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Abstract

This paper studies the problem of option hedging in an incomplete market. The market
incompleteness comes from the discontinuity of the underlying asset price process, specifi-
cally. By adopting an asymptotic approach, letting securities prices converge to continuous
processes, we try to improve the classical Black-Scholes hedging strategy.

The first order error term after we hedge an option with the Black-Scholes strategy is
decomposed into a part which can be traded away and a part which is purely unreplicable.
First, we modify the Black-Scholes hedging strategy by adding the replicable part of the
first order error and secondly, we adopt the mean-variance hedging method to take care of
the nonreplicable part.

Some results of simulation experiments are also provided. In simulation, we see that
the new hedging strategy improves the classical Black-Scholes hedging strategy up to 30%
in terms of the mean square of hedging error, when the distribution of log stock price is '

skewed.

1 Introduction

Perfect hedging of an option is impossible in the real world. In a complete financial market,
every contingent claim is exactly attainable by investing in the market. But in most real

instances, the market is not complete. Market incompleteness may arise for various reasons,



including discontinuity of the asset price process, dependency of contingent claims on unavail-
able stocks for investment, discrete time hedging, or some constraints on the trading strategies.
Under the classical Black-Scholes setting in which the stock price process is a geometric Brow-
nian Motion, we can construct a perfect hedging strategy because their setup assures that the
market is complete. In other words, every contingent claim is riskless in that setting. However,
the stock price process is not a geometric Brownian Motion and even not continuous in reality.
Stocks move in fixed increments that is called as a tick size and sometimes there are also big
Jjumps such as market crashes, for example, the big drop of S&P 500 index on October 19, 1987
and more recently, the drop after September 11, 2001. Especially when we look at the intraday
trading data, we can see that the more realistic model is a purely discontinuous process rather
than a continuous one. Under the discontinuous model for the stock price process, the market
is no longer complete. Although Protter [3] showed conditions where the market is complete
even with a discontinuous asset price process, the conditions do not hold in most practical
markets. Here, we will focus on the case where the stock price process is not continuous, and
thus, the market is incomplete.

Our goal is to improve the classical Black-Scholes hedging strategy. We add a correction
term to the Black-Scholes hedging strategy by looking closely at the Black-Scholes hedging
error. The stock price is allowed to have jumps, and specifically log S is a compound Poisson
process. The detailed model is described in section 2. The market incompleteness originally
comes from the discontinuity of the asset price process. However, when we let the price converge
to a continuous process, we have an incomplete limiting market where the stock price process
follow the geometric Brownian Motion, but there exists a source of randomness that cannot be
traded. That is because discontinuity gives a source of another Brownian Motion in the limit.
Section 3 deals with the first order remainder term which occurs when we hedge a European
style option using classical Black-Scholes hedging strategy. We decompose the remainder term
into replicable and non-replicable parts in the limit, and then find the pre-limiting processes
which converge weakly to the replicable and non-replicable parts, respectively. These weak
convergence results make it possible to perform the transition of the problem to the limiting

case. Using the skewness of the log stock price distribution, we deal with the replicable part of



the first order remainder term. The mean-variance hedging in section 4 is used to handle the
non-replicable part in case where we have the squared loss function. Proofs are in Appendix.

Section 5 shows some simulation results.

2 The Model

Consider a sequence of discontinuous processes that converges to a geometric Brownian Motion
model. Each element of the sequence is a discontinuous process, indexed by n. n does not
have any practical meaning, but it is used for asymptotic operation. A larger n means that the
degree of discontinuity is smaller, 4.e., the process is closer to a geometric Brownian Motion
model. Although we consider a sequence of processes, we observe only one price process with
a certain degree of discontinuity from the market, for a given stock.

Let (Q, F™ P™) be a probability space with the filtration, F() generated by the
stock price process S defined below. We suppose that for each 7, the log stock price process

follows a compound Poisson process under P such that

N
log S =log 5" + S° 2, (1)
i=1
where N(™) is a Poisson process with rate \,, and Z,L.(n)’s are iid random variables that are

independent of N(®). We assume the initial stock price S(()n) is the same for all n. As n goes

) converges to 0 in distribution. Nt(n) .is the number of jumps in

)

to 00, A, goes to oo and Zi("
the log stock price process up to time t, and each ZZ.(n represents the size of the ith jump of
log ™. Since Ant is the expected number of jumps up to time ¢, we can say that ), i$ the
jump intensity of the log stock price process. Practically, A, is related with the level of the
trading activity of an individual stock. In other words, a large A, corresponds to a heavily
traded stock and a small )\, corresponds to a rarely traded stock. We define the jump size

distribution Z(™ more precisely as follows.

D R ARwErT! (2)

where Q is a random variable with EQ = 0, EQ? = 02, EQ® = k3, and EQ* = k4, under P,

for all n. 2 means that Z(™ has the same distribution as the random variable in the right hand



side. For integers p > 4, we assume E(|QP) = 0()\;2+p/2). w is a constant. It is clear that Z(™

converges to 0 in probability as well as in distribution as n goes to oo, E(Z(™) = ﬁ(,u, — %02),
B(ZMy = 0:P?) for p = 2,3 and 4, and E(Z™) = o(A>2) for p > 4. Adding o(\;?)
term to Z(™ will not change anything.

