬂ - =a%))t,
<log S™ log §M >¥ = (02 + ——= \//\_ (@0 + VI E(Qgx, (@) + oA\ /2))e.

It might be good to choose the distribution of @ that makes A\, 1/2 term to be 0.
With n = 0, the choice of Ky will be ksT{3Css(S0,0)52 + £Cs55(S50,0)S8}, and the
price of a European contingent claim is

ksT
\/_

Remark 5.1 Subject to the assumption 1, (10), and (12), it is easy to show that
( n)

i ePn=20t 2y exp(ni! — L t)
I 2

1
O(50,0) + 22 {2 Cis(S0,0)53 + £ Css (o, 0)S5).

N(n)
: o, _Hp  1p
ot 92

ddP()

As we define my in (9), it is the product of the Radon-Nikodym derivative induced from the

jump intensity process, N and the Radon-Nikodym derivative induced from the jump.size

distribution, Q. We can see that the N-component of ¢ )) converges weakly to exp(nWi —

dP("

%77275) and ()-component of dP(n) converges weakly to —£B; — %%;t

6 Appendix

6.1 Proof of Theorem 5.1

N(n)_)\n N( n) .
Lemma 6.1 <475\—:— \/A-{Z% 1

nian Motion under P.

1) converges in distribution to a two-dimensional Brow-
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~ N®
Proof. Define Mt(n) and Mt( ) to be —L\/—;—}’—‘— and \/—ZZ 1 Xj, respectively. Then, they

are square-integrable martingales satisfying < M ) M) >, = t, < M () () >,= t, and

< M®™ M® >,= 0. Consider local square integrable martingales Me(n) and ME(”) which

include all the jumps of the original martingales in absolute value than e. Since the jump size
(n) _ ~

of ﬂf—\/——/\—n-’\it- at any time point is either 0 or ﬁ, we can define M{™ = 0. In the case of M®),

define
N(”)

-0 _ o
My = \/~ Z Xil(Rsevimy — VEB(X I g0 mm)-

Then,
IAM™ — AN™| = L X oy [ I 5 <e
t et o N {lth(n)ISf\/;\:}“ ’
p N
[Me(n) t = )\— E i {|X [>6\/E}’
and

< Z\Zfe(n), mm >¢ converges to 0 as n goes to co because X2 is integrable and P(|X| > ev/An)
goes to 0. Now, Rebolledo’s theorem(Andersen, Borgen, Gill and Keiding [1], p. 83) completes

the proof. O

Suppose (12). It implies that g, (Q) = Op(/\ﬁl/Q) because if we take K, > lo‘—':—l, then

ME(g3 (Q))
K.

_ VaVar(gx, (@) + M(E(9, (Q)))?
K.

P(1v/ 292, (@) > Ko) <

for a large enough n. By (11), (12), and lemma 6.1,

ap*n) 1
dpPm™ 57t

log 5

D
| = W + Wi + (8 -

16



where W' and W? are independent Brownian Motions under P. For the asymptotic equiva-

lence,

Blexp(efW7 + 1} + (6 ~ 57)0) = exp((6 — 5m)i + 2 (@ + m))

So we get

1
B=-sa.

On the other hand, recall we made the assumption E*(ez(n)) =1 to make P*(™) o be a

martingale measure. It is equivalent to say

E(eﬁQﬂun(Q)) )

Since
e~ 3 (7307 1—ﬁ+£2—+o(k b,
- An o 2M,

B(eArom@) Z g1 4 \/%Q +on (Q) + 2(\/_Q o0, (@) + 0y (A1)

2

=14 Bl (Q) + 3 + T=P(Qa, Q) + 5 Var(oa, (@) + 00051,

we have
B(03.(Q) + Z=F(Q01, (@) + 3Var(93,(Q)) = ~ 4 + o(A;1)
Thus,
VAR E(Qor (Q)) — —p (13)

because A\, FE (g, (Q)) — B8 = —%aQ and A, Var(gy,(Q)) — o

N _ ~
We are ready to consider the joint convergence of —t\/——f‘L \/~— Z XZ, and log St(”) -

