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ABSTRACT

We define a notion of approximate sufficiency and approximate ancil-
larity and show that such statistics are approximately independent pointwise
under each value of the parameter, or in an average sense. We do so without
mentioning the somewhat nonintuitive concept of completeness, thus pro-
viding a more transparent version of Basu’s theorem. Some use of Poincaré

inequalities is made in proving these results.

We also show some new types of applications of Basu’s theorem
in the theory of probability. The applications are to showing that large
classes of random variables are infinitely divisible, and that others admit a
decomposition in the form Y Z, where Y is infinitely divisible, Z is not, both

are nondegenerate, and Y and Z are independent.

These applications indicate that the possible spectrum of applications of

Basu’s theorem is much broader than has been realized.



1 Introduction

It has been nearly half a century that Basu(1955) proved what
has turned out to be one of the most well known theorems of basic statistical
theory. Popularly known as Basu’s theorem, his result says that a boundedly
complete and sufficient statistic is independent of an ancillary statistic under
all values of the parameter. Although Basu’s theorem is discussed in many
texts, a particularly comprehensive and delightful review with many types
of applications is given in Ghosh(2001). The purpose of this article is to
examine Basu’s theorem in certain new ways and to offer a collection of
new and probably even surprising applications of Basu’s theorem. We also
show that there are certain technical connections between Basu’s theorem
and Poincaré inequalities in analysis and partial differential equations.

The statistical intuition in Basu’s theorem is that a statistic which cap-
tures all the information in a sample on an unknown parameter and another
which captures none should provide no information about each other, and
thus should be independent. The condition of completeness is in a way a
necessary technical evil; one fails to see the intuition of requiring complete-
- ness; see, however, Lehmann(1981) and Ghosh(2001). It therefore seems
natural to ask whether a sufficient statistic and an ancillary statistic would
be ‘nearly’ independent anyway, in some well formulated sense. We ask, in
fact, a slightly more general question : is it the case that an approximately
sufficient statistic and an approximately ancillary statistic are approximately
independent under all values of the parameter ? Of course, approximate suf-
ficiency and ancillarity would have to be defined; but that is what we show
in a certain formulation of these two concepts and here is where the use of
Poincaré inequalities of analysis is made. Basu’s theorem itself follows as a

consequence of our results when the extra condition of completeness is added



in. Viewed in this manner, we think, the real intuition of Basu’s theorem
comes through in a more satisfactory manner because we can establish the
‘near independence’ without the somewhat abstract condition of complete-
ness. Section 2 describes these new formulations of Basu’s theorem.

It is well known that although Basu’s theorem is a theorem in statistical
inference, it can be used to find easy solutions of distributional questions
in probability. Ghosh(2001) gives many examples of applications of Basu’s
theorem in deriving joint distributions of random variables bypassing heavy
calculations that would be needed in a direct attack. However, we give some
entirely new types of applications. We show that a wide variety of random
variables are infinitely divisible by simultaneous use of Basu’s theorem and an
extended version of the well known Goldie-Steutel law of infinite divisibility
(Goldie(1967), Bose, DasGupta and Rubin (2002)). The results do not follow
from just the extended Goldie-Steutel law; Basu’s theorem is needed. To our
knowledge, Basu’s theorem has never been applied prior to this in proving
infinite divisibility. These results are presented in section 3.

In section 4, we present yet another new type of application of Basu’s
theorem. We apply Basu’s theorem in factorization of random variables, a
topic of some interest in probability theory. The typical result we show says
that a certain random variable X can be factorized as X = Y Z, where Y is
infinitely divisible, but Z is not, and Y and Z are independent. Again, this
is a new type of application of Basu’s theorem.

In summary, the intention of this article is to give what we believe is
a more transparent and more intuitive interpretation of Basu’s theorem by
avoiding the mention of completeness, and to demonstrate that the possible
horizon of applications of Basu’s theorem is probably much wider than has
been understood so far. It seems likely that the applications to infinite

divisibility and factorization will lead to further applications in the theory of



probability.

