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ABSTRACT

The asymptotic behavior of the right endpoint of a one-dimensional
branching diffusion is studied: The motion of a single particle in the
model is assumed having a stabilizing drift and independent jump in-
crements.
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1 INTRODUCTION

In a one-dimensional branching process, the initial particle positioned at the

origin commences a motion described by the stochastic differential equation
X, =b(X,)+&, s>0, (1.1)

where b(z) is a stabilizing drift, and £ is a homogeneous Markov process
with independent jump increments. The distribution of the length of a jump
is given by a measure u. We suppose that u has a compact support K
and p(h) > 0, where h is the size of a maximal jump. We also assume
that the measure p has zero mean and a finite second moment, that is,
Jx v u(dy) =0, and [, ¥*u(dy) = d < oco. The times between consecutive
jumps are exponential with the unit rate.

The original particle lives a random time which has an exponential distri-

bution with parameter one and is independent of the travel of the particle,
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and then splits into two daughter particles. The created particles then be-
have independently with the same life history as the original particle.

The objective of the present paper is to describe the asymptotic behavior
of the right frontier of the branching process. Let R, denote the position of
the rightmost particle at time ¢. Consider an asymptotically polynomial drift
b(z), that is, b(z) ~ —|z|*sgn(z), £ — oo, o > 0. We show that under an
additional assumption on the drift b(z), for any s > 2, as t — oo,
hy t h
o

)—— < Ry < (s + 5)@) — 1. (1.2)

P (max(l, Togt

To prove formula (1.2), we use the large deviations technique introduced in
Freidlin and Wentzell [3]. In Korostelev and Korosteleva [5], we considered a
similar branching process except that the random term of the movement was
described by a standard Brownian motion. There, an individual trajectory
attained a certain high level along a continuous extremal. In the present
model, a similar mechanism of large deviations works for movements with
not very strong drifts (that is, for & < 1). In this case, a trajectory performs
a large number of relatively small jumps in order to reach a high level. On
the other hand, the mechanism is principally different if o > 1. In that
instance, it suffices for a particle to make one huge jump at time close to the
terminal time ¢.

An interesting question is whether a sharper upper bound can be proved in
the formula (1.2). We show the result only for s arbitrarily close to 2, and
can not do better due to intrinsic difficulties arising in the theory of large
deviations.

It is appropriate here to say a few words about the existing results on the
asymptotic behavior of the right frontier of a branching process without a
drift. The methods of Freidlin [2] or Biggins [1] can be used to prove that

for the driftless branching process, for any € > 0, as t tends to infinity,



P(|R;/(at) — 1| < €) — 1, where a is a solution of the functional equa-
tion L(a) = 1, L is the Legendre transform of the cumulant of the motion
process. If, for example, the jump process is defined to be a symmetric Pois-
son process with jumps of unit size, then a ~ 1.5088 solves the equation

alog(a++va?+1) =+va?+ 1.

Formula (1.2) does not cover the case @ = 0. However, Freidlin’s theory
[2] can be used for getting a result for the drift b(z) = —sgn(z). It states
that for any € > 0, P(|R;/(bt) — 1| < €) — 1 as t — oo, where b™! is a
solution of the Hamilton-Jacobi equation H(b~!) = 0, H is the cumulant of
the process of the motion. For the situation of the symmetric Poisson process
with unit jumps (and the drift —sgn(z)), b = 0.6188 is obtained by solving
the equation cosh(b71) =1+ b71.

Freidlin’s approach can not be applied directly to the models with a more
general polynomial drift we are considering in this paper. His small pa-
rameter wave propagation theory accommodates processes with small in-
tensity of jumps and high rate of splitting. Making a time-scale change
Y, = Xu/t, 0 < u <1, in (1.1), we obtain a new model with motion Y
satisfying the equation Y, = b(tY,) + &u/t, and splitting occurring with
intensity ¢. For large values of ¢, this model meets the requirements of Frei-
dlin’s model except that the drift depends on large parameter ¢. Therefore,
Freidlin’s theory is not applicable here unless b(z) = —sgn(z).

