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ABSTRACT

Profiling of specific groups has become a contentious issue in the after-
math of the tragic events of September 11,2001. We present a formal math-
ematical enquiry into the pragmatism of profiling. We do so by presenting
two mathematical models, and also by a decision theory formulation. The
first approach is less formal. We find several potentially controversial results
from this mathematical analysis. Three main conclusions are drawn. The se-
riousness of a particular unlawful intent is a more important factor than the
prevalence of the intent. If a certain intent has serious negative consequences,
then a significant amount of screening appears to be justified and further-
more there is an optimal amount of screening that is surprisingly stable with
respect to the other parameters of the model. And, when the consequences
are very serious, and the screening technology is reliable, a complete 100%

screening is optimal.

Certain classic mathematical facts on the theory of polynomials are used
in deriving some of the results. The results are also complemented by graphs
and tables for quick comprehension. Although the analysis is a formalism, it

is intended to serve as a guide in this controversial issue in our public policy.



1 Introduction

Profiling of specific groups of individuals has been done by law enforcement
agencies for a long time, although its morality and effectiveness have become
very much a part of the public debate since the tragic events of September
11, 2001. Profiling used to be a tool principally for enforcement of drug laws,
but is now being used by law enforcement for protection against terrorist
activities as well. The sentiments for and against the practice of profiling are
stubbornly strong. Individuals and groups, typically minorities in some sense,
affected by profiling are very understandably against profiling. It obviously
causes many innocent individuals not just an inconvenience, but anguish,
and loss of dignity. On the other hand, law enforcement feels that profiling
is a useful tool , a necessary evil, that they should not be asked to dispense
with, for it saves the society from risks of greater evils. Profiling, clearly,
has become a contentious issue, perhaps a terrible choice between morality
and pragmatism. Morality, by and large, is a question outside the domain
of science. But is it possible to enquire into the pragmatism of profiling in
a scientific way 7 Does mathematics have something useful to say about the

pragmatism of profiling ? This is the question we address in this article.

A moment’s reflection shows that it really is a question about proper in-
terpretation of conditional probabilities. Let us try to understand through
an example. Suppose presence of a certain intent (typically a criminal in-
tent) X is called event A; an example would be the intention to commit an
act of violence. And suppose satisfying a certain profile is called event B;
an example would be being an individual of a specific ethnic group. From
our life experience, as a matter of fact, we know that presence of intent X is

more common among individuals of profile Y; i.e., the conditional probability



P(B|A) is believed to be high. However, singling out individuals of profile
Y is pragmatic or justified if the reverse conditional probability P(A|B) is
also adequately high. Unconsciously, we sometimes use one as a proxy for the
other. This is obviously an error of interpretation unless we can demonstrate
that in certain situations, a large value of P(B|A) would imply a correspond-
ingly large value for P(A|B) as well. Thus, the quantity to be analyzed is the
ratio P(A|B)/P(B|A). One purpose of this article is to analyze this ratio

through a mathematical model, and by use of Bayes’ theorem.

But let us probe this a bit deeper. Common sense says that profiling could
be pragmatic even if P(A|B) is small, if the consequence of not detecting
an individual with the stated intent is serious. On the other hand, screen-
ing does take resources, manpower, and time. So reckless profiling causing
loss of resources, without a corresponding reduction in risk, cannot be very
pragmatic either. So as a matter of public policy, we cannot look into even
the pragmatism of profiling, leaving morality alone, without consideration of
the risks associated with not detecting a person of an unsocial intent, and

the resources needed for screening and profiling.

And we have to consider something else. Let us take an example. Sup-
pose, for argument’s sake, that terrorist groups got so sophisticated that
available screening methods could not detect terrorist paraphernalia, for ex-
ample, bombs or other explosive devices. Then, as:a matter of pragmatism,
profile based screening would evidently be useless. Screening would not de-
tect a person intending to commit a crime. Then what is the use of screening
? Thus, we not only need to consider the question of risks and costs, but
also the efficiency of the screening procedures, i.e., the probability that our
screening methods will actually detect an individual with a criminal intent.

To put it all together, whether profiling is a pragmatic thing to do is a de-



cision problem. Indeed, we will approach it as a decision problem. This is a

second purpose of this article.

