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ABSTRACT

In the present paper we derive a formula describing the limiting
behavior of the position of the rightmost particle in a one-dimensional
branching diffusion with a stabilizing drift and generalize the result to
a multi-dimensional case.
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1 INTRODUCTION

The concern of this paper is the asymptotic behavior of the right frontier of
a branching diffusion with a stabilizing drift. We start with a one-dimensional
case. Suppose a particle positioned at the origin at time 0 begins a diffusion

X which satisfies a stochastic differential equation
X, =b(X,)+W,, §>0, (1.1)

where b(z) is a smooth stabilizing drift and W is a standard Brownian mo-
tion. In a random time having an exponential distribution with parameter 1
the particle splits, and, henceforth, starting at the position of the splitting,
the created particles behave independently under the same law as the origi-

nal particle. And the process continues.



Introduce a potential U(z) = — [ b(y) dy. In what follows, the only pos-
itive branch of U(z) corresponding to £ > 0 is involved. We assume that
this branch is monotonically increasing, and, therefore, the inverse U™ is
uniquely defined. We give general assumptions under which the position R;

of the rightmost particle at time ¢ is governed by the law: for any ¢ > 0,

P(‘E:TJZ/—Z)—l‘<5)—>1 as ¢ — co. (1.2)

The problem of determining the spread of a driftless branching Brownian
motion had been studied by a number of authors (see, for example, Bramson

[2], or Biggins [1]). It had been established that in this case, for any ¢ > 0,
P(i — 1‘ <6)—>1 as t — oo.
V2t
The present study has been initialized by a conjecture in Lalley and Sellke
[7] that claims that the frontier propagation law for the Ornstein-Uhlenbeck
(O-U) process (b(z) = —x) is v/%, that is, for any ¢, P(|R; ~Vt] <¢) = 1
as ¢ — co. The heuristic analysis in [7] appeals to the observation that the
stationary probability density exp(—z?)/+/m of the O-U process determines

the approximation of the expected number of particles with positions greater

than z

e’ /oo exp(—y?)/v/mdy ~ exp(t — z?)/(24/7x) as T — oo.
The latter vanishes if z = z; = /.

An obvious generalization of this conjecture is a result stronger than (1.2):
for any € > 0, P<|Rt - U(t/2)] < s) — 1 ast — oco. One of the
methods to tackle this problem would be to use the Poisson Tidal Waves
technique of Lalley and Sellke [6], but it is not completely clear how it works
in our case. Instead, we use an approach based on the Large Deviations

Probabilities (LDPs) theory of Freidlin and Wentzell [4] and prove the weaker



result. However, the LDPs are less sensitive to the dimension of diffusion.
In this paper a multi-dimensional case is studied. We show that the domain
D(t) = {X : V(z) < t} is “swept” by the particles at time ¢, and there
are no particles outside of D(t) for large t. Here V(z) is a quasipotential
introduced in Freidlin and Wentzell [4] that plays the same role as 2U(z) in
a one-dimensional case.

A suggested alternative to our method would be the one introduced in
Freidlin [3]. We want to emphasize now that the results for our model do not
follow from those in Freidlin [3]. Freidlin considers branching diffusions with
motions satisfying X, = b(X,) + sWu, where ¢ is small, and the intensity of
splitting e72. In (1.1), if we make a time-scale change Y, = X/t, W, =
Wui/Vt, 0 < u < 1, we arrive at a branching diffusion with motion satisfying
Y, = b(tY,)+ Wu /+/t that splits with the intensity ¢. It would be the desired
model if the drift did not depend on ¢. Therefore, the case b(z) = —sgn(z)
is the only case covered by this approach. It yields the law: for any € > 0,

P(‘&—l‘ <s>—>1 as t — oo.
t/2

Nonsurprisingly, it coincides with formula (1.2). However, to prove our
result we have to assume asymptotical polynomiality of the drift with the
power greater than zero. The case of the constant drift does not comply with
the mechanism of large deviations. We show that the right frontier reaches
the high level U~1(¢/2) for large ¢ in the following way: the particles stay in
a relatively small neighborhood of the origin, multiplying, and only in a time
interval closely preceeding ¢, one of the particles makes a “large deviation”
and attains the high level.

The result (1.2) is proved in Sections 2 and 3. Section 4 is devoted to a
multi-dimensional generalization. Proofs of ancillary technical lemmas can

be found in Section 5.



2 1-D CASE. UPPER BOUND

In this section the “upper bound” portion of (1.2) is discussed. That is, our

objective is to show that under certain assumptions,
P(Rt < (1 +8)U_1(t/2)) —1last — oo.

In contrast to Freidlin and Wentzell [4], who study diffusions satisfying
X, = b(X,) + eW, for small ¢, here there is no “small parameter” in (1.1).
However, we make use of the fact that time tends to infinity. In what follows,
Hy is a “high” level, H; — 0o as ¢ — 00, and [0, T3] is a time interval typically

increasing as ¢ increases. We study the probabilities

Pw< max X, > Ht>

0<s<Ty
for all large t, where z indicates the initial point of diffusion, that is Xy = z.
A positive monotonically decreasing function w;, w; — 0, is called slowly
vanishing if for any ¢ > 0 the function w{H; — oo as t — oo.

