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Finding closed form formulas for sums of infinite series is of use and interest in many
disciplines. Standard methods often involve special tricks for special series. The purpose of
this article is to present a unified method to sum a large variety of infinite series, including
complicated iterated series. The unification comes through the use of two probabilistic
identities, resulting in exact integral representations for the various series and hence a
closed form formula. Due to the large variety of series, including iterated series, for which
exact formulas are produced, the results may also have some reference and instructional
value.
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1. Introduction

The purpose of this article is to present a unified method to find the sum of a large
variety of infinite series by deriving exact integral representations for them. The unifi-
cation comes from the nature of derivation of these integral representations; they are all
derived by using one of two expectation identities. As a result we can avoid using special
tricks for summing special infinite series; examples of such special tricks are use of Euler
transformations and partial fraction expansions. A pleasant feature of our method is that
we are able to write one dimensional exact integral representations for many types of it-
erated infinite series, including some rather complex iterated series. For most of the cases
that we present here, fortunately, we are able to evaluate the corresponding integrals in
closed form, thus resulting in an exact value for the sum of the convergent series. Failing a
closed form evaluation of the needed integral in some other cases, it is still a simple task to
compute the one dimensional integral numerically. This ought to be a particularly useful
aspect of our method, for numerical integration of a function of one variable on a compact
interval (actually [0,1]) should be faster and more reliable than numerically summing a
multiple infinite series. For example, consider the quite neat formulas numbered 71, 72,

75, 76, 81, 82 in section 4.
A small selection of our personal favorite examples are:
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In section 2, we present the two expectation identities and six representative examples.
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The six examples are supposed to give our reader a general understanding of how the
integral representations fall out of the expectation identities. We chose to present a few
illustrative examples because it seemed out of the question to give a derivation for every
type of infinite series that is actually considered. There were too many. In section 3, the
integral representations are used to state the sum of 27 different types of infinite series,

including seven that are iterated series. We kept these 27 types as general as possible, in



the sense they have parameters and particular values for the parameters lead to different
particular infinite series. Such special interesting series are then presented as examples in
section 4. These special examples are given in the form of a table in a way that a reader
can eagsily figure out exactly how the sum was obtained from one of the general formulas
of section 3. We believe that this table may have some reference value for general and

instructional purposes.

Of course, it should be mentioned that the sums for many of the series considered
are known; one would be able to locate them in a good text or one can evaluate them on
symbolic software, such as Mathematica. Having said that, some of the series considered
appeared to be new in the sense we did not find their explicit sums in the literature. In
summary, we hope that this article has some aesthetic value due to the exact integral
formulas and the unified method to derive them, as well as some practical value as a

potential reference.
2. Illustrative Examples

First we state the two expectation identities. Their proofs are sketched merely for

self-containedness, as they are easy to derive.
2.1 Two Expectation Identities

Lemma 1. Let X ~ du be a strictly positive random variable and for ¢ > 0, let
P(t) = E(e™).

a. Let n > 0. IfE(XnH) < 00, then

b. Let n > 0. IfE(X(X+1)1---(X+n)> < 00, then

1

X—|—n)

E<X(X+1) 0/001*6 ) wt)t. (2)



Sketches of proofs of (1) and (2) will be provided after the following six illustrative

examples.

Example 1. In identity (2), take n = 2. By taking X to be degenerate at 3,
1=1,4,7,---, one gets
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Denote R = 1+ z + x2; use the simple facts
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Plugging (4) and (5) into (3),
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Example 2. In this example, we will derive a formula for the iterated series
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(4)

but to do this, we first need a one dimensional sum, as follows. In identity (1), take

n =1 and take X to be distributed as a+ Poisson (1) for fixed o > 0. Then,

oo

1
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=

On the other hand,

as 6_1 1 t

_ —t(z+a) e
Y(t) = Ze rro i el+ate .