For the benefit of the reader more interested in the conclusions rather
than the mathematics, we give a summary of our findings. The findings are

quite interesting. We find that

(1) If the cost (consequence) of failing to detect a person of criminal in-
tent is much higher than the cost (say in dollars) of screening an innocent
individual, then under reasonable variations of the mathematical model, sig-
nificant screening is pragmatically justified (see Table 2 following Theorem
3).

(2) Moreover, there is something like an optimum screening fraction. For
example, the optimum screening fraction could be 40%. The meaning is
that 40% of individuals satisfying the stated profile Y should be screened,
and quite interestingly, this optimum screening fraction is rather robust with

respect to the parameters of the mathematical model.

(3) A main conclusion of our analysis is that the seriousness of the stated
intent is a more important factor in screening decisions than how prevalent

the intent is (see Theorem 3 and the discussion following Example 1).

(4) Treating the two conditional probabilities P(B|A) and P(A|B) as ran-
dom variables, the distribution of the ratio P(A|B)/P(B|A) typically has a
very long right tail. The implication is that if indeed P(B|A) is large, as our
life experience might try to tell us, then a large value of P(A|B) cannot be
ruled out, and in fact P(B|A) and P(A|B) would be of comparable magni-
tude, under reasonable variations of our mathematical model (see Corollary
2, Table 1 and the discussion following Table 1).



(5) If the consequences of the particular intent are very serious, and if
screening technology can be trusted, then 100% screening is optimal (see
Theorem 4).

A point of technical interest is worth mentioning. In the final section
we have stated the sufficient conditions under which 100% screening is rec-
ommended. The point of technical interest is that certain classical facts
about characterization of nonnegative polynomials and a classic inequality
of Markov on the supnorm of derivatives of polynomials are used in deriving
these sufficient conditions. Considering the current public appeal of the is-
sue, we have deliberately attempted to present our findings with many graphs
and tables. We hope we have conducted an imprejudiced and useful enquiry

into this important issue of our public policy.

2 Notation and Mathematical Model

First we describe the notation used in the rest of the article. The models

would be described next. The following notation would be used :
A = Presence of a specific unlawful intent X;
B = Having a specific profile Y/

P(A|B) = The conditional probability of A given B; P(B|A) = The
conditional probability of B given A;

A= E(P(A|B));

(NOTE : The meaning is that we are going to have a formal distribution

for P(A|B) to reflect our beliefs, and A is the expected value under that



distribution (the prior).)
p = Fraction of individuals of profile Y to get screened:

f(p) = Probability that screening fails to detect an individual with an

unlawful intent;

(NOTE: this probablity is allowed to depend on the screening fraction
p because the screeners are likely to make more errors if more individuals
are screened. Thus,f(p) is likely to be an increasing function of p; see thé

subsequent sections for further details.)
N; = Cost of screening an innocent individual;
N, = Cost of failing to detect an individual with an unlawful intent;

(NOTE : In practice, assigning a real dollar value to N, would be dif-
ficult. Thus we can only make qualitative judgements, rather than precise

judgements.)

2.1 The Mathematical Model

Two different probability models will be presented and analyzed. The basis
for both models is Bayes’ Theorem which says that

. P(B|A)P(A)
P(A|B) = P(B]A)P(A)I-i-P(](BIAC)P(AC)
o PA41B) _ P(4)

P(B[A) — P(B)"

P(A|B)
P(B|A)

ability distribution to (P(A), P(B)); in the other model, we study P(A|B)

Under one model, we study the ratio by assigning a joint prob-



directly by assigning a joint probability distribution to (P(A), P(B|A)). The
details are given a bit later. But Bayes’ theorem is the basis for the analysis

under each model.

2.1.1 Model 1

First, we should mention that distributions for P(A), P(B) are at all needed
because we will not have precise information about what percentage of the
population have the specific criminal intent or satisfy the specific profile. We
will have to build a distribution from imprecise knowledge. Note, however,
that certain intents may be very very rare, and others more common. For
example, drug law violation is certainly much more common than wanting
to commit terrorist acts. Thus, the distributions for P(A), P(B) would have

to be selected with care and caution.

