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1. Introduction

Infinitely divisible distributions were introduced by de Finetti in 1929 and the most
fundamental results were developed by Kolmogorov, Lévy and Khintchine in the thirties.
The area has since continued to flourish and a huge body of deep and elegant results
now exists in the literature. There have been many significant developments in the area
in the last 20 to 25 years, and a contemporary review seems to be needed. This article
provides a review on both univariate and multivariate infinitely divisible distributions, with
a significant review of the recent development in inference, simulation and applications.

The first question is what are infinitely divisible (id) distributions? The following
definition most fits the name, although other equivalent characterizations are available
and are to be described later.

Definition 1. A real valued random variable X with cumulative distribution function
(cdf) F(-) and characteristic function (cf) ¢ is said to be infinitely divisible (id), synony-
mously F' is an id law or ¢ is id, if for each n > 1, X can be divided into n independent and
identically distributed (iid) components, i.e., there exist iid random variables X1,..., X,
with cdf say F,, such that X has the same distribution as X; + ...+ X,,.

Remark 1. Since such a “division” of X into “small” independent components is possible
for each n, the name infinitely divisible seems appropriate.

Example 1. Let X have the standard normal distribution. For a given n, take X1,..., X,
as iid N(0,1/n). Then X has the same distribution as X; + ...+ X,,. Thus the standard
normal distribution is id. Indeed, this argument shows all univariate normal distributions
to be id.

Example 2. Let X have a Poisson distribution with mean 1. For a given n, take
X1,...,Xp as iid Poisson random variables with mean 1/n. Then X has the same distri-
bution as X; + ...+ X,. Thus the Poisson distribution with mean 1 is id. Indeed, this
argument shows all Poisson distributions to be id.

Example 3. Let X have the continuous uniform [0, 1] distribution. Then X is not id.
For if it is, then for any n, we will be able to find iid random variables X;,..., X,, with
some distribution F, such that X has the same distribution as X; + ...+ X,,. Since X
takes values in [0, 1], it will force the supremum of the support of F,, to be at most 1/n.
In turn, this will force the variance of X,, to be at most 1/n2 and so the variance of X to
be at most 1/n, which would patently contradict the fact that the variance of X is 1/12.
We see that X cannot be id.

Remark 2. Indeed, any random variable X with a bounded support cannot be infinitely
divisible, unless of course X is a constant. The method outlined in Example 3 works for

all such X. As a consequence, binomial, hypergeometric, and beta distributions are not
id.



This raises the natural question:

Question 1. Which real valued random variables with unbounded support are id?

This question can be completely answered via several equivalent characterizations
available for id laws. Some of these are given below. Interestingly most common uni-
variate random variables with unbounded support are infinitely divisible. But there are a
few common univariate random variables with unbounded support that are not infinitely
divisible. Here are two lists which cover univariate distributions in common use:

List 1. Those that are infinitely divisible: This includes the discrete distributions
such as Poisson, geometric and negative binomial and the continuous distributions normal,
lognormal, noncentral chi-square, ¢, exponential, Gamma, double exponential, Pareto,
Cauchy, half Cauchy and squared Cauchy.

List 2: Those that are not infinitely divisible: This includes finite mixtures of
normals, discrete normal, absolute normal, inverse normal and inverse t.

Remark 3. In a good number of these cases, the proof that a certain distribution is
or is not id nontrivial and an utterly specialized task. Instances of this are the proofs
that half Cauchy, lognormal, and ¢ distributions are id. Similarly, the proofs that inverse
normal and inverse t distributions are not id require tricks that are not well known. It is
a peculiarity of the subject, a bit like admissibility in decision theory, that hard special
techniques may be needed for particular special problems.

2. Characterizations

Now let us return to Question 1. A number of equivalent characterizations will be
given. We shall also discuss results known for subclasses such as the class of all nonnegative
random variables and all nonnegative random variables which have density.

2.1 General characterizations.

First, let us see another familiar but motivating example.
Example 4. Fixn > 1, and take X1, ..., X, to be iid Bernoulli (p,) random variables.
Then S, = Xp1 + Xpn2 + ... + Xpnn has a binomial(n, p,) distribution, and if p, — 0 as

n — oo in such a way that np,, — A, for some 0 < A < 00, then S, converges in distribution
to a Poisson random variable with mean A\ which is id.