2 Basu’s Theorem and Poincaré Inequalities

The extensions to Basu’s theorem are presented in this section.
We present three results and each is given in terms of the total variation
distance between a true joint distribution and the distribution that is product
of the corresponding marginals. For example, for specificity, suppose T is a
sufficient statistic, and U an ancillary and 6 is an unknown parameter. Let P,
denote the joint distribution of T and U and @y the product measure. Since T
and U are independent under each § if T is also boundedly complete, in such
a case the total variation distance between Py and @y would be zero.We ask
what kinds of bounds can we establish on the total variation distance between
P, and @)y without requiring completeness of T'. For some of the results, we
ask the same question, only taking T" to be ‘approximately sufficient’ and U to
be ‘approximately ancillary’. Choice of total variation was a conscious choice
as it seems very natural, but of course similar results should be possible with
other distances, such as Kullback-Leibler or Hellinger. Poincaré inequalities
are used in proving two of the three results. It should be remarked that
concepts of approximate sufficiency have been around for a long time; see Le
Cam(1964,1974,1986), Reiss(1978), and Brown and Low(1996) for exposition

and applications.

For the rest of the article, the notation dy will denote the total variation
distance between Py and @)y, where Py is the joint distribution under 6 of
a pair of random variables T and U, and @y is the corresponding product

measure. The exact definition of T" and U will be given in the specific context.
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First, we introduce some notation to be used for the rest of the article.

With respect to some common dominating measure p ® v, let py(t, u)
= joint density of (T,U); fs(u,t) = conditional density of U given T' = ¢;
9¢(t) = marginal density of T'; hg(u) = marginal density of U; Py = true joint
distribution of (T, U); Q¢ = product measure corresponding to the marginals

of T and U; dy = total variation distance between Py and Qp.

Note that if T is sufficient and U is ancillary, then for a.a. (t,u)(y ®
v), fo(u,t) is independent of §; i.e., there is a function f(u,t) which acts as
the conditional density under each §. For the sake of notational simplicity,

we will use the Lebesgue measure for each of y and v.

Theorem 1. Let T, U be general statistics. Then
' dg < [ \/Varg(fg(u,T))du.
Proof: By definition,
2dg = [ |pe(t, u) — go(t)he(w)|dtdu

= [ fo(u,t) — ho(u)lgs(t)dtdu;
now observe that Erg(fo(u, T)) = he(u), and hence, [ |fo(u, t)—ho(u)|gs(t) <
\/ Vare(fs(u,T)); integrating this inequality over u gives the inequality of the

theorem.

Corollary 1. Suppose T is complete and sufficient and U is ancillary.
Then under each 6, T and U are independent.

Proof : First, as we remarked before, there is a fixed function f(u,t) that
acts as the conditional density of U given T = ¢ for any 6. Likewise, because
U is ancillary, there is a fixed function h(u) which acts as the density of U
for any 6.

Since Erjp(f(u, T)) = h(u)V0, by virtue of the completeness of T, f(u,t) =



h(u) for a.a. (u,t), giving Vary(f(u,T)) = 0 for a.a. u. Hence, from Theorem

1, dg = 0, and so under each 6, T and U are independent.
We illustrate Theorem 1 by an example.

Example 1
Suppose Xj, Xz, ..., X, are iid U[0,0]. Let T = X,y and U = Xy.
Note that T is sufficient (and even complete), but U is not ancillary. But
intuitively, U has almost no information about 6, and so almost an ancillary.
One might expect that T and U are almost independent. Let us see how
Theorem 1 works out in this example.
Since T is suflicient, the conditional density of U given T is free of 8;

denoting it by f(u,t), by a direct calculation,
Fu, ) = n(t-u)" 7/t Lsu.

On the other hand, the density of T under 6 of course is go(t) = nt" /6™ Iy <1 <s.