Consider the action functional introduced in Freidlin and Wentzell [4]

T
Ior, () = % / (s — b(ps))?ds for any absolutely continuous ¢.
0

We want to study the performance of R; for any polynomially growing poten-
tial U(z) ~ z* as £ — 0o, @ > 1. The technical hurdle is that the behavior
of X is essentially different for @ < 2, @ = 2, and a > 2. For this reason,
we impose general assumptions and formulate an upper bound applicable
not just to the polynomial case. Then, we specify this upper bound on the

case-by-case basis.

ASSUMPTION 1 The drift b(z) \y —o0 as z / +oo . Let wy be a slowly
vanishing function, and Ty, 1 < Ty < t, be chosen so that for all large t the

inequalities are true
wtlb(tht)llI‘t Z Ht and wsz(tht)fZ} 2 U(Ht) (21)

4



LEMMA 1 Under Assumption 1, for any ¢ such that wH; < s < Hji,

0 < s <T;, the action functional

Ior, () 2 U(Hy) /ws.

For any X, X, = z, consider an operator B : (BX), = X, —z — [ b(X.) du.

ASSUMPTION 2 (STABILIZING DRIFT) There is a constant C' such that for

any T; the inequality holds
PoT, (X(l),X(z)) < Cpor, (BX(l),BX(2))

where por, (XM, X®) = maxoe,er, | XY — XP)|.

Introduce a set of absolutely continuous functions on the interval [0, T3] with

bounded values of the action functional:
QT =07 () ={ps, 0<s<Ti: o =2z, Ior,(¢) < A }

where A\; — 0o as t — .

LEMMA 2 If Assumption 2 is fulfilled and &; = +/Ti/w; with a slowly vanish-

ing function wy, then for any v > 0 and any z, the inequality is true

P, (pon (X, @°(N)) > & ) < exp{-N(1 -7}

LEMMA 3 If the assumptions of Lemma 2 hold, then for any r < H; — 4,
and any v > 0, the following inequality holds for all t large enough:

Pz( max X, > Ht) < exp{—Z(U(Ht —6)—U(x)) (1 - 'y)}

0<s<T;

LEMMA 4 (GENERAL UPPER BOUND) Let Assumptions 1 and 2 hold, and
let 6; = /2T;/wy. Assume 6y < wiHy. Then for any x < 2w Hy;, any v > 0,

and all large t, we have



Pz( max X, > Ht) <1- (1 - eXp{—?(U(Ht — &) — U(2w,Hy)) (1 — 7)}

0<s<t
exp{ ~U(HL) (1~ 7)1} ) (2:2)
PROOF: Let ¢ be so large that 2w, H; < H;— d;. Introduce Markov stopping
times
7 =1inf{s: X, > H;} and 5 =inf{s > Tt 0 X, < wiHy + 6}
Put

A= {r <2Ti} and B={n>2T;}.

From Lemma 3, for all sufficiently large ¢, we have the inequality

_min Py(4) < exp{—Z(U(Ht — &) — UQuwHy)) (1 — 7)}. (2.3)
If the random event A occurs, then X5, < H;, and by the strong Markov

property,

P,(AB) < maxP, <tht +o <X, <H, 0<s< Tt). (2.4)
y<Hi

By Lemma 1, any function ¢ such that ¢, < H; for 0 < s < T} and
Int, (p) < Ay = U(H;) /w; attains w Hy. Thus, if Xy =y,

{weH; +6: < Xo < Hy, 0< s < T} C {por (X, B¥(N)) > 4:}.
Therefore, from (2.4) and Lemma 2, one gets

A Yy
P,(AB) < maxP, (por, (X, 9¥(\)) > 4,)

< exp{ ~U(H,)(1 = 7)/w}. (2.5)

Now, we write

Pz(max X, < Ht) > Pw<Tt < n < 2T}, max X, < H;, max X, < Ht)
0<s<t 0<s<n n<s<t

= B.E[I{T, < n < 2T H{max X, < H}I{max X, < H}|7)



where F, = o{X,, 0 < s < n}. Noticing that the first two indicator functions
of random events are F, - measurable and using the strong Markov property,

/
we continue

—E, []I{Tt <1 < 2T {max X, < Ht}PXn< max X, < Ht>].

0<s<t—n
If the random event AB occurs, then, in particular, X is less than H; in the
interval [0,7], and T; < 5 < 2T;. Keeping in mind that t —n < ¢t — T; and
weH; + 6; < 2w H;, we have that the above

ZPZ(TtSn§2Tt, 012'3’25le<}[1‘:) min Py( max X3<Ht)

y<wiHi+6¢ 0<s<t—T¢

>P,(AB) min P( max Xs<Ht).
y<2w¢H¢ 0<s<t—Ty

Now, P,(AB) = 1—P,(A) — P,(AB), therefore, apply (2.3) and (2.5) to get

min P (max X, < H;) > (1 — exp{—?(U(Ht —6t) — UQQweHy))(1 — ’Y)}

$S2tht OSSSt

—exp{—U(Ht)(l—v)/wt}> min Py< max X3<Ht).

y<2wi Hy 0<s<t—T3

Repeat this estimate ¢ times and note that T; > 1. The lemma follows. O

Now we show that if the drift b(z) has a polynomial rate of growth and is
stabilizing, then the Assumptions 1 and 2 hold and the upper bound (2.2)
simplifies to 2t exp{—2U (H;)(1 — 2v)}.