=0
Therefore, from identity (2),
o o0 1 1 . 1
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z=0 0 0 0
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For example, taking o = %, it follows from (10) that
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But our real interest is in the iterated series

i yin 21 (it iat oo i)

Towards this end, note that f, = # ways to write n as ¢; + iz + - - - + 9 with each

of i1,42,---,1 > 1 is given by f, p = %InZk
(see, e.g., Anderson (1992)). Thus,
Y...x 1

S =

i1, 0k > 1 (i +da+ -+ i)

'/:1:’c le?dz (by equation (10)). (11)

0

Therefore, from (11) by integration by parts, we immediately have the recurrence
relation

k!Sk+1 =€ — k"Sk



= Sk_|_1 = El— - Sk (12)
From (12), by induction,
k—2 :
—1)J
Skt1=¢€ (](C _).), + (-1)*1S,
j=o\F T I

k .
—1)4
= (—1)*e E ( ]1') + (=1)*=1. (Since S = 1, directly from (11))
iz 7

We thus have the formula
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Specifically, from (13),
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Example 3. This example gives an exact integral representation for the seemingly

complicated iterated infinite series
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11,

Trivially, from identity (2) (or otherwise), for n > 1,
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St > 11is %ka, we evidently have
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Example 4. In identity (2), take n = 3, and let X be degenerate at

+17 +27"',

1 1 1
m’ m m

for some fixed m > 1. Then we will have
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For instance, in particular,
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Example 5. This is another example of an iterated series. Suppose we want to find
1

m(ig+--+ig)
i1+t

the value of S m = 1121,21 ( ) for some given m > 2.

In identity (2), by taking X to be degenerate at (m — 1)n, one gets
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In particular, on taking &k =1 and m = 2,

= k(m — 1) dz. (18)

1—x+x2 dr = —7

1
/ 9+ 2v3m
n= 1 0

(the closed form integration is possible and we did it on Mathematica)
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on taking k = 2 and m = 2,

22 1 1
m,n > (2(m+n)) 3

m+n

(closed form integration was possible)

on taking £ = 3 and m = 2,

DI 1 2m
m,n,p > 1 (2(m+n+p)> 273’

m+n—+p

(again, closed form integration possible)

on taking kK = 2 and m = 3,

1
ry U = .09820;
m,n > 1 <3(m+n)>
m+n
(numerical integration was done)

Formula (20) and (21) seem to be pretty and interesting.

Example 6. In identity (2), by taking X to be degenerate at n + 1,

o0

n! —nt ,—t
G = [ e
0

(n+1)! e~tret
(n+1"+1 /( T edl, 20
o0
s TL' ad —t\n—1 _4
= Zn_ = Zn(te ) TeTtdt
n=1 0 n=1
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Similarly,

Using the two exact integral representations, we get

1

20 3! 4! 1
o= | —————dxr — 1= .87986

2grEtat /(l—i—:cloga:)2 v

0
13 4 ;
21 !
2 = dr = .34417
22 33+ /1—xlogac v=

0

Proof of Lemma 1.

a . Actually, a more general identity holds. Let s > 0. Then,

o0

Jion i i

(23)

(24)



— / © " du(a) + f e;:zdu(x) (25)

By induction,

k e 5%
v = (-0 [ (1% auta)
=Y ns [ Sdute) (26)

By taking, s =0,

/ootk¢( t)dt = k! E(X;H)

proving the identity.

b . The simplest way to prove identity (2) is to use the following pretty identity (see
Molter (1985) for a proof): for any z > 0,n > 0,

m oo L n!
r w4+l z+2 (=1 r+n z(z+1)---(z+n) (27)
From (27)

proving the identity.
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3. General Applications

Identities (1) and (2) are used in this section to give formulas for sums of a large
variety of infinite series (including iterated series). We have tried to keep these series as
general as possible. Specific interesting special cases of these general series are presented as

examples in the next section (section 4). For easy reference, first we state all the formulas.

Theorem 1. The following formulas each follow from Lemma 1:

1) For a > 0,n > 0,

oo

1 1
= . 2
I;)(a+k)(a+k+1)---(a+k+n) noa(a+1)---(a+n—-1) (28)
2) 2) Fora>0,n>0,
S (=1 1
= Fi(1,q 1; —1).
I;(a+k)(a+k+1)---(a+k+n) et (atn ibaa+n+li-l)
(29)
3) Forn >0,
- 2n n\ 2/ -1
I; 2k —1)2k---(2k+n)  (n+ 1) [logﬂjzl (g> 2 ] (30)
4) Forn >0,m > 1,
o 1
> : = /1_xm+n_1da: (31)
k_l(mk—m+1)(mk—m+2)---(mk—|—n)_ m+n—1' 1—zm ‘
= 0
5) Forn >0,
oo (—1)k-1 on n n\ 29 —1
= —|log2 —1)/ — | . 2
kzzlk(kﬂ)---(km) ol |18 +j§( V)52 (32)
6) Forn>0,m>1,
1
Z (—1)+-1 _ /l—xm“""_ldx (33)
kzl(mk—m—i-1)(mk‘—m—|—2)---(mk—l—n)_ m-l—n—l'0 1+2zm '
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7) For a > 1,