Then on a few lines of algebra,

By(f(u, 7)) = n/6"{(~1)""u" (log 0—log u) + 353 (~ 1) ( " ) I (6715

J
u* )/ (n— 1 - j)};

2n —2
Similarly, Eg(f(u,T)?) = n®/0"[(-1)"2 ( " ) ) u"?(log 6—log u)+

n —

2n — 2

Yjpn—2(—1) ( ) W (§*2 — w2 ) (n — 2 - §)].

J
These expressions provide Vary(f(u,T)). The bound of Theorem 1 is

obtained by integrating the square root over u € (0,4). This integral can be



very easily done numerically, but not in a closed form. We provide below a

few illustrative values; the bound is independent of 6.

n Bound of Theorem 1 on dy
5 168
10 078
15 .051
20 .042

The bounds are consistent with the intuition that X, and X(1) should

be nearly independent for large n.

Next we give two results that show that an approximately sufficient statis-
tic and an approximately ancillary statistic are approximately independent.
There is no mention of completeness in these results. The theorems differ
somewhat in their approach in that one of them talks about independence
under each 6, while the other talks about independence on an average (see
the exact statement of Theorem 3). First we specify a notion of approximate

sufficiency and approximate ancillarity.

Definition 1 A statistic T is ¢ - sufficient with respect to another statistic
U if |0fs(u,t)/00] < 6 for a.a. (u,t) under each 4.

Definition 2A statistic U is called e - ancillary if |0hg(u)/80| < € for
a.a. u under each 6.

Remark. Obviously, it is a part of the definitions that the stated partial
derivatives exist. If T' is ¢ - sufficient with § = 0, then the conditional density

of U given T does not depend on 6, which would be true if T is sufficient.



Thus ¢ sufficiency is a notion of approximate sufficiency, but only locally, in
the sense it is with respect to the specified statistic U. Analogously, € ancil-
larity with € = 0 would mean ancillarity. Thus, the notions of approximate
sufficiency and ancillarity given above are weaker than their usual meanings.
However, we will see in the next two theorems that one can obtain results in

the spirit of Basu’s theorem with these weaker notions.

We now provide the theorems and their proofs. Two different Poincaré
inequalities are used in the proofs of these two theorems. We state them first

before giving the theorems.

Lemma 1 Let u be once continuously differentiable on the interval {0,1]
and suppose lim, o u(z) = 0. Then, pointwise, |u(z)| < \/fol(au(:v)/ax)zdx.

Lemma 2 Let u be once continuously differentiable on the interval [0,1]
and suppose lim, o) u(z) = 0. Then, fy u?(z)dz < 4/7? [y (Ou(z)/0z)*dz.

See Flavin and Rinero(1996) and Bullen(1998) for these and a variety of

other Poincaré inequalities in one and many dimensions.

Theorem 2. Let U be € - ancillary and T § - sufficient with respect
to U. Suppose U and 6 are bounded, taking values in, say, [0,1]. Assume
fo(u,t), go(t) and hy(u) are once continuously differentiable in @ for a.a. (u,t)
and that limg_,o(fo(u,t) — hg(u))1/ge(t) = 0 for a.a. (u,t). Assume also that
3 constants ky, ke such that fg(u,t) < ki, and hg(u) < ky. Then,

dp < 1/3/2,/2(82 + &) + maz?(ky, k2) f 1,(6)d6/4,
where I,(6) denotes the Fisher information in T about 6.

Remark. The interpretation of Theorem 2 is that if T is approximately



sufficient and U approximately ancillary, then provided that 7" and U are
independent under a ‘degenerate’ value of #, they are approximately inde-
pendent under all §. There is no mention of completeness here. The con-
ditions that U and 6 belong to [0,1] can be relaxed to the conditions that
they belong to bounded intervals. However, due to our use of an unweighted

Poincaré inequality in the proof, the boundedness condition is necessary.