ASSUMPTION 3 (POLYNOMIAL DRIFT) The drift b(z) ~ —z* ! as z —

+00, a>1, and b(z) ~ ()7t as z = —c0,” B> 1.

ASSUMPTION 4 (STABILIZING DRIFT) For any c > 0 there exists a positive

constant p = p(c) such that

BXW) - H(XD) 2 p(X® - XD), —c< XV <XO <o



LEMMA 5 (UPPER BOUND FOR A POLYNOMIAL DRIFT) If Assumptions 3
and 4 are satisfied, then (2.2) holds. Moreover, if Hy is such that as t — oo,
exp{—2U(H:)(1 — 2v)} = o(1/t), then, for all large t, we have

P( max X, > Ht) < 2t exp{—2U(Ht)(1 — 27)}. (2.6)

Proor: First, we check that Assumption 1 holds for polynomial drifts,
and that §; = /2T;/w; < wiH; as required in Lemma 4. We claim that
under Assumption 3 the inequalities (2.1) are satisfied with T; = 1 if o > 2,
Ti=1/wtifa=2and Ty = H */wiif 1 <a < 2.
Case a > 2. Using the definition of the slowly vanishing function w;, we find
that

wi(w Hy)* T, = w2 HR ™' = (WP H,)*2H, > H,.

The second inequality in (2.1) is also true:

W2 )T, = (2D )02 HE > HE = U(H).

NOW, 673 = 4/ 2,1—;5/(4& = \/i/wt S tht-
Case a = 2. We have that wy(w;H;)Ty = w;2H, > H,, and w?(w,H;)?T; =

H? > H? = U(H,). In this case, 6; = v/2T;/w; = v2/w? < w H,.
Case 1 < a < 2. We find that

Wt(tht)a_lﬂ = Ht/wf_a > Hy,

and
wi (W Hy) Ty = HY w2 > HY = U(Hy).

Finally,
= /2T, /w, = V2H,/(w3H?) < w,H,.
If Assumption 3 holds, then there are positive constants C, and C* such that

C. < |ab(z)|/U(z) < C*. (2.7)



For this reason,
U(H;) —U(H; — &) < 6C*U(Hy)/Hy < C*wiU(Hy).
Since U(H;) ~ H¥ as t — oo, there exists a constant C; > 0 such that
U (2w Hy) < C1(2w:)*U (Hy).

Therefore, for all ¢ large enough, we bound the first exponent on the right-
hand side of (2.2) by

exp{ —2(U(H, — 8) — U (2w Hy)(1 - )}

< exp{—2U(Ht)(1 — (1 - C*w; — Cy (2wt)a)} < exp{—2U(Ht)(1 - 27)}.

Since 7 > 0 is arbitrarily small, the upper bound in (2.2) does not exceed
t
1- (1 — 2exp{—2U(H,)(1 - 27)}) ~ 2t exp{—2U(H:)(1 - 27)} as t — oo.

In the above we used the assumption that exp{—2U(H;)(1 — 2v)} = o(1/t)
for large ¢t. Finally, we verify that Assumption 4 implies the stability con-
dition in Assumption 2. Denote p = por, (BX™, BX®). For simplicity, let
v=X®-XU andw=BX® —-BX®M. Fix an arbitrary s € [0,T;]. Denote
So the last time v = 0 and suppose, first, v is positive in the interval (sg, s).
Using Assumption 4 with specified ¢ = maXsogngt(IXs(l)L |Xs(2)|), we have

Vg = Ws — Wyy — / (X)) — b(X D)) du < 20 — u/ vy du < 2p.

S0 S0

Suppose now v is negative in the interval (sg, s). Hence, —v is positive. We
have

~vy = ~(w, — wy) = [ GO = bXP)) du < 20— [ (~u.)du<2p
S0

50

Thus, we have shown that for any s € [0,T3], —2p < vs < 2p, that is, the

inequality in Assumption 2 holds with C =2. O



THEOREM 1 If Assumptions 3 and 4 are fulfilled, then for an arbitrarily

small e > 0, we have

P(Rt < (1+E)U-1(t/2)) 5 1 as t — oo. (2.8)

ProoOF: In formula (2.6) put H; = (1 + ¢)U~(¢/2) and choose v = £C., /4
where C, satisfies (2.7). Let N; denote the number of particles in [H;, o) at

time ¢. Since the number of particles in existence at time ¢ has a geometric

t

distribution with parameter p = e~* (see, for example, Sevast’yanov [8]), we

obtain
E[Nt] = etP(Xt 2 Ht)

< 2tet exp{—2(1 _¢C, /2)U(U—1(t/2) n eU‘l(t/2)> } (2.9)
As follows from (2.7),

2U(U—1(t/2) +eUA(/2)) > ¢+ 2Ab(U(¢/2))eU(t/2)

>t 2eC*U(U“1(t/2)> = t(1+€C.).

Thus, from (2.9), for all large ¢, the upper bound holds
E[N,] < 2t exp{t —t(14¢C,)(1 - &C, /2)}

< 2t exp{—teC,/4} < exp{—tcC./8}. (2.10)
The Chebyshev inequality and (2.10) imply (2.8). O

REMARK 1 Lemma 4 shows that the random event {maxo<,<; X; > H;} is
“composed” of t/T; attempts to reach the level H; over time intervals of the
length T; . In Lemma 5, the length T; is finite if & > 2, near finite if a = 2,
and about H2™® if a < 2, since w; is a slowly vanishing function. Note that
in the case of a polynomial drift, H, ~ /% so that T; = o(t) as t — oo for

any a > 1.