Now, consider the asymptotics as n goes to co. The conditions above assure that log §(%)

converges to a Brownian Motion with drift as n goes to co and we can see how in the following.

Proposition 2.1 Assume all the above conditions. Then as n goes to co, the log S(n) process

converges in distribution to log S that is
L 4
log S; = log Sy + (1 — i )t + 0By (3)

where B is a Brownian Motion under the limiting measure P.

Proof. To show that log S(™ converges in distribution to log S, we need to show that log S(™
is tight and log S is the only possible limit.

Consider an auxiliary process X", defined by

1
Xt(n) = log S§“) — (- Eaz)t.

Then X () — Xén) is a square-integrable martingale under P(™ for each n. And the sequence
{Xén)} is tight, because X(gn) = log Sén) = log Sp for all n and we can assume log Sy is a constant
for any sample path. Moreover, the quadratic variation sequence {< XM x®) >} is C-tight
by Theorem V1.4.1 in Jacod and Shiryaev [7] because < X (™ X > =< log () log §(™) >i=
MtE(Z(2 = o2 4 Xl;(p ~ $02)?t. Thus, by Theorem VI.4.13 in Jacod and Shiryaev [7],
X _ Xén) is tight and by Corollary VI1.3.33 in Jacod and Shiryaev [7], log S™ is also tight
because {(u — %az)t} is trivially tight. So the tightness is proved.

According to Jacod and Shiryaev [7] Lemma VI.3.19 and Lemma VII.1.3, to show that

log S is the only possible limit is equivalent to show that

10g5§n) - 1ogSl(L”) N log Sy —logSy, VO<u<t<T,
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where — means the convergence in distribution. Define Q,; = %Q N L for any fixed
w

0 <u<t<T. Then @, ’s are iid random variables with zero mean and unit variance. Now,

N
log 5" ~log S = > Z"
=N 41
NN 1
L o
= Y n A — - =
I L )
NN

= ; (\/—Qw : (u—%02)>

= 11
> Qui+ (k=300 - N,
1 n

_ g
Vn
By Doeblin-Anscombe’s theorem, (Chow and Teicher [2])

S Quy 2 N(0,6%(t — u)),

j=1

a

Van

(n) (n)
where N(a,b) denotes the normal distribution with mean a and variance b. Since L’EL (p—

—

$02) converges to (u — %02)(75 — u) in probability by Weak Law of Large Numbers,

log S™ — log S0 25 N((1 — ~02)(t — ), 0(t — u))
t U 9

2 log S; — log Sy,

for any 0 < u <t <T. So the proposition is proved.

Alternatively, we can also use the martingale central limit theorem to prove this propo-
sition. O

By defining the jump size distribution as in (2), we can interpret the parameters as

follows. p and o are the leading terms of the expected rate of return and the volatility,

respectively, & \/— is the leading term of the skewness, and % is the leading term of the kurtosis
of the log stock price process.

The compound Poisson model that we are assuming here is a reasonable model mathe-
matically and practically. It has independent increments, and finitely many jumps in a finite

time interval. Considering that the Black-Scholes model is used as a reasonable approximation



in practice, it is reasonable to have the model that is asymptotically a geometric Brownian
Motion. Moreover, this model permits incorporating the skewness and the kurtosis of the
log stock price process. Nonzero k3 can be used for a better prediction for the stock price
movement. The jump intensity A, gives another layer of flexibility. According to the level of
trading activities of stocks that we are dealing with, we can change the value of )\, so that the

model fits with the data.

3 Transition to the Limit

Suppose we want to hedge a European style payoff n which expires at time 7. The underlying
asset price process follows the model (1). Here, we assume that the volatility o is constant and
the interest rate r is 0 for simplicity. As long as the interest rate is deterministic, it is not hard
to incorporate nonzero interest rate. Let X be the process of the value of the Black-Scholes
hedging portfolio, i.e.,

X, = C(s{™,0) + /O t Cs(S™ wydsi.

Throughout the paper, C (St(n), t) denotes the Black-Scholes option price at time ¢t. C (S§n), t)
is computed based on the Black-Scholes formula, but it is not observed from the market. On
the other hand, C(S;,t) is also computed by the Black-Scholes formula, but it is the true
market price in the limit because the limiting stock price S follows the geometric Brownian
Motion model. Cs, Csg, and Csgs denote the first, second, and third derivative of C(S,1)
with respect to S, respectively. Cép ) is used for the pth derivative of C(S;,t) with respect to
S, for p > 3. '

In a complete market, X would be a perfect hedging for 7, but it is not perfect in this
setting. Let us look at the hedging error of the Black-Scholes hedging strategy. Mykland [12]
showed that v/X,(C(S™),-) — X.) converges jointly with S in distribution to (R, S) where

1 [t 1,
Ro= g [ SiCss(Suudes + gibs [ (3530ss(Suvu) + SiCsss(Su)) du (@)

-k ks \ 2
§t = cht + iBt, 1 = k4 - <_3> 3
o o




and {W;} and {B;} are independent Brownian Motions under P. As we saw in section 2, the

limiting stock price process S follows a geometric Brownian Motion model such as
dSi = uSdt + 05:dB;. (5)

Let us look at Ry more closely.