Proof: By definition, 2dy = [ [ |fs(u,t) — he(u)|ge(t)dtdu

< I3 (S 1 folunt) — ho(u)|go(t)dt)?du

(by Schwartz’s inequality applied to U)

< Vs J(Falu, €)= ho(u))?gs(¢)dtdu

(by Schwartz’s inequality applied to T).

Consider now the function v = u(0) = (fs(u,t) — he(u))1/gs(t). By the

pointwise Poincaré inequality (Lemma 1),

u(8) < \/JL(8/06u(6))2d6; but,

8/86u(0)

= (8/06 50 — 0/001a) /G5 + (fo ~ ho)3/ 9090/ (2,/T)
= (0/06u(0))?

< 2[2(6% + €%)gs + maz® (ky, k2)(D/0095)* / (45));

(by the simple Holder inequality (a+5)? < 2(a?+b%) and by the hypothe-

ses of 4 - sufficiency and e - ancillarity)



Thus, u?(0) < 2 fy[2(8% + €)gp + maz?(ky, ky)(0/00gs)?/(49s)]d0; note
the important point that the bound on u2(6) is a uniform bound - it does

not depend on 6.

Now, since we have already proved that 2dy < \/ Jy [ u?(8)dtdu, the theo-
rem follows on integrating the above pointwise inequality on u? = u2(6) with

respect to ¢, u on performing the integrations in the order u, ¢, 6.

Theorem 2 gives an upper bound on dy, pointwise for every . Thus it
talks about approximate indpendence of 7" and U under each 6. In contrast,

the next theorem is about the average of dgy over 6.

Theorem 3. Let U be € - ancillary and 7' ¢ - sufficient with respect
to U, and suppose T and U are both bounded random variables, taking
values (say) in [0,1]. Suppose fp(u,t), ge(t) and hy(u) are once continuously
differentiable in ¢ for a.a. (u,t) and that limg_,o(1)(fo(u,t) — he(u))ge(t) =0
for a.a. (u,t). Assume also that 3 constants ki, ks such that fy(u,t) < ky,
and hg(u) < ky. Then,

J3 dodd < V2/my/ [} [L12(62 + €2)g3(t) + maz? (ky, k2) (800 gs(t))2]dbdt.

Remark. Note that if 7" is sufficient and U is ancillary, then the first term

inside the integral sign completely drops out. The second term maz?(k;, k2)(0/00gy(t))?

stays. The interpretation is that if T is sufficient and U is ancillary, then
without mentioning completeness, T' and U should still be approximately
independent on the average over all values of §. Note that thus Theorem 3
comments about independence averaged over 6, while Theorem 2 takes the

more traditional approach of independence under all .

Proof of Theorem 3 : By definition, 2 dodf = [ [ [ | fo(u,t)—he(u)|ge(t)dOdtdu

10



< S I AJ(Falu, t) — ho(u))?g3(2) dbdtdu
(since 6 € [0,1], and by Schwartz’s inequality).

Let us now work with the 6 integral in this expression. By Lemma 2,
J(fo(u,t) — ho(u))*g5(t)dd

< 4/ [{0/00[(fo(u,t) — ho(u))ge(t)]}*df

= 4/m* [{g5(t)0/00(fs(u,t) — ho(u)) + (fo(u,t) — ha(u))5/D0ge(t)}*d6
< 8/m* [{295(t)(6% + &) + mawz‘(’m k2)(0/00ge (t))?}df.

Hence, 2[ dpdf

< J1/8/72 [{263(£)(62 + €2) + maz?(ky, ky)(8/B0gs (t))? }dbdtdu

< 2v2/m\/J [ [{293()(82 + €2) + maz?(ky, k2) (8/50gs(t))? }dbdtdu

(by Jensen’s inequality and on using that t,u € [0,1]), proving the result

stated in the Theorem.

3 Basu’s Theorem and Infinite Divisibility

In this section and the next, we will show various applications of
Basu’s theorem to infinite divisibility and factorization of random variables.
Some of the examples are known; but others are new. More than the new
examples, the interesting thing is that Basu’s theorem is useful in these kinds

of problems.