Note that the distribution of X;, does depend on n, and that the limit distribution
is Poisson, which is id. Hence we may ask the following question:

Question 2. Fixn > 1. Take X,1, Xno, . .., Xpn to be iid with some common distribution
say H,. Take as in Example 4, S,, = X1 + Xn2+ ...+ X,. If S, has a limit distribution,
say F', can we assert anything interesting about the nature of F'?

The answer provides our first characterization:
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Characterization # 1: Such an F' is id and conversely, every id F' arises in this fashion.

Remark 4. In Question 2, the random variables X,1,..., Xn, at the nth stage have a
distribution H,, that depends on n; in other words, the random variables X;, formed a
triangular array. Suppose instead that we have one sequence of summands which are iid
but we allow appropriate centering and normalization. This raises the following question:

Question 3. Suppose X, Xs,... is an iid sequence with some common distribution
H. Take S, = X; + X2 + ... + X,,; suppose, for some sequences of numbers a,, and
bn, (S — an) /by, has a limit distribution, say F'. Can we assert anything interesting about
the nature of F'?

Question 3 is a special case of Question 2 by taking X;, = X;/b, — an/(nb,). So
certainly our limit law F' in Question 3 is id. The collection of all such F’s is thus a
subclass of the class of all id laws. This subclass is the class of all stable laws and can also
be defined as follows:

Definition 2. A cdf F on the real line is said to be stable if for every n > 1, there exists
constants b, and a, such that S,, = X; + X + ...+ X,, and b,X; + a, have the same
law. Here X1, X5, ..., X, are iid with common distribution F.

Remark 5. Thus F is stable if the sum of n iid observations from F has the same type
of distribution as one observation X;. By same type we simply mean that a location—scale
transformation of X; gives the distribution of the sum S,. It turns out that b, has to be
asymptotically equivalent to n/® for some 0 < & < 2. The constant « is said to be the
indez of the stable distribution F'.

Example 5. It is known that all stable laws have densities that are infinitely differentiable
and all derivatives are bounded. However, there are only three types of stable laws for
which the density functions are known in simple closed forms. These are the (i) the normal
distribution which is stable with index 2, (ii) the Cauchy distribution which is stable with
index 1 and (iii) the Levy distribution which is stable with index 1/2.

Let us return to the issue of characterizing id laws at large. There is a very elegant
characterization of id laws as compound Poisson distributions.

Characterization # 2. Take an infinite sequence of iid random variables X, X5, ...,
with a distribution say H, and take a Poisson random variable N independent of the X;’s.
Define a new random variable X as

X=X14+...+Xn;
then X is infinitely divisible. Conversely, every id law arises in this way.

A nice use of this characterization is the following:

Example 6. Take X to have a noncentral chi-square distribution with say one degree
of freedom and some noncentrality parameter. It is well known that X may be written as
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Y1+ Y2+ ...+ Yoni1, where the Y; are iid central chi-squares with one degree of freedom
and N is an independent Poisson random variable. Write X; = Y5 + Y3, Xo = Y4 + V5,
etc. Then X =Y, + (X1 + Xo+...+ Xn), where Y7 is id. The quantity in parentheses is
also id by characterization # 2, and hence so their sum. That is, X is id.

We next turn to the most common means of characterization of id laws, namely by
their characteristic functions. These characterizations are known in a number of different
forms. Some are easier to describe, while others are easier to apply. We give two of these
forms, one for the finite variance case, and another for the general case.

Characterization # 3.
Form A Let F be an id law with mean b and finite variance and let ¢(¢) denote its
characteristic function. Then w(t) = log ¢(t) admits the representation

oo

w(t) = ibt + / (et7_1 — jt) PUT) 1)

2
—00 x

where y is a finite measure on the real line. Furthermore, u(R) = Var(X).

Example 7. Suppose F is the normal distribution with mean 0 and variance ¢?. Then
the measure u is degenerate at 0 with point mass o2 there and b is 0.

Example 8. Suppose Y has a Poisson distribution with mean A and take F' to be the
distribution of a location — scale transformed version X = ¢(Y — A). Then the measure u
is degenerate with mass ¢? at ¢ and again, b is 0.