Ci T 2 ~ 1 T k‘g 9 T
Rr = —2—-/ SUCSS(Su,U)qu -+ 5/ ‘U-SUCSS(Su,U)dBu +/ f(Su,u)du
0 0 0
a [T _ 1 (T ks T (6)
2 Jo 2Jy o 0
where
1
f(SUau) - 5"‘]‘73 (35’5055(5’1““) + S’L?ZCSSS(SU,U)) ) ( )
: 7
k
9(Su,w) = f(Su,u) — %;sgcsg(su,u).
Define a measure P* by
ap* U 12
—p |7 = exp (‘“;Bt - §E§t) : (8)

where {F;} is a filtration generated by (W, B). Then, P* is an equivalent martingale measure
for the stock price process in the limit, because E*(S;) < oo for all ¢t < T and

E(S: %5 | 7.1 F)
E(% ftIFS)

for any 0 < s <t <T. This measure is, in fact, the same as the minimal martingale measure

E* (S| Fs) = = S,

introduced by Follmer and Schweizer [6]. We will use this P* later in order to prove Theorem
3.1. Since W is independent of dd%, W remains a standard Brownian Motion under P* and it

is independent of B under P*, too.

Theorem 3.1 Assume the conditions in section 2 and 8. The stock price process is governed

by (5) and Ry is defined as in (4). If we let Y; be 4 S7Cs5(St,t), then
T

T T
~ k
Ry = / Y, dW, + / 5;32—Su055(5’u, u)dS, + / (T — u)gs(Sy, u)dS,. (9)
0 0 0
In particular, when the second derivative of the Black-Scholes price C(St,t) exists at the expi-

ration time, then

T T
Rr = YrWr + / B( W, Su)dS, + / (T — w)g5(Su, u)dS,,
0 0

7



where W(Wy, Su) = —c1Wu(SuCss(Su, u) + £52Cs55(Su, 1)) + 2%5,Cs5(Sy,u) and gs(Sy,w)
denotes the first derivative of g(Sy,u) in (7) with respect to S.

Proof. See Appendix 6.1,

From the theorem 3.1, we can see that Ry is divided into two parts: replica-
ble part, fg{z—]‘;%Sung(Su,u) + (T — u)gs(Sy,u)}dS,, and non-replicable part, fOT Y, dW,.
The replicable part, fg{%ﬁ‘gSqus(Su,u) + (T — u)gs(Sy,u)}dS,, is the stochastic inte-
gral with respect to the traded asset S, so we can replicate this object exactly by holding
Z—IZ%StC’SS(St, t) + (T — t)gs (S, t) shares of the stock and put everything else in the cash bond
at each time ¢. On the other hand, foT Y, dW, is the stochastic integral with respect to a Brow-
nian Motion that is independent of S, so we cannot replicate this by trading the underlying
asset S. Since we have a replicable part in the Black-Scholes hedging error, we try to update
the Black-Scholes hedging strategy by including the replicable part. Define H™ to be the

value of the new hedging portfolio as follows.

1 [Tk
M = X, + — /0 5z S Css(SLY, w)ds()

I (n) 10)
= /0 (T = w)gs(S™, u)as(m.
When Csg is bounded and away from 0 for all ¢ < T,
| Y L 1 ¢
H" = X, + — /O h(W,2, $)dS( + —= /0 (T - u)gs(Sy2, w)ds{,
where R = /3 (C(S™ 1) — X,) and
t t A
W = / 2 AR — / a5
0 8™ Ceg(S™M ) 0 1028, (1)
/t k355@0555(85@,u) du+ ks(p — 02)t
0 361055(5571),21) c1o?

Now, after updating Black-Scholes hedging portfolio by H(™), \/ An(n — H}")) is the only
uncontrollable part of the payoff. In fact, v A (n — Hé-wn)) is purely non-replicable in the sense
that it does not have any replicable component, because it converges to a stochastic integral

with respect to untradeable W. We can show the following convergence result for the new

hedging error v/Ap(n — H}n)).



Theorem 3.2 Assume the conditions of the theorem 3.1. Then,

T
Vudn—thlg/‘KAWﬁ
0

where an) is defined as in (10). Moreover, when W™ in (11) is well-defined, subject to the
conditions (20) and (21) in Appendiz 6.2,

Vol — HMY) 2 vty

where Hgn) = X; + T/% fot h(Wz(Ln) S(n))ds’l(l,n) + ﬁ fot(T - u)gS(SfL‘,:L—)’u)dS'SLn)'

— s My—

Proof. See Appendix 6.2.

When we use H™ instead of the Black-Scholes hedging strategy, we improve the Black-
Scholes hedging strategy in the sense that the mean square of the limiting hedging error is
reduced. Note that H™ is the same as X when the distribution of the log stock price is

symmetric.

Proposition 3.1 Assume the conditions of theorem 3.1. Also assume that C(S.,-) satisfies
E(fOT SfC’gS(St,tdt) < 0o. Note that this additional assumption holds in case of a call option.
Under these assumptions,

E(limiting Black-Scholes hedging error)?