The results and the applications of the results depend on two facts. See
Steutel(1970,1979), and Bose, DasGupta and Rubin(2002). First we state

11



these two facts as lemmas.

Lemma 3. Let V ~ Ezp(1) and W independent of V. Then the product
VW is id (infinitely divisible).

Remark. If W is nonnegative, then Lemma 3 is the Goldie-Steutel law
which says that scale mixtures of Exponential densities are id. Essentially

the same proof handles the case of a general W as well.

Lemma 4. Let V ~ Ezp(1l) and suppose o > 0. Then V* admits the
representation V* = UW, where U ~ Ezp(1), and W is independent of U.

We now state and prove our main theorems of this section.

Theorem 4. Let f be any homogeneous function of two variables, i.e.,
suppose f(cz,cy) = c2f(z,y)Vz,y and Ve > 0. Let Z;, Z, be iid N(0,1)
random variables and Z3, Zy, ..., Z,, any other random variables such that
(23,24, ..., Zy) is independent of (Z;, Zs). Then for any positive integer
k, and an arbitrary measurable function g, f¥(Z,, Z2)9(Zs, Zs, . . ., Z) is in-
finitely divisible.

Due to the fact that f can be any homogeneous function and &k and g
are completely arbitrary, in principle, Theorem 4 has a very broad range of
applications. Before giving a proof of Theorem 4, we state a corollary of
this theorem and show a fairly large number of examples as applications of
Theorem 4. The examples establish a large variety of random variables as

being infinitely divisible.

Corollary 2. a) Let f(z,y) be any of the functions zy, 72 + ¢?, |[z|*|y|?
where o, > 0 and o + 8 = 2, Vz¥+ 4%, (z" + y*) /(3" 2 + y*2) where
n > 2.

12



Then for iid N(0, 1) random variables Z;, Z,, and Z3, Zy, . . . , Zp, any other
random variables such that (73, 74, ..., Z,) is independent of (Z1, Z>), any

positive integer k, and an arbitrary measurable function g,
f¥(Zy,29)g(Z3, Zs, . . ., Zpy) is infinitely divisible.

b)Let n > 1 and X;, Xs,...,X, independent random variables, each
a scale mizture of zero mean normal distributions. Then for any £ >
1, (X1 Xz ... X,)¥ is infinitely divisible.

c)Llet m,n > 1,m < nand X, Xs,..., X, independent random variables,
each a scale mizture of zero mean normal distributions. Then for any p,q > 1,
the ratio R = (X1 Xs ... Xm)?/(Xm+1 - - - Xp)? is infinitely divisible.

Proof of Corollary 2 : We will first prove part a); parts b) and c) essen-

tially follow from part a).

The only thing to observe is that each function f mentioned in part a) is
a homogeneous function as is easily verified. Thus, directly from Theorem 4,

part a) follows as a corollary.

To see the result of part b), write X1 X5 ... X, = (0121)(0222) . .. (0nZn),
where the {Z;} are N(0, 1) random variables and the {Z;} and the {0;} are all
mutually independent. Therefore, X1 X5 ... X, = Z175(Z; ... Z,0102...04),
and so it follows from part a) that X; X5 ... X, is infinitely divisible by taking
f tobe zy, k as 1, and g as the product function in the corresponding space.

The proof for a general £ is the same.
Part ¢) follows exactly similarly and so we will just omit the proof.

We will now give, as specific illustrative examples, density functions that

~ correspond to infinitely divisible distributions. It should be remarked that

13



some are known, and others new. Densities (i), (iii), (v) and (viii) in the
example below are simple functions and it is nice to know that they are

infinitely divisible.