10



3 1-D CASE. LOWER BOUND

The main interest of this section is showing that
P(Rt > (1-— 6)U*1(t/2)> — last — oo.

Consider an interval [—L;, M;] where the endpoints L, and M; are positive
functions such that U(—L;) = U(M;) = logt. Consider a time T; = o(t) for
large t. The rate of growth of 7; will be specified in the proof of Lemma 9
(see Remark 2). |

In order to prove the lower bound statement, we will show that a particle
located at time ¢ — T} inside the interval [—L;, M;] has an exponentially small
probability to reach the “high” level by time ¢, but there are exponentially
many candidates. Therefore, with probability close to 1 at least one of the
particles succeeds.

Let N;_7, and N;_g, denote the number of particles inside and outside of the

interval {—L;, M;] at time ¢ — T, respectively.

et—Tt

LEMMA 6 Ast— 0, P(Nt—Tt > rogt> — 0.

et— T
2 logt

LEMMA 7 Ast — oo, P(N,g_Tt > ) — 1.

LEMMA 8 Let W be a standard Brownian motion on the interval [0,T].

Take any 6 > 0 and denote v = 3(Z%). Then, for any stochastic integral

OTt f(s) dWs, for sufficiently large t,

T

T
P( i f(s) dW, > —\/41/Tt/0 f(s)?ds, por,(W,0) < 5> > %e""Tt.

The drift b(x) is assumed smooth, therefore, it satisfies the Lipschitz condi-

tion: for any ¢ > 0 there exists K = K(c) such that

pX D) —b(X®)| < KIXW — X, = max (IXP, | XP)).

11



LEMMA 9 Fiz § > 0 and let v = 2(&)?. Then, for any x € [—L;, My}, and
any “high” level Hy, if t is large enough,

.
P, (XTt > Ht> > Zexp{—-Ft VT, — \/81/{1}}7}}

where F, = 2U (Hy+6)-+v/20 Ko/ Tin/2U (Hy + 0)+02 K2T, ) 2+ G+ 26 K1 /it

62K2/2, (= (M;+ Lg)? + b2(My) v b*(—Ly), K, is some function, and K

18 a constant.

Proor: Consider a function ¢ such that ¢, =z + (M; —z)s for 0 < s < 1,
or, = Hy+ 0, and ¢, = —b(p;) for 1 < s < T;. Consider an auxiliary process
Y = X — ¢. Recalling the expression for the Radon-Nikodym derivative of

the measure of Y with respect to the measure of X, we write

P.(Xn, > Hi) 2 Pa(pon (X, ¢) < 8) = P (por,(¥,0) < )

= Blexp{ - / " (pumb(X2) aw,— OTt@s—b(Xs)Vds}ﬂ{pmw, 0) <.

Applying now the Chebyshev inequality and Lemma 8, we obtain

P, (XTt > Ht)

> %exp{—%/OTt(gbs—b(Xs))2ds—ny}—\/4l/’1} /OTt(gbs —b(Xs))2ds}. (3.1)

Further, we estimate

1

3| Gembxras< g [ o= beyds

Tt . 1 Tt
+ [ oe= ol o) ~ b s+ 5 [0 —b(X ) ds. (32
1
Note that the function ¢ is chosen to satisfy the Euler equation, and, there-
fore, it minimizes the action functional I;1,. By Theorem 3.1 in Chapter 4

of Freidlin and Wentzell [4], Ii1,(¢) = 2(U(pr,) — U(y1)). Hence,

12



; /1Tt(¢s — b(p,))? ds = 2U(H, + 8) — 2U(My) < 2U(H, + ). (3.3)

The Lipschitz condition with ¢; = max;<s<7,(J¢s|, | Xs|) and Ky = K(c;), the
Cauchy-Schwarz inequality, and (3.3) imply

/1 e — blpa)] [b(ps) — (X.)| ds

< Kipr (X, w)\/ﬁ\//l t(% — b(ps))? ds

< V20K\/Tir/2U(H, + 6). (3.4)
By the Lipschitz condition,

1 [T 1 1
5] (o) —bX)P ds < SR (X QT < SR (35)

From (3.2)-(3.5) we have

[ b0 ds < 200 +)

1
+V20K\/TiA/2U (H, + 8) + 552K3Tt. (3.6)

Similarly shown,

1

5/0 (‘Ps - b(Xs))z ds < %‘A (‘Ps - b(ﬁos))z ds

1 [! 1
+V20K; \/5/ (95 — blps))2ds + 552Kf (3.7)
0
where K; is the Lipschitz constant corresponding to ¢ = maxg<s<i1(|©s|, | Xs])-

Finally,

3 [ G- bteas = 3 [ (M2 bla (- 2)9) s

1
< (Mt—x)z—}-/ V(x4 (M, —2)s) ds < (My+ L;)* +b* (M) Vb (—Ls). (3.8)
0.
Combining (3.1), (3.6)-(3.8) gives the result. O