> E(limiting hedging error for H(”))z.

Proof. Denote R’ to be Ry — fOT Y, dW,. The limiting Black-Scholes hedging error is Ry, and
the limiting hedging error of the updated hedging, H ), is fOT YydW,,. Then,

T
ER% = E(R + / Yo dWy,)?
0
T . T .
= ERy? + E( / Y, dW,)? + 2E(R)y / Yy dWy,)
0 0
) T . T .
:ERIT +E(/ Yuqu)2+2E(HI'E(/ YudWy|Su,0 < u < T))
0

0

T 5 T .
= ER,” + E(/ Y, dW,)? > E(/ Y, dW,)?. O
0 0



Since the new hedging error v/, (n — H,}n)) is purely non-replicable, we may want to
use H™ as the final choice for the hedging strategy. But we can hope to do something with
Van(n — H:(pn)) because the limit has the integrand Y that is a function of the underlying
asset price process. If we specify a certain optimality criterion, we would be able to find the
best possible hedging for the new hedging error. Consider a process Kt(n) =Ky + f(f 91(Ln)d5£")
where 6(") is a predictable process with respect to the filtration generated by S, satisfying
E( fOT (Gz(tn)Sl(Zi))Qdu) < 00. We want to find an appropriate 8 in order for us to use K™ to
" hedge the new hedging error v/, (n — H:(pn)). We can show some weak convergence results for

(H™ K™) in the next theorem.

Theorem 3.3 Assume the conditions of the theorem 3.1. Define H™ and KW qs before.
Suppose that there exists a process 6 which is predictable with respect to the limiting filtration
generated by (W, S) such that E(fOT 6252du) < oo, and ) Ny jointly with S™ and R™,
Then
D T ~
(Vanln = B, E®) 25 ([ Vodiv, k),
0

where Ht(n) is defined as in (10). If W™ in (11) is well-defined, subject to the conditions (20)
and (21) in Appendiz 6.2,

(v Anln — HE), K™Yy 2y (veWr, K),
where H{" = X + k= [{ WY, 500)asi + = [T — u)gs (S, u)dsi.
Proof. See Appendix 6.2.

Now, the value of our new hedging strategy is

K
Vi

L™ converges to the value of the continuous time Black-Scholes hedging portfolio as n goes

Lgn) — ™ 4

to oo, but it includes the correction terms for the Black-Scholes hedging error, the first order
residual term after we hedge the payoff using the Black-Scholes strategy. We will call this as

a compound Poisson hedging strategy in the rest of the paper.

10



If we denote Mt to be fOT Y, dW, or YW, according to the condition of the second
derivative of the Black-Scholes option price described earlier, then (v/A,(n — Hr}n)), K:(pn)) con-
verges jointly to (Mr, K7) in distribution as n goes to oo by Theorem 3.3. Using this, we can
make the transition of our problem to the limit. Suppose we impose an optimality criterion of
the form EL(v/,(n — Lgrn ))), for a given convex function L : R — R. L(z) = z gives a rather
natural choice for the loss function, and L(z) = 22 gives the expected squared loss function.
Since L is convex on R, L is also continuous on R. By continuous mapping theorem, (Billings-
ley [1]) L(v/An(n — Lg,?))) converges to L(Mr — Kr) in distribution. Subject to the uniform
integrability condition, therefore, EL(v/ A (n — L,E;} ))) also converges to EL(Mr — Kr). So if
we find the limiting hedging portfolio { K;} minimizing EL(Mr — Kr), then the corresponding
{Lgn)} will minimize EL(v/ A, (n — Lg,? ))) for a large enough n.

Now, what we want to do is to find a proper hedging portfolio {Kt(n)} and the initial
investment. In section 4, we use L(z) = 2 for the optimality criterion, and find a proper

hedging portfolio {K;} in the limiting market.

4 Mean-Variance Hedging

A substantial body of economics literature has considered the problem of maximizing expected
utility. A main contribution is that of Merton, who studied the maximization of expected in-
tegrated utility in his papers [10], [11]. Because of its mathematical convenience, the squared
loss function has been investigated in many previous papers. In connection with the stochas-
tic calculus formulation of trading strategies in continuous time setting, for example, Duffie
and Richardson [5] and Schweizer [14] studied the optimal hedging strategy which gives the
minimum value of the expected squared loss for a given target level.

We are also going to work with the expected squared loss to deal with the non-replicable
part of the Black-Scholes hedging error, v/ A, (n — Héqn)) Note that everything in the current
section is in the limit, in other words, what we want to hedge is Mrp, either fOT Y, dW,, or
YrWr, and the stock price process {S;} follows a geometric Brownian Motion as in (5).

Consider minimizing E(M7 — Kr)2. If we define G4(0) to be fot 0,dS, where 0 € © =

11



{6 : predictable with respect to fW*S,E(fOT 0252du) < oo}, then K; = Ky + G¢(6) and the
problem is the same as minimizing E(Mr — Ko — G(6))%. F W.S ig a filtration generated by
W and S.