Example 2. Each of the following density functions on (—o00, 00) corre-

spond to infinitely divisible distributions.
(i) f(x) =1/7 Ky(|z]), where Ky denotes the Bessel K, function;

(ii) f(z) = —exp(z?/2)Fi(—2?/2)/(v/27%?), where Ei(.) denotes the

Exponential integral;

(iii) f(z) = Ko(2y/]]);

(iv) f(x) = [sin(|z|)(7 — 2si(]z])) — 2 cos(z)ci(|z|)]/(27), where si(.) and

ci(.) stand for the sine and the cosine integral;
(v) f(z) = 2log(|z])/(x*(z* - 1));

(vi) £(x) =[lz| — v2m exp(1/(22%))@(~1/|2()]/(v2x|z|*), where ®(.) de-
notes the N(0,1) CDF;

(vii) f(z) = (1 — V2r|z| exp(z/2)@(~|zl)) /v 2m;
(viti) £(x) = 1/(2(1 + |z])*);

(ix) f(x) = exp(1/(22%))T(0,1/(22?))/(v/2w%?),where T'(.,.) denotes the

incomplete Gamma, function;

(x) f(2) = [sin(1/|2])(w — 25i(1/|z])) — 2 cos(1/|z|)ci(1/|z])]/(2n2?).

Proof: It follows as a special case of parts (b) and (c) of Corollary 2 that

the densities stated in Example 2 are all infinitely divisible. For the pur-
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pose of this example, we will denote a standard normal, a standard Double
Exponential,and a standard Cauchy random variable as N, D, and C respec-
tively. Then the densities (i) - (x) are respectively the density functions of
NN, NC, DD, CD, CC, N/D, D/N, D/D, C/N and C/D, where the notation
NN means the product of two independent standard normals, etc. Therefore,
the infinite divisibility of each one directly follows from parts (b) and (c) of
Corollary 2.

Remark. Note that the density of N/C is the same as that of NC, and
the density of D/C is the same as that of CD. Thus they are not separately
mentioned in the example. And of course, N/N is the same as C, and there-
fore not mentioned either. The densities of NC and C/D are plotted below;
the plots are provided only because they have interesting shapes, especially

the cusps, and there could be some interest in seeing them.

Proof of Theorem 4: Let Z;, Z; be iid N(0,1) and (Zs, ..., Z,,) indepen-
dent of (Zy, Z;). Consider any homogeneous function f(Z;, Z) and write it
as f(Z1, Z2) = (2} + Z2)f(Z1, Z2) /(22 + ZZ2). Basu’s theorem will now be
used. Introduce, just for the sake of the proof, a parameter ¢ and take the
more general case where Z;, Z, are iid N(0,0?). Then ZZ + Z2 is complete
and sufficient and f(Z1, Z2)/(Z? + Z2) is ancillary because f is homogeneous.
Therefore f(Z1,25)/(Z2 + Z2) and Z? + Z2 are independent under any o,
and so in particular, under ¢ = 1. Therefore, f(Z1,Z;) can be written as
VW, where V ~ Ezp(2) and W is independent of V.

Hence, f*(Z1, 25)g(Zs, . .., Zm) = V*W*g(Zs, . .., Z,). Now apply Lemma
4. By Lemma 4, f¥(Z1,2:)9(Zs, ..., Zm) = VEW*g(Zs, . .., Zp) = UW, W
g(Zs, ..., Zy), where U ~ Ezp(1) and the rest are independent of U, and
therefore by the extended Goldie-Steutel Law (Lemma 3), f*(Z1, Z2)9(Z, . . ., Zy)

15



The Infinitely Divisible Density of C(0,1) /DExp(0,1)

-10 -5 5 10

The Infinitely Divisible Density of N(0,1)*C(0,1)
3.5+
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is infinitely divisible.

4 Factorization of Random Variables

In this final section, we will show that Basu’s theorem can be used to de-
compose various functions of iid N(0,1) random variables in the form Y Z
where Y is infinitely divisible, Z is not, both are nondegenerate, and Y and
Z are independent. Although they are all functions of iid N(0, 1) random
variables, the class of functions that admit such a decomposition is large, as

we see in the following theorem.