In Korostelev and Korosteleva [5], a multi-dimensional generalization of a
one-dimensional branching diffusion was studied. The proofs in both cases
are similar. Here, a multi-dimensional branching process could also have
been considered. Explicit form of the result would depend on possibility to
solve the Hamilton-Jacobi equation for the gradient of the quasipotential.

The proof of the statement (1.2) is given in the other two sections of the

paper. The upper and the lower bounds of the result are proved separately.



2 UPPER BOUND .

In this section, we formulate an assumption on b(z) under which the upper

bound of (1.2) holds, that is, for any s > 2,

h, t
P(Rtg(%+—)-—->——>1 as t — oo.
a’logt

For simplicity, we assume h = 1 throughout this section.

ASSUMPTION 1 (STABILIZING DRIFT) For any ¢ > 0, there exists a positive

constant A = A(c) such that

HXW) —p(X@) > AMXP - X)) —c< XV < X <

Denote po:(X®, X)) = 0n<1a2ct|X(1) X(2)|. For any X such that X, = z,

define an operator B by (BX), = fo w) du, s > 0.
LEMMA 1 Under Assumption 1,

POt(X(l), X®) <2 pOt(BX(l), BX(2)).

PROOF: For simplicity, introduce notation p = po(BX®), BX?),
v=X® _ XU and ¢ = BX® — BX®, Fix some time s in the interval
[0,t]. Let sy be the last time prior to s at which v = 0. Suppose first that v
is positive in (sg, s). By Assumption 1 with ¢ = nia}ét('XS(l)" |Xs(2)|),
S0S8S
8
Vg = (s — Coy — / (XD — b(XD)) du < 2 /\/ vudu < 2.
S0 80
If we assume now that v is negative in the same interval, then, since —v is
positive, we get
8
~vg = —(C = Coo) — / (B(XP) = b(XD)) du < 29— A / (—va) du < 2p.
S0 50

The assertion follows. 0O



LEMMA 2  Suppose Assumption 1 is true. Let Hy = (3c+ 2)t/logt. Then,

| P(maxX > I—It> < exp{—t(1 +¢/8)}.

0<s<

PROOF: The cumulant of the process X, X, = z, satisfying (1.1), is

H(z, 0) hm log E ¢/ Xe—2) = hm log E exp{ﬁ/ s)ds +0&}

=0b(z) + /[_1 ; (€% — 1) u(dy) = 0b(z) + p{1}e’ + o(e?) for large 6.

The Legendre transformation of H is

L(z, B) © sup [05 — H(z, 9)] = sup [O(ﬂ —b(z)) — p{1}e’ + o(e?)
o 9 .

_ {(ﬂ — b(z)) [log A 1] +0(B —b(z)), B —blzx) = oo if B ~b(z) >0,

+00 otherwise.

The action functional, as introduced in Freidlin and Wentzell [3], is defined
for any time 7" to be equal to Ipr(y fo (4, 1) dt for absolutely contin-
uous ¢ and +oo otherwise.

By definition, a quasipotential V (z) = inf{Ior(¢) : T >0, vo =0, o1 = z}.
As proved in the foregoing book, the quasipotential V' (z) satisfies the Hamilton-
Jacobi equation H(z,V’'(z)) = 0. From here,

V/(z)b(z) + p{1}eV' @ 4 o(e"" @) = 0, so V'(z) = log |b(z)| + o(log |b(z)|) =
alogx + o(log z) for large z. Therefore, V(z) = azlogz + o(zlogz).

Since s in the definition of H; can be taken arbitrarily close to 2, there exists
g > 0 such that H; = (1 +¢€)(2+ ¢+ 1/a)t/logt.

Let 6; = (1 +¢€)(2 + ¢)t/logt and consider a function ¢ such that ¢, = 0,
and ¢, = H; — §; = (1 +¢)t/(alogt). As shown in Freidlin and Wentzell,
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Ini(v) > V(pt) — V(o). In this case,

IOt(SD)ZV((l_l_E)It - (1+6)tlo <(1+5)t

= 1 t, t .
alogt o[ozlogt alogt>+ ot) > ( +2) =

Consider a set of absolutely continuous functions on the interval [0, ¢] with

bounded values of the action functional:
t

®(A) ={ps, 0<s<t: / L(ps — b(ip,)) ds < A}.
0

We have
P(mast Z Ht> S P(pOt(X, @()\t)) > 6t> (21)