Define 0k, to be the aregnéin E(Mr — Ko — Gp(0))? for any given value Ky. Let us
consider the case where Mp = sz Y, dW,, first. By Schweizer [14], G(0k,) is a solution, G*, of
the SDE (12). Schweizer [14] assumes that K| is negative, but the same argument works for

nonnegative Ky’s. Although the explicit form of G* is not given in Schweizer [14], it can be

obtained quite easily. In particular, the explicit solution for our problem is as follows.

Proposition 4.1 The optimal hedging portfolio, {K}, that makes the expected squared loss,
E (Mg — K1)?, minimized for a given initial value Ky is

t — Ay 2
_ B (Su) 7 —L(tup
Kt—Ko+/o 525, <50> e

u fg 2 N
% / (-S—> ety g, — Ko | dS,.
o \ 5o

Proof. By Schweizer [14], {G¢(0k,)} that minimizes E(Mz — Ko — G7(0))? is a solution,
{G?}, of the SDE

i
dGt = ;%:(/0 Y, dW, — Ko — G})dS; (12)

with G = 0. Define an auxiliary process H; to be

¢ ¢
H} = e (K — / e Y, dW,) — Ko +/ Y. dW,,
0 0
he(SNE N
where et = <§§> exp(é%t + £t). Then, using Itd’s formula,
t -~ ~
dH; = (Ko — / e Y, dW,)de™ 4 — YidW,
0
- < e_A',/ eA“YudVVu >; +YidWy
0
¢ _ 1 12
= (Ko — / eA"Yuqu)(~;e_AtdBt - ;e"Atdt)

0

L #2 t N
= (==dBy — —ydt)(H; + Ko — / Y dWe).
ag g 0

12



Note that the quadratic covariation term is 0 becaues W and B are independent. Since

—LdB; — tdt = —f-dS,,

t
* H 1 *

H* satisfies the same SDE with the same initial value as G*, so

t _ 4 ~
G: = e‘—At (KO - / 6A“Yuqu) - K +/ Y. dW,,
0 0

and by Schweizer [14],
¢

which is
-4 2 ¢ Ly 2
B(Se) o7~k / Su 7" Hgrmuy v
O+ — 2 3, - EAPS Y, dW, — Ko | .
Kot U2St <SO) e o So € u i 0
Similar proof can be used for a general setting given in Schweizer [14]. O

In the pre-limiting stage, we adopt the hedging portfolio K(® for a given Kj such as

t g\ T
K =si [t (52 e
0 o285, 0

X / S e%(‘§§+“)”dv1§n>—K0 dsim,
o \ So

where dV,{™ denotes dR{™ — Q’%S&)CSS(S&),U)dSSn) - (T - v)gS(Sq(fi),v)dSq(,n) and Rgn) =
VA(C(SM, 1) — Xo).

So far, what we wanted to hedge, Mr, was fOT Y,dW,. Notice that when we have

(13)

My = YrWyp, we end up with the same hedging portfolio. In this case, G(0,) minimizing

E(Mt — Ky — G7(8))? is a solution, G*, of the SDE
* T 1 ~ *
4G} = (1 Wl(SiCss(Su,1) + 557 Csss(Sut)) + g (VWi — Ko = G7)ds,
with G = 0. Define H{ to be

t
H; = ™ (Ko - / MY, dW,) — Ko + YW,
0

13



where e4t = (%) 7 exp(-z%zzt + £t). Then, similarly to the proposition 4.1,

* T * ¥ 1
dH} = (Y;W; — Ko — H})dSs + c1Wi(S¢Css(Se, t) + ESngss(St,t))dSt.

-
O'QSt
Note that dY; = ¢1(S:Css(St, t) + %SECSSS(St,t))dSt. (See Appendix 6.1) Since H* satisfies

the same SDE with the same initial value as G*,

t
G: = e_At (KQ - / eA”Yuqu) — Ko + Y Wy,
0

and by Schweizer [14],

. 1 w (8 T 2,
0o = 1 We(SiCss(Sut) + 557 Csss(58) + g (gﬁ_) "

¢ s
x (/ <S> *”‘f““i“YdW K0>
So

Therefore, the optimal hedging portfolio for a given initial value K is

t
- 1
K; = KO + / CIWu(SuCSS(SuaU) + ‘2'550355(Smu))d5u
0

t L U _
+ / e~ Au / MY, dW, — Ko | dS,,
o O'2Su 0

where exp(A;) = (%):’%exp(%‘;t + &t).  This is the sum of fgclwu(SuCgs(Su,u) +

%SﬁCSSS(Su,u))dSu and the optimal hedging for the case of My = f(;‘r Y, dW,, but when
we go back to the pre-limiting stage, we get exactly the same hedging strategy. In either case,

the value of the resulting pre-limiting hedging strategy is

L™ = C(S),0) / Cs (S, u)dS{™
j(i \/1_ }”3 8 5 Cgg(ST, u)ds()
¥ / (T—u)gsw&,u)dsé")
Van Jo (14)

i L (" w Su _ﬁe—%(’%ﬂ)u
v/\n 0 GZSSL_) SO

x </ (iﬁ‘) e%<§+u>”dvgn> - Ko> dsim.
0 0

14




Therefore, as far as the squared error loss is concerned, the existence of the second deriva-
tive of the Black-Scholes price does not make any difference in the optimal hedging strategy.
Notice that the compound Poisson hedging strategy, L(™), that we obtained in this section is
determined uniquely for any given value of Kj.