Theorem 5. Let X;, X,,..., X, be iid N(0,1) random variables. Sup-

pose h;(z1,Za, ..., %), 1 < i < mn,arescale invariant functions, i.e., h;(cz1, cTs, . .

hi(z1, 9, ...,2,)Vec > 0, and f is any continuous homogeneous function in

the n-space, i.e., f(cz1,czo,...,cx,) = " f(21, %2, ..., Tn)Vc > 0.

Define g(X]_, Xz, ey Xn) = f(”Xth(Xl, Xg, ceey Xn); ey ||X”hn(X1, Xz, .

where ||X|| denotes the Euclidean norm of the vector (Xi, Xs, ..., X,)-

Then ¢(X1,Xs,...,X,) admits the representation g(Xi, Xs,...,X,) =
Y Z, where Y is infinitely divisible, Z is not, both are nondegenerate, and Y

and Z are independent.

Before giving a proof of Theorem 5, we give a few interesting examples

of such a decomposition that would follow from Theorem 5.

Example 3. Suppose X, Xo,...,X, are iid N(0,1); then each of the
following random variables can be decomposed as Y Z, with Y and Z as in

Theorem 5 :

17
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HW=X1Xs...Xy;

() W=X2+ X3 +...+ X2

(i) W = X2X2.. . X2/(X? + X3+ ...+ X2)n/?

(iv) W = (3" 4 X"+ ...+ X2/ (XF 4+ X} ...+ K22

Of these four specific examples, it is particularly nice that (i) and (ii) have
the decomposition we are discussing because they have a particular special
form. That each of these four random variables has the stated decomposition

can be seen by proving two more general facts. Let us do that now.

Consider the scale invariant functions h;(z1, %2, . . ., Tn) = /(23 + 23 +
...+ x2)™? and the continuous homogeneous function f(z1,%2,...,%s) =

T +zy + ...+
Then f(||z||hi(z1, T2, .-, Zn), - - -, [|Z|he(21, 22, . . -, 20))
= ||z||" 2t hi (21, 22, - -, Tn)
= ||z Ziey =/ l=]™"
= Yim 27/ ||| P

The special value m= 1 gives the random variable in (ii), and the special
value m = 2 gives the random variable in (iv).
For the other two examples, consider the same scale invariant functions

h;, but change the function f to f(z1,%s,...,Zn) = T1Z2 ... Zp.
Then f(||$||h1($1,$2, ce ,$n), RN HiL'”hn(iEl,ZEg, - '7$n)
= ||z||™(z122 . .. z)™ /(2 + 22 + .. 4 12) P/,

18



The special value m = 1 gives the random variable in (i), while m = 2

gives the random variable in (iii).

Of course, numerous other examples can be worked out by simply choos-

ing other functions h; and f.
We will finish by giving a proof of Theorem 5.

Proof of Theorem 5: By definition of g, and from the homogeneity of f,
we have that g(Xl,Xz, .. ,Xn) = ||X”nf(h1(X1,X2, ce ,Xn), ey
hp (X1, Xo, ..., X0)).

Of these, || X||* is a power of a Chi—square and hence infinitely divisible
(this is well known). As regards the second factor, if we introduce as before
an artificial parameter o2 and let Xi, Xs,..., X, be iid N(0,0?), then || X]||
is complete and sufficient, and the vector of functions U =

(hy(X1, X2, .., X0n)y -, Bn(X1, Xo, ..., Xy)) is ancillary because by hy-
pothesis each h; is scale invariant. Hence, by Basu’s theorem ||X|| and U
are independent, under any o, and so in particular under o = 1. So if we
let Y = ||X||*, and Z = f(U), then Y and Z are independent. To see
that Z cannot be infinitely divisible, note that by its scale invariance, f is
determined by its values on the unit disk and therefore must be bounded
as f was also assumed to be continuous. As a bounded random variable
cannot be infinitely divisible, it now follows that g(Xi, Xs, ..., X,) has the

decomposition stated in the theorem.
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