13



THEOREM 2 Suppose Assumption 3 and (2.7) hold. Then, for any arbitrarily

small e > 0,
P<Rt >(1- s)U-l(t/z)) 1 as t— oo

PrOOF: Put H; = (1 —e)U~(¢/2) and let §; = +/T;/(w:t) where w; is a

slowly vanishing function. Then, for sufficiently large ¢,

2U((1 —e)UL(t/2) +5t) < zU((1 —-s)U‘l(t/2)) +35tlb((1 —e)U‘l(t/2)>‘

<t- eU‘l(t/Q)‘b(U‘l(t/2))‘ +36[b((1 - U (t/2) ‘

From (2.7), the second term is less than or equal to —eC,t/2. By Assumption

3, there exists a constant ¢ = ¢(d,¢,a) such that the third term does not

a—1
o

exceed ct™« . Therefore,

Coy 1 ot
> .

2 (1= U (t/2) +6) <t -

Next, by Assumption 3, for large ¢, M; ~ (log t)é, L; ~ (log t)%,

b2(M;) ~ (logt)* ", and b*(—L;) ~ (logt) "7 .

Thus, in Lemma 9, {; < (logt)” where v = max(2, %, 2o2 2%2) +1.

[0

Consequently,

% a— C* a—
F<t- eg t+ct®S x/idtKﬂ/Tt\/t - 62 t+ ot s + 62K2T,/2

+(log )" + V26, K, (log t)"/* + 67 K7 /2.
Further, the function &; has been chosen specifically that 62K2T; = o(t) as
t — oo (see Remark 2 for the growth rate of T;). Hence, for large enough

t, F; <t—eCi,t/4. Thus, for all x € [—L;, My,

1 C, eC,
Pw(XTt > (1—5)U‘1(t/2)> > Zexp{—t—}-%t—-uﬂ}—\/Suﬂ} -5 t}

where vy = %( 2%)2 Again, §; is chosen so that 14T, = o(t) as t increases.

14



Whence it follows that for all sufficiently large ¢,

Pz<XTt >(1— e)U‘l(t/2)> > exp{—t + f*t}.

Taking into account this result and the result of Lemma 7, we compute

P(Rt >(1- e)U—l(t/z))

1 et—Tt
> — U™ s
> P(Rt > (1—e)U (t/2)’ Nig, > logt)x

et—Tt

2 logt)

P (Nt_Tt >

=P, (at least one particle reaches the level in time Tt> X

et—Tt
P(Ner > £
% t-Te = 2 logt
=Tt T
eCx o €
L (11— ) ] B (m > £
> [ e’ =T 7 9 logt

ast —>o00. U

REMARK 2 The time interval T; is determined entirely by the differential
equation satisfied by the extremal ¢ in Lemma 9. Under the assumption of
a polynomial growth of the drift, for large ¢, T} ~ 5 ifa < 2, Ty ~ logt
if « = 2, and T; is finite if & > 2. Note that in either of the three cases,

T; = o(t) as t — oo.

REMARK 3 If the potential U(z) is a polynomial, U(z) = |z|*, a > 1, Theo-
rem 2 can be proved also by means of a non-random time change as the follow-
ing heuristic illustrates. Put Y; = h;'X, where h, = U~!(s/2) = (s/2)Y/°.
Then the process Y satisfies

Y, = h%72b(Y,) — (as) 'Y, + h;1W..

For large s, the term (as)~'Y is negligible, hence, Y, ~ ho=2b(Y;) + h;1W,.

15



Now, the time substitution ds; = h® 2 ds defines a new stochastic process

Zg, = Yy(s,) such that

Zy, mb(Zs)) + 0, W,
where W is a standard Brownian motion and o,, = ((a — 1)s;/a)~%/(4e=4),
Indeed, the transition from h;le to aslﬁ/sl is justified by the identity
hy2ds = o2 ds;.
The terminal instant s = t corresponds to t; = s;(f) such that ¢t/2 =
((a ~ 1)ty /a)®/@e=2) Thus, o, = ((a — 1)tr/a)*/e=) = /2]t If 5, is
close to the terminal time ¢;, then o, ~ oy,, therefore, the process Z;, is a

small random perturbation of a dynamical system satisfying

Zsl ~ b(Zsl) + Utlwsl'
Hence, by Freidlin and Wentzell [4], for sufficiently large ¢,
P(Y;>1—¢)=P(Z, >1—¢) < exp{—20,°U(1 —¢)}

= exp{—(1 — €)%t} =~ exp{—t + aet}.
Further, at time close to ¢ there are at least exp{t — logt¢} particles with
probability close to 1. Therefore, as in the proof of the above theorem, the
probability that at least one of the particles reaches the level (1 —¢)U~(¢/2)

tends to 1 as time increases.