The initial investment of the compound Poisson hedging portfolio is the Black-Scholes
price plus Ko/v/A,. By choosing a reasonable value of Ky, we determine the initial investment
of our hedging portfolio, and we can use the initial investment as the price of the option. Some

reasonable choices for Ky are suggested in Song [15].

5 Simulation

We did a simulation experiment with a European call option that is expired in 3 months. The
interest rate is assumed to be 0, the expected rate of return of the stock, u, is set to be 0.15 per
annum, and the volatility, o, is set to be 0.21 per annum. We tried the strike price K = $1000
and the initial stock price Sy = $950. We compared the performance of the Black-Scholes and
the compound Poisson hedging strategies by calculating the mean squares of hedging errors
(abbreviated by MSHE). Hedging error means the option payoff subtracted by the value of
the hedging portfolio at the expiration. For compound Poisson model, we used three different
jump intensities, A, = 1000, 10000, and 100000. )\, = 10000 means that we expect 10,000
jumps per year in the stock price on average. Larger A, implies that the stock is more heavily
traded. The hedging interval is .0001 years that is 52 minutes and 34 seconds. It means that
we rebalance the hedging portfolio every 52 minutes and 34 seconds. We choose Ky = 0, which
implies that the option price is the same as the Black-Scholes option price.

Any distribution with the moment condition given in (2) can be used as the jump
size distribution for the compound Poisson model. For example, N(0,0?) can be used as a
symmetric jump size distribution, and o — Exp(%) can be used as a left skewed jump size
distribution. We used o — Exp(i—) as the jump size distribution in the simulation experiment.
In this case, k3 = —202, and ky = 90%. The simulation size is 5,000, that is, the number of

generated sample paths is 5,000. The Black-Scholes initial price is $20.59, in this case.
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In general, both of the hedging strategies perform much better the bigger A, gets in terms
of the magnitude of MSHE, because the stock price process is getting closer to a geometric
Brownian Motion. The compound Poisson hedging has smaller MSHE than the Black-Scholes
hedging overall. It means that the value of the compound Poisson hedging portfolio at the
expiration time is closer to the payoff in the sense that the mean square of the difference is
smaller. We also compare densities of hedging errors in Figure 1. The compound Poisson
hedging error (dashed line) has less spread and is more symmetric than the Black-Scholes
hedging error (solid line). In other words, the compound Poisson hedging strategy makes the
distribution of hedging errors less biased as well as it makes the distribution less variable. The

MSHE reduction comes from both of the mean square part and the variance part.

Unconditional densities, left-skewed, nn=1000

0.10

oA — call-BS
I \‘ Ca”.se,mm
AR --- call-CP

density
0.06 0.08

0.04

0.02

0.0

-20 -10 0 10 20
error in dollars

Figure 1: Comparison of densities, left-skewed, A, = 1000
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Table 1: Mean squares of hedging errors, left skewed, unit=%2

An =1,000 | A, = 10,000 | A, = 100,000
call-BS 18.17397 2.44599 0.67068
call-CP 12.46278 1.75333 0.58495
reduction(BS vs. CP) 31.4% 28.3% 12.8%

6 Appendix

6.1 Proof of Theorem 3.1

From (6), .
1 k3

T T
Re= [ VudWu+ 5 [ 35.Cos(Suwdsu+ [ glSuu)du.
0 2Jo 0 0

We want to show that

T T
| o(Suudu= [ (7~ wgs(S.,0)ds..
0 0
Since the interest rate r is assumed to be 0, S is a martingale under P* and we can write
dS, = oS.dB,, (15)

where B* is a martingale under P*. If we let {F;} be an augmentation of the filtration {F"}
generated by B*, then fOT 9(Sy, u)du is Fr-measurable and finite almost surely. By Dudley’s
theorem, (Karatzas and Shreve [8], p.188 or Duffie [4], p.287) there exists a progressively
measurable process ¥ = {}7},}}; 0 <t < T} satisfying fOT f”}zdt < oo almost surely under P*

such that

T T _ T 1
/ g(Su,u)duz/ YudB;jz/ ¥, ——dS,. (16)
0 0 0

oSy
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Note that g(Sy,u) is a P*-martingale because S¥ Cép )(St, t) is a P*-martingale for any positive

integer p. Define ¢; to be E*(fOT 9(Sy,u)du | F¢). Then,

(= /Otg(Su,u)du + E* (/tTg(Su,u)du | 7—})

t T

— [ o(Suwdut [ B (o(Su ) | Foau an)
0 t
t

- /0 9(Su, w)du + (T — )g(Sh, 1).

On the other hand,

T
9(Su, w)du | ft)

1

Y,
Y58,

hc\

dSy | .7-})

Thus,

t
~ 1
<(,B” >t=/ Yy—d < S,B* >,

o1
=/Yu SaSudu

0 Ty

t ~
= / udu7
0

d
Y = — B* >, .
t dt<<’ t

and,

By the way, from (17),
d¢s = g(St, t)dt — g(Se, t)dt + (T — t)dg(Ss, t)
= (T —t)dg(S;, 1)

1
= (T — t)(gs(Ss, t)dS; + g4(Ss, t)dt + §g55(5t, t)o?S2dt).