Under our first model, we denote P(A) = X, P(B) =Y, and let (X,Y)
have a joint bivariate Beta density in the unit square [0,1] x [0,1]. The

bivariate beta density is defined as follows :
flz,y) = ez 711 — g)fr-tyea (1 — y)fat
(L4 Mo — £25)(y — 222)),

(2.1)

where A is any number in the interval [—1, 1], and c is the constant

¢ = D(ar + Bu)l (a2 + B2) /(D) T (B1)T (02)T(B2))-
(2.2)

This is indeed a density function, and furthermore the marginal densi-



ties are Beta(ay,8:) and Beta(as, 52), respectively. However, X and Y are
not independent. It was important that we did not use a model in which
P(A), P(B) are independent because it is likely that there is some correla-
tion between the two. The correlation can be adjusted by playing with the
parameter A. Indeed, the correlation is equal to Agyo,, where oy, oy are the
standard deviations of X, Y. See Sarmanov(1966) for further information on

this version of the bivariate beta density.

2.1.2 Model I1

Under our second model, we assume that P(B|A) is known to us, and as-
sume a joint distribution on (P(A), P(B|A%)). Denoting P(A°) = X, and
P(B|A¢) = Y, Bayes’ theorem produces a distribution for P(A|B) by the
identity

0(1—X
P(A|B) = 9(1—§<)+;<y»

where 6 denotes the known value for P(B|A). Note that there are prob-
ably certain problems in which P(B|A) is indeed known in the sense certain
activities are believed to be committed by a specific subgroup of the popu-
lation which would be the profile Y.

It seems reasonable to assume independent Beta densities for X and
Y (because one is a marginal and the other a conditional, and there is no

obvious reason that one should affect the other). Thus, under model II,

X ~ Beta(oy, 1) and Y ~ Beta(as, f2), X,Y independent.



3 Analysis under Model I
Theorem 1 Let (X,Y) 2 (P(A), P(B)) have the bivariate Beta density
defined above. Let F(a,b; ¢; z) denote the Hypergeometric  F} function, and
pr = aq/(0q + Br), 2 = aa/(as + B2). Then the density h(u) of U = igg‘i%

is given by the following (complicated) formula :

Foru <1, h(u) = c[(1+Apyp2)u® 71T (ar+02)0(Bs) /Ty +an+B2) F oy +
s, 1~ Bryon + oy + Bosu) + Au* T oy + ap + 2)T(B2)/T(ar + ag + Bo +
2)F(oq+op+2,1—fy; a1 +as+Pa+2;u) — Apau® T +ag -+ 1)T(B:) /T (o +
ay+Bo+1)F(og +az+ 1,1 —=fFr;01 +ar+ Fo+ 1 u) — Au® T ag + o +
DL(B2) /Ty +az + Po+ 1) Flay +az + 1,1 — Bi;a1 + g + Be + 1;u)];

(3.1)

For u > 1,h(u) = c[(1 + Ape)u™® (o + a2)T(By)/T{ay + ag +
B1)F(ag+ag,1—fa; a1 +as+Fi; 1/u) + w230 a; + ag + 2)T(B1) /T (0 +
ay+ B+ 2)Flag+ s+ 2,1 —foy;0q +az+ 1 + 2, 1/u) — Apau™ (g +
ay +1)I(B1) [T +az + i+ 1) Flan+az+1,1 = fo; a1 +ag+ B+ 1; 1 /u) —
Apu 2?2 (o + oo+ DB /T (o +aa + B + 1) Fay +os +1,1 — B 04 +
oy + fr + 15 1/u)).

(3-2)

Proof : There is not much point in showing the calculation in detail. The

main steps are as follows :

(i) For a given joint density f(z,y) in the unit square [0,1] x [0, 1], by
a standard jacobian calculation, the density of U = % is given by h(u) =
fomm(l/u’l) vf(uv, v)dv.



(ii) Use now the explicit form of the bivariate Beta density f(z,vy) and
break up (z — p1)(y — p2) as Ty — poT — Yy + papta.

(iii) Use the following two integration formulas :
(a) fyv* 11 —v)* (1 — uv)*ldv
=I'(a)I'(b)/T(a +b)F(a,1 — ¢;a + b;u);
(3.3)
(b) fi™ ve1(1 — v)P 11 — wv)*tdu
= I‘(a)F(c)/F(a +c)F(a,1 —bja+c¢ 1/uju™?

(3.4)
(see Gradshteyn and Ryzhik(1980)).

(iv) Integrate each of the four terms obtained from splitting apart v f (uv, v)
as indicated in (ii) by using the integration formulas in (iii), separately for

v <1 and u > 1, and then put the four terms back together again.

Discussion It could be of interest to see the form of the density function

h(u) of the ratio £(A5) and to observe the behavior of the expected value

P(B|A)’
of %%%% under our bivariate Beta model.