4 MULTI-DIMENSIONAL CASE

In this section we study a d-dimensional branching diffusion, d > 1, with

individual trajectories governed by a stochastic differential equation
X, =b(X,) +W,, s>0,

where b(z) is a smooth vector field in R?, and W denotes a standard d-
dimensional Brownian motion. An essential difference from a one-dimensional

case is that b(z) is not necessarily potential.
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A multi-dimensional analogue of the action functional is

1 [T .
Ior(p) = 3 |95 — b(ws)|“ ds
0
where ¢ is absolutely continuous on [0, T'], and |-| denotes the Euclidean norm
of a vector. Following Freidlin and Wentzell [4], introduce a gquasipotential

V(z) by
V(z) =inf{lor(¢) | T >0, o =0, or =z}, z € R4

For any A > 0, define a set D(A\) = {z, z € R¢: V(z) < A} bounded by a
level surface of the quasipotential.
It is convenient to state a multi-dimensional analogue of (1.2) separately for

upper and lower bounds: for any € > 0, as t — oo,

P (at time ¢ there exists a particle outside of D((1 + e)t)) —0, (4.1)
and

P (at time ¢ there exists a particle outside of D((1 — €)t)) —1. (4.2

REMARK 4 By Freidlin and Wentzell [4], in a one-dimensional case, V(z) =
2U(z). Therefore, D(t) = {z : V(z) = 2U(z) < t} and the right endpoint
of D(t) is U7'(¢/2). In (1.2) we claimed that with probability close to 1, for
large t, R; is bounded by (14 €)U~1(¢/2). This statement is still valid if the
bounds are replaced by U~1((1 =+ ¢)¢/2) since, in view of (2.7), for large t,

3eC*

) < V(-0 (4/2) < V(R < V(A+U(E2) < (1450

2
This shows that the behavior described by (4.1) and (4.2) takes place in a

(1-

one-dimensional case as well.

In some multi-dimensional instances, the quasipotential V(z) can be written

out in explicit form.
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EXAMPLE (ORNSTEIN-UHLENBECK PROCESS) Let the diffusion process
satisfy X, = AX, + W,, s > 0, where A is a d x d stability matrix (i.e.,
the real part of each of its eigenvalues is negative). Then, the quasipotential

= Lo/[f 7 e*eA e ds] "z, If A is assumed normal (AA' = A’'A), then
V(x) = —12/(A+ Az, and if A is symmetric, V(z) = —z'Az.

To prove (4.1) and (4.2), we have to impose assumptions similar to Assump-
tions 1 and 2. But first, we start with a technical assumption on the geometry

of domains D(\).

ASSUMPTION 5  For all large A, the domains D(A) have smooth boundaries
OD()) diffeomorphic to a sphere in R,

Denote by H(A) the diameter of D()). Let VV (z) be the gradient of V(z),

and put

Be(A) =z€rgg(1A)IVV( z)] and B(}) = Dax VV(z)].

ASsuMPTION 6  Let B.()\) have a monotonic polynomial rate of growth in

A, so that

Be(A) = in (VV (=),

and let there exist positive constants Cy and C* such that for all X large

enough, the following inequalities hold:

C, < B(A) and C, <

=50 < *f <C. (4.3)

REMARK 5 Note that the latter inequalities in (4.3) are analogous to (2.7),
while the former inequality is a regularity condition on V' (z) that assures the

uniform rate of growth of the quasipotential in all directions.
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Let \; — oo as t — oo. Call a positive monotonically decreasing function

wy, wy — 0, slowly vanishing if for every a,b > 0, w2H (w?X;) — 0o ast — oo.

ASSUMPTION 7  For any Ay — 0o, there exist Ty, 0 < T; < 't, and a slowly

vanishing function w; such that, for all large t, the inequalities
wfﬁ* (wt)\t)’l} 2 H(wt)\t) and wf,@f(wt)\t)Tt Z /\t

are true.

LEMMA 10 Suppose Assumptions &5 - 7 hold. Then for any function ¢
such that v, € D(X\) \ D(wih), 0 < s < T, the action functional

Tory (9) > At/ws.

LEMMA 11 Let Assumptions 5 - 7 and a multi-dimensional version of
Assumption 2 be valid. Then for any x € D(3wX:), any arbitrarily small

v > 0, and all large t, we have
P.(X, # D)) < 1- (1-exp{ M1 -4 (1) }—exp{-X(1-7) /e })

<1- (1 — 2exp{—X(1 — 27)})t ~ 2texp{—X(1 - 27)}.

THEOREM 3  If the conditions of Lemma 11 are satisfied, then the upper
bound (4.1) holds.

PRrROOF: The proof is identical to the proof of Theorem 1. Let N; denote the
number of particles outside of D((1+¢)t). Applying Lemma 11 with y = ¢/4,

one gets
E,[N)] < 2t exp{t —t(1+e)(1— 27)} < exp{—te/8},

and the Chebyshev inequality completes the proof. O
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Remained to show that the lower bound (4.2) holds. For some instant ¢ — T3,
denote N;_z, the number of particles inside D(2logt) and Nt_.Tt the number
of particles outside of the set. In this notation, the results of Lemmas 6 and 7
are valid and the proofs translate directly. The statement of Lemma 8 is also
true in a multi-dimensional situation, if the stochastic integral is understood

to be OTt( f(s),dW;) where (-,-) is the Euclidean scalar product of vectors.

LEMMA 12 Suppose Ay — 00 ast — oco. Let wy be a slowly vanish-
ing function. Take 6; < wfH(X;) and denote vy = 5(5-)>. Then, for any

z € D(2logt), for all large t,

P.(Xn ¢ DOV)) > g exp{~Fi — uT, ~ VEuTiF, |

where Fy = (14w) \s+v26: Kn/Tin/ (1 + wi) \e+02 K 2Ty /2+2 log t+62 k2T, /2
+ 20:k¢\/Tiv/10gt, Ky, ke, and 7 are some functions.