> 1

kz:;)(mk—i-l)(mk+m+l)---(mk—i—nm-i—l) -

10) For m,n > 1,

3 (-1
k:o(mk+ 1)(mk+m+1)---(mk+nm+1)

(%)

nm?+1T(n +

1 1

= m Fi(1, —; — 1; -1

m"+1F(n+1+%) 21(,mm+n+ )-
11) For m > 2,
— 1 / 2(1

=(m—1) —2) dz.

(") ’
SR (Hm 0-»)
12) For m > 2,
= 1 [ a1
ZW=(’”*1)/ : m_(l_x) dz.
= R(TF) 01——37 (1-2z)
13) For m > 1,
© 4 1log (1 —zm (1~ x))
Z 2¢mk = (m_l)
L) J -
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14) For n > 1,

1
i (mk + n— 1)! — /mn_lezm(l—m)d:p_

16) For m > 1, < m, and 8 > 0,

Z (mk — a)( mk—l—,B)

k:l

“sae e () (3)) w7

where 9 (-) is the diGamma function.

17) For any real o, and 8 > 0,8+ v > 0,
n=1 (,Bn—|—’)/)n /8 '
18) For «, 8 and g—I-'y >0,

Z a” \/—/x2+'71 —Vaa? _ a
“(Bn+7)*"

19) For m > 1, a real and v > 0,

1m1

1
(log — ) 71z,

Z(n—i—’y)mn' (m—1)!

o —

20) For any real o, 8 > 0,7 > 0, and |a| < Be,

1 A
B

. a’n! x
Z (Bn + y)» - aﬁo/ (8 + azlog x)zdx'

n=0
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’L

Z

’l,

Z

11,

2

21'

1,

21) For any real o,3> 0,8+ >0and k > 1,

ai1+i2+"-+ik

’Zk>1

t1++ig
(,B(i1+"'+ik)+’y>

1
5k(k_1'/<xlog ) e
0

22) For any real a, 8,7 > 0 and |a] < fe,

DIREEDY ot (G 4! _kakﬁ/ o8 ( (zlog 2 k ' dz.
Z 1y°° ’zk>1 ) ' 114+ ,B-i-a.'L'lOg:L’ k'+1
<B(zl+---+zk)+7)
23) For any m > 2,
1
_ k km k—1
Z 22 ! =k(m—1) (1-2) dzx.
Zk > 1 m(iy+--+ig) k+1
) . m—1
G4 -Fig 0 1—=2 ]. - 33))
24) Fora>0,k>1,m>k—-1,
Z 2 1
g > 1(ad+ir+ 4 (atir+ o Fig+ 1) (et i+ i +m)
I'a+k)
mm—1)---(m—k+1)I{a+m+1)
25) For k> 1, a >k,
Z > (41 4 -+ ig)! . k!
Gie>1 (a+D)(a+2) - (a+iy+---+i) (a=1)---(a—k)
26) For k > 2,
k—1 ;
1 —1)7
Z Z : :(_1)k—le ( ) +(_1)k
eyt > 1 (G F i+ -+ ig)! = 4!
27) For k > 2,
ce (_1)11+---+’Lk 1
2 R G O ol
.,Zk21(21+“'+2k). j=1‘7
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4. Specific Examples

In this final section, we present interesting special cases of the general formulas of

section 3 and give explicit values for the sums of a variety of infinite series. We present

these examples so that it would be easy for an interested reader to verify the reported

values of the sums. The examples of this section may also be of some value as a useful

single location summary for instructors and researchers.