The next two graphs plot the density function of U = %’—;{% and its
expected value when the parameters oy, ay are taken to be 1, and the pa-
rameters [, 32 are allowed to vary. The reason for taking «y, s to be 1
is that then the marginal densities of P(A), P(B) are monotone decreasing.
This is quite important in some applications in our context. If the specific

criminal intent X as well as the specific profile Y are RARFE, then we should

10



reasonably formulate the densities of P(A), P(B) to be decreasing. The pa-
rameters B, s should depend on how rare the traits are. For example, if

they occur one in hundred times, then f;, 85 should be roughly 100 each.

The most striking observations from these two pictures are the following.
The density function of %—%’l% has a long right tail but is insensitive to the
common value of the 8 parameters as we can see from the superimposed
plots. They look virtually identical. The other obvious feature from the plot
of the expected value of g—%‘l% is that it settles down to an asymptoete, a
bit larger than 2, rather quickly, and like the density function, the effect of
the B parameters is limited. Note also that the asymptote is just about 2.
Loosely speaking, this means that P(A|B) would not differ from its dual,
namely, P(B|A), by a factor too much larger than 2. The plot would thus
suggest that, on the average, the two conditionals are of roughly the same
magnitude, a positive and pleasant property. Recall that this is exactly the
kind of information we want in making the inference that P(A|B) is large
if P(B|A) is large. Model I and its analysis have provided us with some

tangible and useful conclusions.

11



Density of U = P(A|B)/P(B|A) when )\: 1, o :e(1 = l,ﬁ :% = 20 (100)
1_

Plot of E[P(A|B)/P(B|A)] when ) = 1o =of, =1 andm=n

20 40 60 80 100
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4 Analysis under Model 11

In the second model, we take P(B|A) to be known. We assign a probabil-
ity distribution to (P(A), P(B|A®)), and use Bayes’ theorem to produce a
distribution for P(A|B).

Theorem 2 Let P(B|A) = 6 (known) and let (X,Y) e (P(A%), P(B|A9))
be independently distributed as Beta(ay, 01), Beta(as, B2), respectively. Then
the density of Z = P(A|B) is given by

h(z) = 71T (aq + B1)T (a2 + B1)T (a2 + B2) /(T ()T () T(B1)T (s + By +
Ba2)) %

zﬂ‘_lF(az + Bi, a1 + B a0 + By + B ~nrf:)/(1 - Z)ﬁlJrl)
(4.1)
where n = é.

Proof : It is more convenient to outline the steps for the case of gen-
eral densitiesf(z), g(y) for X,Y. Suppose then X,Y are independent ran-
dom variables taking values in [0, 1], with densities f(z), g(y). Denote U =
2% W =UY, and Z = ; +117W. With this notation, the conditional proba-
bility P(A|B), from Bayes’ theorem, is just Z. The steps are as follows. We

omit the details of these steps.
(i) The joint density of (U,Y) is f(35)9(y)/(1 +u)?u > 0,0 <y < L.

(ii) Therefore, the joint density of (W,Y) is Y9 f(35)/(w + y)*w >
0,0<y<1.

13



(iii) On integrating y out, the marginal density of W is f yg(y)f(wLﬂ/)/(w%-
y)’dy.

(iv) Hence, the density of Z = qi is

1 Jy y9(W) f (7o) /(L — 2 + nzy)*dy.

(v) This is the general case. In the special case when f and g are den-
sities of Beta(ay, 1), Beta(as, B2), respectively, the aforementioned integral
in step (iv), fortunately, can be done in closed form, and that closed form

expression is the formula stated in the theorem.

Corollary 1 Suppose P(A®), P(B|A®) are independent Beta(m, 1), Beta(1,n)
distributed. Then the density of Z = P(A|B) is

h(z) = n—’—"-’Z—HF(Z,m-{— 1;n+2; —nlfz)/(l — 2)2.

Remark The densities in Corollary 1 have the following motivation. Con-
sider the case when having the intent X as well as the profile Y are rare.
Then P(A) is going to be small, and so it is prudent to assign it a decreasing
density, or equivalently to assign P(A€) an increasing density. The particular
Beta(m, 1) density does that. Likewise, if intent X is rare, then P(B|A°)
should be more or less the same as the unconditional probability P(B). But
if profile Y is also rare, then P(B) would be small, and hence the decreasing

Beta(1,n) density is a good one to use in such a case.