0<s<t

where X\, = (1 +¢/2)t for large t.
Let X = BX and ¢ = By. By Lemma 1,

~ )
P(lx, 200) > 6) <P(m(X 30> %) 22)
where ®(\) = {@,, 0< s <t: [JL($;)ds < A}
Introduce a time-scale transformation Y, = ut/t, Py = Pue/t, 0 < u < 1.
We write

[ st au= [ [222) (105 (222) - 1) + o222

-/ t [(ddis)(log(%) - 1) +o(ddi3)] =1/ LG ds.

Therefore,

P(m,t(f(,é(xt)) ‘;) < P<p01(Y T(\/t)) > g;) (2.3)

where U(\) = {th,, 0 <u <1: [)L(3h)du <A}



Now, we would like to show
)
P(p01(Y, U(1+¢/2)) > 2—;) < exp{-t(1+¢/8)}. (2.4)

To do so, we reproduce the prove of formula (2.6) of Chapter 5 in Freidlin
and Wentzell [3], but with proper modifications.
Let  be arbitrarily small and take A = t7~!. How small v should be chosen

will be specified later. Consider a random polygon I;, 0 < s < 1, joining

vertices (kA,Yia), k=0, ,n—1, n =1 =t'77. Introduce events
Ae={ max |V,—Yia] <2 ¥, = Yirnal < 2}
BT Lacs<anal © TFAI T op A<IE M)A (DAL o

where k =0, --- ,n — 1. If all of the events Ay occur, then pp; (Y, 1) < 6:/(2t)
and, so, the event {pg (Y, ¥(1+¢/2)) > 8;/(2t)} implies that I & U(1+¢/2).

Thus, we have

P<p01(Y,\II(1+6/2)) gt) < P(U AC> +P<ﬂ A ({1 ¢ T +z—:/2)}>.

= (2.5)

We estimate the first term
n—1 n—1
p(U4) <3p(4)
k=0 k=0

1
) )
< [P( max |Y; — Yial > 2—;) + P( max _ |Y; — Yipqr)al > tﬂ

’ EA<s<(k+1)A EA<s<(k+1)A 2t

3
|

ES
I

O
<2 P Y, —y| > 2.6
< 2nmaxP, ((Elax | y| 2t) (2.6)

The last inequality is justified by the Markov property of the process ¥ with
respect to times kA, k=0,---,n



Next, EY; =5 [ Bu(dB) =0 for0 < s < A,andvarYa = A [ B?p(dB) =
A d. By the Lévy inequality (see Gikhman and Skorokhod [4]),

Py<max|Ys—yl>—;5—;) < 2Py(|YA—y|>%—2vAd>. (2.7)

0<s<A

From the exponential Chebyshev inequality, the probability in (2.7)

< [E exp{C't(Ya —y)} + Eexp{—-Ct (Ya - y)}] exp{—-C't (25—; +Ct2vVAd}.
(2.8)

From formula (2.8) in Chapter 5 of Freidlin and Wentzell [3] it follows that
Eexp{Ct(Ya —y)} = exp{tA H(C)} = exp{tA(e® — 1)} < exp{tA e},
and, similarly,

Eexp{—Ct(Ya —¢)} = exp{tA H(—C)} = exp{tA(e™® — 1)} < exp{tAe °}.

Thus, (2.8)

< (exp{tA e’} + exp{tA e‘c}) exp{—C't % +Ct2vAd}. (2.9)

Choose C = 2(1 +¢)t/d; = logt/(1 4+ €/2). Then, (2.9) becomes

. 1 2¢/d
= exp{t7+1+15/2} + exp{t7_1+1€/2} exp{—(1+e)t + v £33 log t}
1+¢/2
< 8i exp{—(1 +¢/8)t} for large enough ¢, (2.10)
n

if y is such that v+ 1/(1+¢/2) < 1.