Thus,

d
Y; = pn < (,B* >= (T —t)gs (S, t)o St (18)
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and this process is progressively measurable and satisfies fOT f’tzdt < oo almost surely. Com-

bining (16) and (18),

T T 1. T
Rr= [ YW+ [ 358,0ss(Suuas,+ [ (T -ugs(Su s
0 0 0

In case where the second derivative of Black-Scholes price exists at time T', by applying

Itd’s formula to fOT Y, dW,,, we get

~ T 1 [Tk T
0 0 0

Again, apply the Ité’s formula to Y; to obtain
dY; = d(% $2Css(S1,1))
1
= ¢1(S:Cs5(St, t) + 5530355(515, t))dSt
€1 g2 1 5 2 ~(4)

+ —2-—5,5 (Csst(St, t) + 50’ (2Cs5(St,t) + 45:Css55(St, t) + S CS (St,t)))dt.

On the other hand, we know from the Black-Scholes PDE,
1
—rC + Cy +1rS5Cs + 50252055 =0
where C is the Black-Scholes price. When r = 0,
1
Cy + 50252055 =0.
Thus,
32

1 1
557 (Ce + 50°5°Css) = Cssi+ 50°(2C0ss +45Csss + 5°CEY) = 0.

Therefore,

1
dY; = ¢1(8iCss(S1,1) + 55/ Csss (S, 1))dSt.
Now, Ry becomes

T
- - 1
Rr=YrWr - / Wu(SuCss(Sy,u) + 55’30555(5%“))61514
0

1 (7T ks T
-+ 5 _QSUCSS(SUaU)dSu + g(Su,u)du
0 O 0

N T - T
— VW + / B(Wa, Su)dS, + / 9(Su, w)du.
0 0

Combining (19) and previous arguments,

T T
Rp = YoWr + / B( W, Sa)dSe + / (T = w)gs(Su, u)dSy. O
0 0
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6.2 Proof of Theorems 3.2 and 3.3
Let Mt(n) be \/)_\;(C(Szgn),t) - Ht(n)) First, we want to show
T ~
M 2, / Y, dW,,,
0

where Ht(n) is defined as in (10). We will show this in the following three steps. For R§") =
VAR(C(S™M 1) - X,),

(i) (S, R F(SM)) N (S, R, f(S)) for any continuous function f,
(ii) ( n, [ F(S™)dsy — 2, (S, R, [ £(5)dS), for any continuous function f, and
(i) M 2 [Ty,aW,.
Proof.

(i) We know that (R™,S(™) converges to (R, S) weakly. By the continuous mapping the-

orem, for any continuous function f,
(8™, BR™, f(5™)) = (S, R, £(S)).

(i) S, RM, £(8™) are {]—"ts(")}—adapted, cadlag processes, and S is a semimartingale.

Since log S(™ follows (1),
(n) _ o) (n)

The first order optional and predictable variations of S are

Nt(n) Nt(n)

®], =30 A8 = 3" 8% (exp(2”) - 1)
=1 ¢ i=1 b

(n)

where 7, is the time of the sth jump of log S (n) and

< 8™ >.= E(exp(Z™) - 1) / S du
by the uniqueness of Doob-Meyer decomposition.(Karatzas and Shreve [8], p.24-25) Thus,

S = gim 4 a4 4@
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where M(™ is a martingale which is [S(] — < S > and A(™ is a finite variation

process which is < ™ >. Since M is a martingale, supE (M, (t)) = 0, and
n

_ supz An(E) - 4, HEZD))

n>17% 2n
= A, (t) — An(0)
¢
= E(exp(Z™) — 1) / S\, du,
0
because Ay, (t) is monotone. Since E(exp(Z™) —1) = pA;t 4+ O(A 3/2),

BT(A) = (u+ 00 [ explyu-+ 0072
0

and supE(T}(A4y)) < co. Thus, S satisfies the condition of the integrator in Theorem
n
2.7 in Kurtz and Protter [9] with 78 = T'V (a + 1). Therefore, (ii) is proved.
(ifi) By (i) and (i),
k
M = R — / (5255 Css(852, u) + (T = u)gs (S5, u))ds(
0

T
k
2, By — / (22 8,C55(Sur ) + (T = u)gs(Sy, 1))dS,
0
T ~
0

Secondly, when Csg is bounded and away from 0 and Cggg is defined almost surely, we
want to show
M Zs vrviy,
with Ht( n = = X¢ + \/—fo u_),S( ))dSi(L Moy \/“‘fo — u) gS(ngn), )dSl(L ), Assume the

following conditions.