Series Sum Follows From On using
Formula #
28) o5+ 3e3 + 327 + 1 1 a=1n=1
1 1 1 1 _ _
29) ix2x3 + 2x3xa T 3xaxs T 1 1 a=1,n=2
1 1 1 1 _ _
30) Tx2x3xd T 2x3xax5 T 3xaxsxe T 18 1 a=1n=3
1 1 1 _ _
31) m—m“i‘m—"' 210g2—1 2 a—l,n-l
1 1 1 5 _ _
32) 1x2x3 2><3x4+3x4><5 - 210g2_Z 2 a=1n=2
1 1 1 4 8 _ _
33) e~ naxas Ix4x5x6 3log2—3 2 a=1n=3
1 1 1 _
34) 2 Taxa tsxg log 2 3 n=20
1 1 1 1 _
35) Tx2x3 T 3x4x5s T 5xox7 log2 —3 3 n=1
1 1 1 2 5 _
36) 1x2x3x4 + 3X4Xx5x6 + EX6XT7X8 +o 3 log 2 12 3 n=2
) theshteks g 6 m-2n=0
1 1 1 1 log2 _ B
38) Tx2x3  3x4xs T 5x6x7 — " 2 _g— 6 m=2n=1
1 1 1 5 log 2 . .
39) 1x2X3%4  3x4X5X6 + EX6X7x8 12 % - gé— 6 m=2n=2
1 1 1 31 _ _
40) Tx2x3 T ax5x6 T 7x8xs T " 7T1_2_210g3 4 m=3,n=0
1 1 1 1 1 _ _
A1) maxa t oexes T axexo T 6 T 127\r/§ — 3 log3 4 m=3n=1



Series Sum Follows From  On using
Formula #
1 1 1 i
42) Toaxa T oot 71082 — 4 m = 4,
1
oxioxiixiz T n =
1 1 1 2 m/_ —
43) Tx2x3 — 4x5x6 T 7x8x9 3log2 — 5% 6 m = g,
n =
1 1 4 1__ nv3 —
44) Tx2x3x4 ~ Ix5x6x7 §10g2 T 6 54 6 m = 3,
1
TX8X9x10 n=1
0 T ST 1, 2v3n _
B Tt 3+ 5 11 m =2
1 1 1 ™ _
) S tTneTwe T 5v3 12 m=2
1 1 1 2 —
Yonmteete@t i 13 m =2
48) é—*_@l)_k(_é)—_*— 3F2(1,3,2,§,ga247)/3 11 m=3
= .41432
1 1 1 3.4 5.4 _
¥ sotxEtmE T 3F2(1,1,35 35 35 97)/3 12 m=3
= .37122
1 1 1 3.4 5 9. 4 _
0 T tmetwgt oF3(1,1,1,5, 5,5, 2 57)/3 13 m=3
= .35146
51) SRR e /T (®(J5) — 3) 14 n=2
(® = N(0,1) CDF)
52) L2y 34 e yT(28(J5) —1) 14 n=1
1 1 1 1
53) st ms T e T 2 16
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Series Sum Follows From On using