The next two results give the expectation of Z and the effect of the value

of 6 on the expectation of Z.

Corollary 2 Under the density in Corollary 1,

14



()E(Z) = %033(9 | {1,n + 1}, {1,1,m}), where G;* denotes the

Meijer-G function;
(b) HE(Z) = 3G34(0]{0,1,n +1},{1,1,m,1}).

Proof of Corollary 2: From direct integration of zA(z), one has that
B(Z) = RoimGaa® [ {0,L,n+1},{1,1,m,0}) = BEERGE3(0 | {1,n +

— (n+D)m! T (n+Lm!
1}, {1,1,m}), by an identity on the Meijer-G function ( see, e.g., Mathai(1993)).
The stated form is a bit simpler computationally than the direct form from in-
tegration of zh(z). For part(b), use the identity HG™™(6 | {ai, as, ..., ap}, {b1,ba,...,b}) =

%G;’ﬁ:’éilw | {0,a1,as,...,05}, {b1,bs,...,b,, 1}) (again, see Mathai(1993)).

Let us use Corollary 2 to see some values of E(P(A|B)) for selected values

of #, m, and n.
Table 1 : E(P(A|B)) :m=n=20
#=P(BJA) 1 25 5 .75 9
E(P(A|B)) .18 29 39 .46 .49

Thus, for smaller values of §, E(P(A|B)) is larger than P(B|A), while
the contrary is true for larger values of 6. But, in all cases, they are within
a factor of 2 of each other. They are of comparable magnitude. This is an

important finding.

From part (b) of Corollary 2, the effect of  on E(P(A|B)) can be worked
out. We found that the derivatives are small for large 6, but large for small

0. Thus, the effect of 8 is variable.

Again, it could be interesting to see the shape of the density of P(A|B)

15



in some trial cases. It would also be worth asking what is the influence of the
assumption that P(B|A) is known; i.e., how much is the density influenced by
the exact value of § = P(B|A). The graph below plots the survival function
of Z = P(A|B) for § =1 and 6 = %, when m = 100 and n = 20. Thus, the
particular criminal intent is supposed to be more rare than the particular

profile, because m is much larger than n.

What do we see in the plot that is worth noting ? The value of 6 has
some effect, clearly. But the general shape of the two survival curves are
very similar. Moreover, large values of Z = P(A|B) are not unlikely. From
the plot, we see that under each curve, P(Z > .05) is between 50 to 90%,
P(Z > .2) is between 25 to 50%, and P(Z > .5) is between 10 to 25%. What
are we to make of these numbers 7 If the particular criminal intent X is a
dangerous one (rather than being just self-destructive), then these values for
P(Z > z) are probably to be regarded as high. .In other words, going back
to the issue of whether it is valid to conclude that P(A|B) is seriously large
by knowing that P(B|A) is large, the conclusion could be that such a leap is
at least partially justified. In this regard, what we find by analyzing Model
IT is consistent with our findings from Model I. We will give a more formal

decision theoretic treatment of this question in the next section.
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Plot of P{Z » z) when m = 100, n =20, and p = 1, .33

5 The Optimal Screening Fraction

In this section, we intend to study the question of an optimal screening
fraction, formulating it as a decision problem. We must mention at the outset
that we surely do not mean that the optimal screening fraction is a number to
be religiously used! Rather, the purpose is to study the question of how much
screening to do from a broad qualitative viewpoint. The optimal screening
fraction should provide some general and useful guidelines about the extent
of screening that would be advised in a given context. The context would
dictate the various factors that go into.determining the optimal amount of
screening. Putting the various relevant factors together, we have a decision
problem. The calculation, although a formalism, is supposed to be a guide,

rather than a strict prescription.

17



The various factors relevant in this calculation were introduced in section

2. Putting them together, we introduce the loss function
L = L(f, Ny, N2, p) = N1 P(A°| B)p+ N2 P(A|B) (1 —p) + N2 P(A|B)pf (p)-
(5-1)
Recalling that £(P(A|B)) = A, we seek to minimize the risk :
R = R(f, N1, N2, p) = (N1 (1 — A) — NoA)p + Nodpf(p) + No.
(5.2)

The next result characterizes the optimal value of p, i.e., the optimal

screening fraction. Some illustrative examples follow this result.