PRrROOF: Specify z € D(2logt) and y € 0D((1 + w)A;). Let ¢ be a com-
bination of two extremals ¢; and @, such that ¢;(0) = 0, ¢1(r;) = z for
some 73, and ¢2(0) = 0, @2(T3) = y. That is, formally, ¢; = ¢1(7 — s), if
0<s<m,and @, = pa((s — )T/ (Ty — 1)), if » < s < T;. Denote k; and
K the Lipschitz constants corresponding to ¢; = maxo<s<r (|¢s|, | Xs|) and

¢ = MaXy<s<7,(|9s], | Xs|), respectively. Note that

1

! /Ort |<p3 - b(@s),2 ds = V(‘Pl(Tt)) — V((pl(())) = V(.’E) < 2logt,

1

3 | 10— bl ds = Vi(a(T) = V(0a(0) = V(o) = (L + @)

The rest of the proof is the proof of Lemma 9 with the above modifications. O

REMARK 6 By Lemma 3.1 in Chapter 4 of Freidlin and Wentzell [4], the
optimum speed along an extremal is the modulus of the drift. If the drift is

polynomial, the speed outside of a sufficiently large domain exceeds any given
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constant, and the time of motion is below the length of the extremal over
an arbitrarily large constant. The length of the extremal is not larger than
O(|y|) where y is a terminal point. This reasoning shows that 7. = o(logt)

and T} = o(t) as t — oo.

THEOREM 4  Under conditions of Lemma 12, the lower bound (4.2) holds.

PROOF: In Lemma 12, take \; = (1—¢)t. For large enough ¢, (14+w;)(l—¢) <
1 — wie. Now, in view of the above remark, d; can be always chosen so that
2logt + 26:k/Te\/Togt + 67ki7/2 < (logt)” for some v > 1, 07 KTy = o(t),
and T;/6? = o(t). Hence, for sufficiently large t,

1
Fy < (1wt -+ VB Ko/ Tonf (T i)+ S02KET, + (logt)7 < - %54,
and

P, (XTt ¢ D((1 - s)t)) > %exp{ t+ —t — Ty — /8Ty [(1 — %

tst}

The calculation carried out at the end of Theorem 2 finishes the proof. O

w
> exp{—t +

5 APPENDIX

ProoF oF LEMMA 1 By the Cauchy-Schwarz inequality,

1

) =5 [ o= ttodPds 2 g ([ (0= blo) ds)’

2;} ((SDTt ©o) -I-/OTt |b(<,03)|d3> > ﬁ(w(wtﬂt”ﬂ ) _

Here we used the fact that o, —py > —(1—w;)H; > —H; and fOTt |b(s)| ds >
|b(weHy)|T;. The first inequality in (2.1) implies that for all large ¢,
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|b(weH)|T;/2 > Hy. Thus, from the second inequality in (2.1), we obtain
that

Tin(p) > S8 (0 H)T, > U(H)/(87) > U(H)fw, O

PrOOF OF LEMMA 2 It can be shown (cf. Theorem 2.2 in Chapter 3 of
Freidlin and Wentzell [4]) that for any v > 0 and any & > 0 sufficiently small,

a standard Brownian motion W,, 0 < u < 1, satisfies

P<p01(6W, §(1)) > d) < exp{—(1 —7)e~?} (5.1)

where

- - 11 dipu,,
2 /o " du

and d = d(¢) is such that d(¢)/e — 00 as e — 0.
Put ¢ =, = 1/+/A; = 0 as t — oo, and define a set of functions

1 [T
) = {5, 0<s<T: 5 [ 4fds <Al
0

If we introduce W, = (BX), and ¢ = (Byp);, 0 < s < T;, then Assumption

2 implies
P (por, (X, 8°(\)) > &) < P (o (W, T(A)) > 6/C).

With the time-space rescaling, we define another standard Brownian motion

W, in the interval [0, 1] where
Wy =Wu/VT, 0<u<l.

Put b, = .1, /+/T; and note that

P (por, (W, U(A)) > 6/C) = P (oo (W, E(N)) > 8/ (CV/T2))

— P(pm(etW, J(1) > (st/(cw/mt)).
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Finally, using that §; = /T;/w;, we note that d; = 6;/(C+/Ti);) satisfies
di/er = 6,/ (C/T,) =1/(Cwy) = 00 as t — oo.

Thus, (5.1) applies, and the lemma follows. O

PROOF OF LEMMA 3 As shown in Freidlin and Wentzell [4], for any function
¢ such that g = z < H;—§; and o1, > H;— 4y, the action functional Iyr, ()

satisfies the inequality
Ior,(p) 2 2(U(H; — 6) — U(z)) = As.
Consequently,

{Org% Xs 2 Hi} C {por, (X, @7 (Ns)) > 6:},

and Lemma 2 applies. O

PrROOF OF LEMMA 6 By the Chebyshev inequality,

t—T3

P(]\"ft_n >

< 2logt e TREN,_
- 210gt) = clogte =Tt

=2 logt e‘t+Ttet_TtP(Xt_Tt ¢ [~L, Mt]) — 2 logt P(Xt_Tt & [~Ls, Mt]).
Now, recalling the assumption U(—L;) = U(M,) = logt and applying Lemma,

5, one gets

P(X,z, > M) < P( max_ X, > Mt)

0<s<t—T}
< 2(t — Ty) exp{ —2U (My) (1 — 2)} < 2/t%.