’ ™ 152 4 S L () (2™
swp B [ {1Cas(2 IS + 30 5Cosa (8L (2%

+]z< n)| (I + o) (ST, w)X3/2 du < oo,

where ll(Sl(L"),u) = sup |3m2C’55(a:,u) + x30355(:1:,u)],
eesM+as(™
LSS ,u) = sup  |Clogs(x,u) — Ciogs(STY, u)],
zesMias™
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and
T
E / C26(5™, ) (™) du < oo. (21)
0
Subject to the above conditions, we need to show the following.
(i) (S™,RM, [ f(S ™)y 2, (S, R, [ 7(S)dR) for any continuous function f,
(i) (W, R, s™) 25 (1, R, ),

(iii) (WM, R, 50 [ f(W ™) §(m))g5(m) 2, (W,R, S, [ f(W,8)dS) for any continuous

function f, and
(iv) M 2 vy,
Proof.

(i) We know (8™, R(™) f(5(M)) 2, (S, R, £(S)) from the previous proof. By Itd’s formula

and Taylor expansion,
R = \/2n <0<s§ ) 1) - Xy)
/ Css(SS,u)(SE)2d(v/ n[log S, Tog S™), — o))
Vs / (B2 Css(24, 0
+ (Z{")?Css5(4{,u)}dllog S, log S™, log S™],,
+ 2V [ (Clg (27,00 = Crgs(52 )
x d[log $™,log S log ™1,
—Z Vo / Ciog s(SE, w)dllog S, - ,log ST,

where |Zt(n) - S§")| < |ASt(n)|, and [logS™, ... log §™)]” is the vth order optional

variation of log S™. Let us divide R™ into two parts, the local martingale M, and the
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adapted, finite variation process A,. Then,

( n)y2 1 __l 2,2
/c S, (S =l = o P
+ 3'\/ / {3 n) 055 Z(n )
+< Z{M)} Cs55(ZM,u)}d[log S, log §™),log S,

+ :9)“1 V /\n/ (ClogS(Zl(Ln)aU) - C}ogs(Sz(LTi),u))
: 0

% d[log ™ log $™), log $™u,
- Z VA / Clog 5(ST™, w)d[log S™, - -, log SM]2,

and
/05 ™ 0812 /X,
x d([log S™, log 5™, — < log S log S >,).

A, is a finite variation process by Theorem I1.17(p.54) and Corollary I1.1(p.60) in Prot-
ter [13]. By Corollary 11.3(p.66) in Protter [13], the local martingale M, is a martingale

because
E([M,, My,];) = —E/ (Css(S™ u)2(sMy4x,
x d[log S™,log S™ log $™, log ™)),
— 1 ! C S(n S( Z(n 4 (n)
= ( 55(Sy s 1)) (Sy2 ) wim) PN
=—E/ (Css(S u_ (S( )) /\Z(Z(n()n))‘idu
< 17 [ ©sss s 270,
T
= 3 (ka+ o(1) / B(Cs5(S™, u))2(S) ) du < oo,

0

by the assumption (21). Therefore,

S%pE(Mn (t)) =0. (22)
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The total variation of A, on [0,1] is

= sup Z IAn, An,‘(’;;l) |

n>1
(- %02)2
AV
o0}
VAn
* Z vl

T
/0 1Css(S™, w)[(5™)2du

T
/ IclogS(SfZi)au)(Zj(:()n))vlsz(Ln)

x/—n

ETRA (11(55"), u) + (S, u)| 2¢ (n)l3dN(”

where 11 (S{,u) = sup  |322Css(z,u) + 23Csgs(z, u)),
zessM+as)

12(S) ) = sup  |Clogs(z,u) — OlogS(Sz(Zi)au”'
zesMEasi

Thus,

____2_0

E(Ty(Ay)) < / 1Cs5(8), w)|(S)2du

o0 3/2

on (n) v
DI [ Cuoes 52,020, i
132

T
+ 2 [ (S ) + (S, )| 20, P
! 0
By the assumption (20),
supE(Ti(Ap)) < oo. (23)

Combining (22) and (23), we can see that R(™ satisfies the conditions of the integrator

in Theorem 2.7 in Kurtz and Protter [9] with 78 = T'V (e + 1). Therefore,

/ F(S™)dRM™y 2, (s, R, / F(S)dR).

(ii) For continuous functions fi, fo, and fs,

t t t
) — / £4(S5)dR™ + / f2(85)dst + / £3(55)du
0 0 0
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We know that (S™, R(M) f,(5M), N, [ f1(STHARM, [ £2(S1)dS(M)) converges
weakly to (S, R, f1(S), f2(5), [ f1(S dR,ffg(S)dS). Since f3(5) is continuous, by Propo-

sition VI.1.17 in Jacod and Shiryaev [7] and the continuous mapping theorem,

(W™, R, sy 2, (W, R, S).

(iii) By Theorem 2.7 in Kurtz and Protter [9],
(W n), g / FOV ™, gmgsmy 2y (W R, S, / FOW, 8)dS)
for any continuous f.
(iv) By (i), (ii), and (iii),
M = RYY - /0 LT, 80+ (T — wygs (8, u)asg

2) Rr — /T(h’(WUa Su) + (T - U)QS(SU>U))dSu
0

= YTWT. O

Now, for theorem 3.3, we want to show the joint convergence of (M}n) ,K(™). Since we
assume that 6(™ converges in distribution to 6 jointly with S (") and R™), the convergence is
trivial from the proof of the theorem 3.2. In case where My = YoWo, we need the assumptions

(20) and (21). O
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