Combining (2.6)-(2.10), one gets

(U Ac> —exp{ (1+¢/8)t} for large t. (2.11)

Next, we would like to prove exactly the same bound for the second proba-

bility in (2.5). By the exponential Chebyshev inequality,

<ﬂAkﬂ{l¢\Ifl+e/2> (ﬂAkﬂ{Im >1+e/2}>

<E [exp{t In() — t(1+ e/z)}nmk} . (2.12)

The action functional of the polygon is equal to

n—1l a(k+1) )
@) = Y /k L(i,) ds

k=0 v kA

2 DA YA — Y = Yikrn)a — Yi
(k+1)A kA (k+1)A kA
= L -BRE R gs =Y Ap( BRE )
/k ( A )ds ( A )

k=0 v kA
Therefore, by the Markov property of the process Y at times kA, k£ =

0,---,n — 1, the expectation in (2.12) does not exceed

k—0

< exp{—(1+¢/2)t} [m3XE<quexp{tAL<YAA‘y)})]n. (2.13)

If the event Ay occurs, then |Ya —y| < 8:/(2t). For any B, || < 8:/(2tA),
consider a polygon L(8) such that L(8) — L(B) < /4.



Denote by f; the points at which L(8;) = ic/4, and define

L(B) = max [L(ﬁi) + L'(B)(B — 51)] where

—ip<i<ig

4 o 7 i
o= |—-L| — <c¢ log < ct'™, t— oo, forsomec > 0.
e\ 2tA logt logt

Since the functions H and L are conjugate, we can rewrite

19) = max, |10 - HE@)],

—#0<i<ig

Thus, the expected value in (2.13) does not exceed

tAe YA—y

— Eexp{% +tA max [L'(ﬂi) YAA_ v H(L,(ﬂi))]}

—i0<i<3p

=1%o

< exp{——} Z Eexp{tL'(,Bz) (Ya—-y)— tAH(L'(ﬂi))}

i=—1o

- exp{téTe}(%o +1). (2.14)

To justify the above equality, use formula (2.8) in Chapter 5 of Freidlin and
Wentzell [3]:

Bexp{1/(8) (Va ~1) ~ ¢ A H(L(8) | =
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Finally, from (2.12) - (2.14), the second term in (2.5)

P( ﬁ A ({tge@ +e/z)}>
<exp{—(1+¢/2)t+ntAe/d+nlog (24 + 1)}
<exp{—(1+¢/2)t+et/4+cit" "logt} (for some c; > 0)

< —exp{—(1+ 8/8) t} for all large t. (2.15)

[N

From (2.11) and (2.15) the formula (2.4) holds, and, thus, the result of the

lemma follows. O

THEOREM 1 Suppose Assumption 1 holds. Then, for any s > 2,

L

P(Rtg(%—ka >—>1 as t — oo.

logt

PROOF: Denote H; = (3 + 1)t/logt. Let N; be the number of particles
located at time t above the level H;. It is not difficult to show that the total
number of particles alive at time ¢ has a geometric distribution with mean
exp{t} (see, for example, Sevast’yanov [6]).

Therefore, EN; = ¢! P (X; > H;). Hence, using the Markov inequality and

the result of Lemma 2, we have
P(Rt Z Ht) :P(Nt Z 1) S ENt = etP(Xt Z Ht)

<exp{t — (1+¢/8)t} =exp{—¢et/8} =0 as t +o00. O
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3 LOWER BOUND

Here we focus on proving that as ¢ tends to infinity,

h, t
> —)— 1
P(Rt > max(1, a)logt) —

As in the previous section, we let h = 1 everywhere in the proof.

Consider an interval [—L;, L;] where L; = (1 + 1/a)t/log®t, and consider
some time 7; which is small compared to ¢. More information about T; will
be given later. Let N; and N; denote the number of particles located at time

t inside of this interval and outside of it, respectively.

LEMMA 3

t—Ty

= e
P<Nt_Tt < 2logt> —1 as t — oo.

ProoF: By the Markov inequality and the fact that the expected number

of particles at time t is e?, we have

t—T%

P(Nt—Tt > £

< 2logt e T EN,_
- 210gt> = clogte =T

= 210gt6_t+Tt et_Tt P(Xt—Tg ¢ [—Lt, Lt]) =4 logtP(Xt_Tt > Lt)

<4logtP( max X, > L;).