Similarly shown, P(Xt_Tt < —Lt) < 2/t=%. Thus,

P(Xt_Tt ¢ [~ Ly, Mt]) < 4/81,

Finally,
t—~T¢

—0ast—o00. 0O

) < 8 logt

_ e
P (Nt_Tt > <

— 2 logt
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PROOF OF LEMMA 7 Denote N;_;, the total number of particles alive at

time ¢ — T;. Simple computation gives

et—Tt o n—1
P(N;—Tt > 1 t) = ¢ -T0) Z (1 — e_(t_Tt))
& n=1+et~Tt /logt
et~ Tt [logt
= (1 — e_(t_Tt)) ~ ¢ g% —3 1 as t — oo.

Using this and the result of Lemma 6, we obtain

t—T}

e
P(N_ > )
YT 7 9 logt
et-—Tt _ et—-Tt
P (Vg > S Fom < S
- =T logt’ " e ™ 2logt
=T ~ =T
>P(N* ——) P(N_ —-)—1—>1 oo, O
> =T, > log? 1, < 2 Tog! ast — oo

PROOF OF LEMMA 8  For simplicity, denote I = ( fOTt f(s)?ds)'/? and
¢ = VAUT,. Let z > 0 be a variable. The Chebyshev inequality and a simple
fact that if w ~ N(0,02), then Ee?l?l < 2¢#°7°/2 imply
T{; Tt
P([ f(s)aw, < —cI) <P(2| [ f(s)aW,| 2 zel )
0 0
T:
< e *'E exp{2| f(s) dW,|} < 2exp{z*I?/2 — zcI}.
0
The exponent is minimized for z = ¢/I and the minimal value is 2e~/2 =
2e~ 2T,

Further, it is known that P(pth(W, 0) < 5) > le7vTe (see, for example,
Gikhman and Skorokhod [5]). Therefore, for large enough ¢,

T:
P( £(s)dW, > —cI, por, (W, 0) < 5)
0

> P( " (5) dW, > —cf) —|—P<p0Tt(W, 0) < 5) 1
0

1 1
>1— 22T 4 -2-6_”T‘ —-1> Ze“’Tt. O

24



PROOF OF LEMMA 10 At each z, z # 0, define e(z) to be the unit vector
in the direction of the gradient VV'(z), i.e., e(z) = VV(z)/|VV(z)|. Note

that
|05 — bws)| > [{@s — bps), e(s))]

Hence, as in Lemma, 1, we have the inequality

o) = 5 [ ((poclo) - (e elo) s

T

= i b d :
> — g - . .
> o ([ @aetw as— [ ) el ds) (52)
The quasipotential V () satisfies the Hamilton-Jacobi equation (see Freidlin

and Wentzell [4]):
§|VV(23)|2 + (b(z), VV (z)) = 0.

For this reason,

1 1 1
~(b(pa) elp) = 5IVV@) 2 5 _min | [TV(@)] = 56wk,

and - )

- [ 0tod.elp) ds = 3BT,
Next, recalling that ¢, € D(A;) \ D(wiA:) when 0 < s < T}, we estimate the
first integral in (5.2):

| / (@arelps)) ds| = [VV (@) / (ber VV (i02)) ds]

<| / B0y YV (102)) s/ Bulwede) = V(o) — V(00) |/ Bulwee)

(1 e wt))\t < )\t < H(wt/\t)
Bu(weAs) ~ Belweds) = Ciwy
where (4.3) is used in the final stage. By Assumption 7, for all large ¢,

<

H((.Ut/\t)
C’*wt )

1
Z'B* (wt/\t)Tt >

Hence,
1
Ior,(p) > gﬂf(wt/\t)Tt > A/ (8w?) > A\/ws. O

25



ProoOF OF LEMMA 11 The proof of this lemma essentially follows the lines
of the proof of Lemma 4. We have to verify an upper bound analogous to
that in Lemma 3. We prove the following version of Lemma 3: for any v > 0
and any z € D((1 — wi)\y),

P, (Xs ¢ D()\;) forsome s, 0<s< Tt> < exp{—((1——wt)/\t—V(:z:))(1—’y)}.

Consider a set {¢ : o =1z, @s & D((1 —w)As) for some s, 0< s < Ti}.
Note that for any ¢ in this set, the inequality holds

Ior(p) > (1 —w)h = V(z) = A

Put & = +/Ti/w; and assume that & < w?H(w;)\;). We show that the
d:-neighborhood of D({1 — w;)As) is in D(As). Indeed, the distance between
0D(X:) and 0D((1 — we)As) is no less than
WAs . WiAs
mianJ%D((l—wt))\t) IVV(:L')' ﬁ*((l - wt)’\t)
(JJtH((l — (.L)t))\t)
- (1 - wt)C’*

Thus, if a trajectory X leaves D()), then por, (X, ®%();)) > &; where

*(\) ={ps, 0<s<T; : wo=2, Iy, < S\t}, and the upper bound from

Z wa(wt)\t) __>_ (5,5.

Lemma 2 applies.
The proof is finished by making proper adjustments in the proof of Lemma

4with r =inf{s: X; &€ D(A)} and n=inf{s > T; : X; € DQ2wA:)}. O
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