Formula #

54) gzt ozt et 1 —log2 16 =2,
a=0,8=1

1 1 1 1 —

%) mstmEtam T 6 16 m =3,
a=1,8=1

56) 3—>1<_7+7><111+11>1<15+"' 1_12 16 m =4,
a=1,=3

57) k4 s tE+ [ z%de 17 a=1,
= 1.29129 B=1,v=0

58) R R Jy ' dz 17 a=1,
= .62848 B=1,yv=1

59) L+L4+i+L4.. L1l 17 a=1
1t ' 32 T 58 T 7 2Jo -
= 1.11955 B=2,v=-1

60) EA+L+E+L+-- Lfzde 17 a=1,
= .37641 B=2,v=1

61) H-Z2+5-—L+-- [ z%da 17 a=—1,
— 78343 B=1,y=0

62) A J alteda 17 a= -1,
= 40343 B=1,7=1

63) 1%—3%4-5%—7%4—--- 3 lexgld;v 17 a=—1,
= .89649 B=2v=-1

64) F-L+L-L+. L[l 17 a=-1
31 52 T 78 of 2Jo -
= .37641 B=2,7=1
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Series Sum Follows From On using
Formula, #
] 21 ! —
65) H+HE+EH+ Jo Tt da 20 a=1,
= 1.87985 B=1,v=0
66) 21_1' + 3_2' Ze', + fO mf;g—z)zdl' 20 o = ].,
= .87985 B=1v=1
1, 02, 3, 4 1 _
67) 1T + 32 + 5% + 74 + 2f0 \/E(1+:11r:logz)2 dz 20 a= 1’
= 1.28276 B=2~v=-1
68) FtH+E+ar  2[) s 20 a=1,
= .37641 B=2,v=
69) moa>1 (m+7-3-)m+n fol(x ]-Og %).’L‘_"Eda? 21 = 1,[3 = 1,
= .33719 vy=0,k=2
70) mm; (,Szj,);)n::n fol (zlog 1)z®dz 21 a=-1,8=1,
= .18647 vy=0k=
1 -
71) ;n:nz;;: (m+n+;)m+n+p 5 Jo (wlog 1)2z=%dz 21 a=1,0=1,
= .05091 =0,k=3
_1ym+n+p 1 z
72) %%g (m(-ml—)|-p)m+n+p —% fo (zlog %)217 dz 21 a=-1,8=1,
= —.02704 vy=0,k=3
(m+n)! 1 zlogl . _
73) 'r;n;[ (an)m+" 2 fo (14zlog z)3 dz 22 1) /3 1,
= 1.52317 =0,k=2
(=1)™*" (m+n)! zlog ¢ _
74) ;ﬂ; o (mn) 2 ) Ty dr 29 a=-1,8=1,
= .23526 Yy=0,k=2
(m+n-+p)! 1 (zlog 3)% _ _
75) ;%ﬁ); Crieio it S I A L D 22 a=1,8=1,
= 1.03795 =0,k=3
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Series Sum Follows From On using

Formula #
(=)™ P (mtnip)! 1 (zlog2)® _ _
%’L:ynz,l:’g; (m+n+P);rnn+"1pp 3f (1- :z:log (I-zlogz)* dz 22 a=-1,5=1,
= —.07389 vy=0,k=3
1 1 _ —
m,n; TR 3 23 k=2,m=2
1 27 _ _
m,n,pZX: G—(ﬁm 273 23 k=3,m=2
1 1 87w — —
Zﬂ,'rg,:n,pZI CUrminioy 3 433 23 k=4,m=2
1 107 _ _
Gmmpg>l (PEmriarD) ~15 + 213y3 23 k=5m=2
1 2,3
mm; (3(1:1}:)) 4f0 (l(—zz?l)wdx 23 k=2m=3
= .09820
1 3,.5
%nz’;,;: (3(m+1n_+p)) 6 fo ﬁl)—z))-dm 23 k=3,m=3
- m—+n+p
= .020667
m,n>1 (m+n)(m+n+1)(m+n+2) 4 y )
m —
1 1 _ —
mE,n;. (m+n)(m+n+1)(m4n+2)(mIn+3) 36 24 a=0k=
m=3
1 —_— —
- m=3
(m+4n+p)(m-+n+p+1)(m+n+p+2)(m+n+p+3) -
2 o= 24 Ca=0k=
m,n,p,q>1 (m+n+p+q)--(m+n+p+q+4) 9% )
=4
1
m,n>1 (m+n)! 1 26 k=2
) B) B € 1 26 k=3

m,n,p>1 (m+n+p)!
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Series Sum Follows From On using
Formula #

1 B

89) m,n,p,q>1 (m+n+p+q)! 1- % 26 k=4

90) 1 80_1 2 k—5

£,m,n,p,q>1 ({+m+n+p+q)! 8

1 0 B

o) ¢,m,n,p,q,r>1 (£+m+n+p+q+r)! 1 — 3¢ 26 k=6
(_1)m+n 5 _

92) zn:z;zzl: (m+n)! 26 — 1 27 k=2
(_1)m+n+p 8 B

93) %;,712717221: (m+n+p)! 1- 3e 27 k=3
(_1)m+n+p+q 65 _

94) m%angl (m4ntptq)t 24e 27 k=4
. (— 1)(£+m+n+p+q) 163 B

%) r; npa>l (Ermtntprq) 1~ &oe 27 k=5
. (— 1)l+m+n+p+q+r 1957 o

96) £,m,n,p,q,r>1 ({+m+n+ptgtr)l  720e 1 27 k=6

24



References

Anderson, Tan (1992). A First Course in Combinatorial Mathematics, 2nd Ed., Claredon
Press, Oxford.

Molter, Richard (1985). Problems in Combinatorics and Graph Theory, John Wiley and
Sons, New York.

25