0<s<t—T;

Next, we would like to show that

< —
P(OSIZSnS%}_(Tt Xs > In) < expi 8logt

1. (3.1)
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Then the result would follow:

et_Tf t
) <4logtexp{— }——>0ast—>oo
ogt

P(Nt T2 570

To prove (3.1), we proceed as in the proof of Lemma 2. Let &; = t/log”t.

The expression (2.9) for this case

)
< exp{t7e’ — C =2 4 coavdiitiy,
which for C' = logt/2 becomes
t 1,7
=2 ™~ 4 Vdtit logt
exp{t™ = g Vai:tilogt}
1
< 8n exp{— } for large enough ¢ if v < =

2

Therefore, in the present setting the first term in (2.5) does not exceed

exp{—

810gt}

Further,

t t

) >

V(Li—6;) =V :
(Le = 3) (alogzt 2logt

Take ¢ = 1/logt. Then, as in (2.15), the second term in (2.5) for the problem

under consideration,

t t

t'""logt
2logt + 4logt toa ogt}

< exp{—

1
< 3¢ p{— }for large t.

Thus, (3.1) is valid and the result holds. O
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LEMMA 4

P(Nt_Tt > t> —1 as t — oo.

PrOOF: Denote by N; the total number of particles at time ¢. Compute

5 et~ Tt = i+ T —t4Ty\n—1
P(M:—nZw) = Z e (L —e)

n=et—Tt /logt

— t— Ty
= (1 — e7tTe)y~1+e0/logt 4 1 a5 t — oo.

This fact and the result of the previous lemma imply the assertion. O

LEMMA 5 For any x € [—L, L;], and for all large enough t,

1, ¢
P, <XTt > max(l,a)@> > exp{—t + ¢t}

where ¢, = 1/(4da logt) if a < 1, and ¢; = loglogt/(2logt) if o > 1.
PRrROOF: First consider the case a < 1. An individual trajectory in our model

satisfies the equation X =-X*+ E . Suppose, the process X makes jumps
of size t* and reaches the level ¢/(alogt). Therefore, A = AX + X* =

t* + (3 lf)gt —1)* = k, say. Now, we choose T; to satisfy T; k logk = t.

Since —(1+ 2) ooy < ¢ < (1 + o) loarys We estimate k by

1 1. 1 “
* < t*|1 - (1+- <k
B< [ + (alogt ( +a)log2t> ] -

1 1, 1 \° 20
<t*|1+ + (14+-)— < e
o logt a’log”t
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Hence, ; ; o
Tik = Ty < ———, and Tilogk <t¢'™*
g logk ” %a logt’ ' alogt and felog

Therefore, we obtain for all sufficiently large ¢,

t
P,.| X1, >
( T =g logt)

> P, ( X makes jumps of size t* on 7T} unit intervals)

T:
=P, (f makes jumps of size k on T; unit intervals) = H —e

=1

which, by Stirling’s formula,

log2 T,
—exp{~T, + T,k — Tyk logk — °g2 T, - 5 logk + o(log k)}
3t1—a t -«
- —t— log ¢ —t .
> expi a logt + 20 logt 2 +o(logt)} > exp{—t + 4alogt}

Incase @ > 1,T; = 1, and a trajectory reaches the desired level in one jump.

t
p(x >
(1_10gt>

t
> P (5 makes one jump of size Bg_t — = on the unit interval)

We write

L)}

t
z) log(— — z) + o(@

t
= —— =exp{-1++— —7 — ( ot

(pgz — ©)! logt logt

t 1 1
-1 —-t+ —(1 4+ —)(loglogt — 14+ —

t loglogt

2 logt b

> exp{—1t +

15



THEOREM 2

1, ¢t
P(Rt > max(1, —-)—) —1 as t — oo.
o’ logt

ProoF: Let H; = max(1,1/a)t/logt. Then, by Lemmas 4 and 5, we have

P(R; > H;) _>_P<Rt > H;

et—Tt
Ny g >
=g logt) 8

et—Tt
P| Ni_g, >
8 < =T =g 10gt>

> P, (at least one of the particles reaches H; in time T3) X

— 2logt
et—Tt
et 2 logt et'"Tt
> 1 —-11-e ¢ P| Ny, > —1 as t—o00. O
2 logt
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