Before stating the theorem, we will give a brief motivation for the assump-
tions we make on the function f(p), the rate of error in screening individuals.
As the screening fraction goes up, we can expect that the error rate goes up
too, due to human fatigue, and lack of sufficient time to properly screen
someone. 50 we can expect f to be an increasing function of p. If f were
a constant, pf(p) would be linear and so convex; but if f is not a constant,
and grows, say according to some positive power of p, then pf(p) would be
strictly convex. We assume f to be increasing and pf(p) to be strictly convex

in our next theorem.

Theorem 3 Suppose the function f(.) is defined and nondecreasing ,and
once continuously differentiable on all of [0, c0) and assume z f(z) is strictly

convex.

(a) The optimal screening fraction minimizing R is the unique root of

18



the equation f(p) +pf'(p) =1 — Nﬁ;x)} if a root py exists and belongs to

the interval {0, 1]. If py is outside of the interval [0, 1], the optimal screening
fraction is one of the boundary values 0,1, whichever is closer to the root py.
If a root of f(p) +pf'(p) =1— M‘NE;AA—) does not exist, then also the optimal

. . , N (1—
screening fraction is one of 0,1, according as ——‘1% > or < 1;

(b) Let p* denote the unique root of f(p) + pf'(p) = 1. Then py — p* if

%l — 0, provided the roots exist;
2

(c) If f is twice differentiable, then

e Ni(1=N) 1 Ny
Po=P" = Tix e e +O(m)

Proof: For the proof of part (a), first note that the equation f(p) +
Ni(1—A : .

pf'p) =1 - _lz(vlox—) has at most one root due to the strict convexity of

pf(p). If a root py exists and belongs to the interval [0, 1], it minimizes the

risk R as §F = Ni(1 — A) = NoA + NoA(f(p) + pf'(p))- If a root py exists
but lies outside [0,1], from convexity considerations, the fraction minimizing
R is 0 or 1, whichever one is closer to the root pg. If a root py does not exist,
then R is monotone, increasing or decreasing, according as Ni(1 — A) > or

< N3, and hence the fraction minimizing R is again 0 or 1.

For part (b), use the fact that if a function g is one-to-one and continuous,
if g(zn) = Yn,¥n — y,9(z) = y, then z, — z. Now identify g with the
function f(p) + pf'(p) and use the strict convexity of pf(p).

Part (c) follows from a Taylor expansion of the function f(p) + pf'(p)

around p* at p = pg.

Example 1 We illustrate Theorem 3 by this example.
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Let f(p) be the slowly increasing function log(1 + p). For this choice of
the error rate in screening, the error probability increases from zero at no
screening to about 70% at 100% screening. Let us study the optimal screening

fraction by varying the parameters N;, No. We consider six different values

of £, namely, %f = .25,1,10, 100, 1000, 10000, and three different values
of A = F(P(A|B)), namely, A = .01,.1,.3.. For example, the value %—: =

.25 represents a case where the criminal intent is supposedly benign, .and
the consequence of not detecting a person with the intent is small. On the
other hand, the value 10,000 represents a case where the consequences are
very serious. Similarly, the value of A reflects the prevalentness of the said
intent. By selecting a range of values for -11% and A, we wish to qualitatively
study how the optimal screening fraction would vary with the seriousness

and prevalence of the criminal intent.
Application of Theorem 3 results in the following table :
Table 2: Optimal Screening Fraction

e A=01 A=.1 A=23

Ny

.25 0 0 0
1 0 0 0
10 0 052 525
100 .005 .666 137
1000 656 733 761
10000 792 762 763
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Discussion The most interesting things to learn from this Table are the

following :

(1) The optimal screening proportion is very stable, almost independently
of the value of A, when %—f 1s large. This stable value is just the manifestation
of part (b) of our Theorem 3. It is the value p* discussed in Theorem 3. Thus,
if the criminal intent is of such a type that failure to detect it has serious
consequences, then significant amount of screening seems to be a good idea,
regardless of how prevalent the intent is. This is our finding, even if it is
likely to be controversial, and open to questions, because we have certainly
not done a comprehensive study. For example, the function f(p) has NOT

been varied in this example. But see the pictures below.

(i1) If the criminal intent is of a rather benign variety, then screening does
not make much pragmatic sense as we see from the zero values in the above
Table. But screening can still make a lot of moral sense. However, we do

not go into that issue.

(iii) The only situation where A, i.e., the prevalence of the intent makes a
difference is when the consequences of the intent are neither too benign nor
too serious, as we can see, e.g., when 1—’% = 10. It is thus very interesting to
see that the seriousness of the intent is more important than prevalence of
the intent in deciding how much to screen. We believe this is an important

conclusion.