- A n)_
(u — %UQ)t. Define Mt(n), Mt(n), and Mt( " to be ——i——ﬁ im1 XZ, and log S( n) — (-

T e T
%az)t, respectively. They are square-integrable martingales and we know from the lemma 6.1,

(M), 1) 25 (W)

17



where W' and W? are independent Brownian Motions under P. Moreover,

N
W™, 8, = 37 (277,
=1
(n) xy(n) 1 (n)
M pm), = — A
[ ]t m; 3
(n) pp(n) 1 8 (n)
M® p), = X, Z:"
[ b ]t m Zzl [2ad
Thus,!
or(n) aor(n) 2 1 1 272 2
<MW MW >y =0t + —(u— -0°)°t — o,
An n—00
. 1 1
(n) (n) Sy — a2
<MYV MY > = )\n(/J, 20’ )t n_—)—go 0,
< 5™ o s, = PQo@) - p
Var(gy, (Q)) n=e° o]
If we define
N
ME =37 21 oy g~ MIEZ L p0015),

Me(n) is a martingale containing all jumps of M™) whose size is bigger than € in absolute value.

Its quadratic variations are
N(n)
or(n)
VI, M) = ZZ iz e

< MM ™ >, = /\ntE(Z(”) I 2005

and < Me(n), M( n) >, goes to 0 because A, Z(" 2 is integrable and P(|v/A,Z| > ev/Ap) goes to
0 as n goes to co.

By Rebolledo’s theorem,

()
N ot e 1
o \/~— Z Xi,log S ~ (i~ 502)t 2y (W, W2,0By),
i=1

T used (12) and (13) for the limit of < M™ M™ >,
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where W1 is independent of W2 and B, < W2,B >;= ——Elﬁ&—[t, and they are all Brownian

Motions under P. Therefore, W? = — 4B and

alal

dp*n m) D, B 1, 1
<log W|f§n),10g5t — (—;Bt+77Wt +—§(

6.2 Proof of Proposition 5.1

By It6’s formula and Taylor expansion,

o? +n)t,log Sy).

dC (8™ 1) = C(S™ tydt + Cs(S™,4)dS™ + AC(S™, 1) = Cs(S™, 1) AS™

= AC(S™, t) + Cy (8™ t)dt
_ZCS (8™ 1 (as™My ——+Ct(S,f_), £)dt.
Thus,

T
ECsM™, T ):C(SO,O)+/ E*Cy(S™ t)dt

/Z E*C’év t) tyd < S ... 5 %)

C(S0,0) /E*C’t t_, t)dt

* (n) * v n n)"
. /O Z_:FE (27— 1) A B (CP (S, )™

By Black-Scholes PDE,
T (n) :

B C(S{,T) = C(80,0) + [ B(e7” ~ 1A B" (Cs(5, 5t
0

T n . 2
+ / 1(E*(ez‘ " 120, — 02 E* (Css(S™, 1) 5™ g
0

A B 1 (S, 080 s
T 1 () () [ o(n) Ok
+/ Z {,_IE*(eZ — 1"\ B (Cg7 (8,2, 1) S, )dt
0 p=4
1 \/EE(QZQ/\ Q) )/
= C(S,,0) + = 8 E*(C
o / o c§3 5,050

6
e /241y e (o) (g7 o)
+ [0 Y 5005 B (e (5 05 et
v=4
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)dt.

ss(S™, )5[‘) )dt




. 2 3
Since C’SS(St(f), t)St(f) and C’_(93)(St(f) , t)St(f) satisfy the Black-Scholes PDE, we can show that

B*(Css(S™,)857) = Cs5(50,0)82 + O(A;2)

and
B(CE (5™, 1)5™%) = ¢§)(86,0)88 + O 12).
Therefore,
E*C(S%,T) = C(S0,0) + ’”3T{ Cs5(50,0)83 + =C(S0,0)58)
Van 2 6
))Cs5(S0,0)83 + o(A;1/2).
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