The next two pictures plot the optimal screening fraction for two different
choices of f(p), namely, f(p) = log(l + p), and p'/®. Note that the first
is a function of slow variation, while the second is a function of regular

variation. The pictures support the main phenomena (i) - (iii) we discussed
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above. For example, take the case when f(p) = p'/® and %—f = 10000.
Then, almost regardless of the value of A, the optimal screening fraction is
about 40%. Of course, the suggestion is not that we are to follow a 40%
rule or a 75% rule strictly. The suggestion in broad terms is to conduct
significant screening whenever the behavior in consideration has very serious

consequences, without much regard to how rare the behavior is.

Optimal Screening Fraction as a function of 'E[P(A|B)] when Nﬁ/NI = 100(10,000}), f£{(p) = log(l+p)
0l 10000
ioo
0.7
0.65}|
0.6
0.55 ¢
1 s 1 L lambda
4 0.6 0.8 1
i
Optimal Screening Fraction as a function of E[P(A|B)] when N2/N‘= 100(10,000), f(p) = 9/3
0.4 r 10000
0.3
0.2 -
0.1
* lambd
0.2 0.4 0.6 0.8 1 a
-0.1
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6 Conditions when 100% Screening is Rec-

ommended

In this final section, we give a set of conditions under which 100% screening
is recommended. We do need to again emphasize that this is a formalism
in the sense most mathematical results are formalisms. But the conditions
are intended to serve as a guide for situations when 100% or close to 100%
screening would be recommended. The result, rather interestingly, uses an
old classic inequality about variations of polynomials. The spirit of the result,
as one may well anticipate, is that if the consequence of failing to detect
an individual with the stated intent is serious, and if screening methods

themselves are reliable, then one should go for 100% screening.

Theorem 4 Suppose the screening error rate f(p) is a polynomial func-
tion of some degree n. Suppose moreover that f is nondecreasing and that
flleo = supocp<if(p) = F(1) < 5y, where § = 1 — 2U=Y . Then the

20?41
optimal screening fraction equals 1.

First let us illustrate this result for the case when f(p) is a cubic polyno-

mial.

Example 2 Let f(p) = ag+aip+azp® +azp®. Then f(p) is increasing iff
the derivative f'(p) = a; + 2asp + 3aszp* > 0Vp € [0,1]. Now, another classic
result about polynomials says that an even degree polynomial is nonnegative
on [0,1] iff it is of the form P?(p) + p(1 — p)Q?(p)(see, e.g., Szego(1975)).
Because the derivative f'(p) is of degree 2 in this example, P is a linear
polynomial, and @ is a constant. A little bit of manipulation then shows
that f'(p) > 0¥p € [0, 1] iff :
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a; > 0,a1 + 2as + 3as > 0,a; + as > (/ay(a; + 2ay + 3asz), and ay + as +

%0,3 Z al(al + 2a2 + 30,3).
(6.1)

Since f(p) is nondecreasing, ||f|lc = f(1) = ag + a1 + a2 +az. Therefore,
Theorem 4 says that if the error rate f(p) is a cubic polynomial ag + a1p +

asp? + asp® with any coefficients satisfying these five conditions :

ay 2 O,dl +2a2+3a3 Z O,a1 +a2 _>_ al(al + 2&2 +3a3),a1 +a2+ %a3 Z

\/al(al + 2ay + 3as3), and ap +ay + a3 + a3 < %, then the optiinal screening
fraction is 100%.

Similar examples can be worked out when f(p) is a quartic or a quadratic.

We will now sketch the proof of Theorem 4. |

Proof of Theorem 4: Denote f(p) + pf'(p) by g(p). The theorem will
be proved if we show that ||gllcc < 6. The proof uses the classic Markov

inequality that for a polynomial g of degree n on an interval [a,d], ||¢']|co <
20 ||g||oo (see, e.g., Bullen(1998)). Therefore, if ||f||oo < 57a75, then,

= 2n2+1 ]

lalloo < 1 flloo+11f e (by the triangular inequality) < ||f]|oo+27%|| f]loo
(by Markov’s inequality) = (2n* + 1)||f|le < 9, proving the assertion made

in the statement of Theorem 4.

An examination of the proof shows that we did not use the assumption

that f is increasing. But in practice it should hold.
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