Remark 6. Form A can be roughly interpreted as follows. The measure p corresponding
to a general infinitely divisible law F is degenerate for the cases when F' is normal or
Poisson. A general p can be approximated by linear combinations of such degenerate
measures. In other words, a general infinitely divisible law is a limit of finite convolutions
of normal and Poisson type random variables. This is in fact true without the finite
variance assumption made in describing Form A above.

Form B Let F be an id law and let ¢(¢) denote its characteristic function. Then w(t) =
log ¢(t) admits the representation

<, tr | 1+ 22
w(t)=ibt—t202/2+/ (e —1— 1:3;2) ik

—00

dA\(z) (2)

72

where b is a real number, and A is a finite measure on the real line giving mass 0 to the
value 0, i.e., A{0} = 0. The integrand is defined to be —¢2/2 at the origin, by continuity.

Remark 7. This is the original canonical representation for the characteristic function
of an infinitely divisible law given by Paul Lévy. However, for certain applications and
special cases, Form A is more useful.



We have seen that a Poisson random variable X is id. A Poisson type random variable
is one of the form aX + b. Id laws can also be characterized by writing them as limits of
convolutions of such Poisson type random variables.

Characterization # 4. F is infinitely divisible if and only if it is the limit in distribution
of S, = X1+ X2+ ...+ X, where X; are independent Poisson type random variables.

Remark 8. This representation of infinitely divisible distributions has been used to
simulate observations from an infinitely divisible law. See section 5 later.

2.2 Characterization of nonnegative discrete id laws.

There is an elegant characterization of all distributions supported on the nonnegative
integers that are id. The characterization says the following.

Let X take values 0,1,2,..., with P(X = k) = px. Then X is id if and only if

. i—1
m= N g2 >0 viz

bo 43 Po

Remark 9. Due to the recursive nature of this characterization, it is usually difficult to
use it for verifying that some distribution is id. But it can be used to verify that a certain
distribution is not id. Let us see an example.

Example 9. Consider the discrete standard normal distribution with mass function py =
2[0(2m)~ 1)+ 1]~ exp(—k?/2) where () is the Jacobi theta function. Then n; = .6065 > 0,
but 73 = —.0972 < 0, and it follows that the discrete normals are not infinitely divisible.

However, simple and verifiable sufficient conditions that imply the above characteri-
zation are available. One such sufficient condition is the following:
Sufficient Condition. Let X take values 0,1,2,..., with P(X = k) = px. Then X is id
if log pr. is convex in k.

This is often verifiable. Another very nice consequence of the characterization result

is a necessary condition for a discrete distribution to be id. It says the following;:

Necessary Condition. Let X take values 0,1,2,..., with P(X = k) = pk, with p; > 0.
Suppose X is id; then for all k£ > 1, pi > 0.

Remark 10. This says that the support of a discrete id law cannot have any gaps if
P(X =1) is strictly positive. We will see below that a similar result holds for positive id
random variables with a density as well.

2.3 Nonnegative id laws with densities.
One of the most important and useful results on id laws is the Goldie-Steutel law

for positive random variables, which we will describe shortly. In general, the proof that a
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certain positive random variable having a density is id may be accomplished in one of the
following ways:

a. verify that the Goldie—Steutel law applies;

b. try to verify a known characterization result parallel to the discrete case;
c. use a known sufficient condition;

d. use a special technique for that particular problem.

The problems that are solved by using technique d) generally turn out to be the
difficult ones; the lognormal and the half Cauchy are two instances.

The Goldie—Steutel Law. Let a positive random variable X have a density f(z) which
is completely monotone. Then X is id.

Remark 11. Complete monotonicity means that the function is infinitely differentiable,
decreasing, and derivatives of successive orders have opposite signs. It is well known that
such functions may be written as exponential mixtures. So the Goldie—Steutel Law may
also be stated as saying that a positive random variable X with density f is id if it can
be written as X = Y Z, where Z is exponential with mean 1, and Y is nonnegative and
independent of Z. The nice thing about the Goldie-Steutel Law is that many positive
random variables are known to be of this variety, and a fortiori, they are id.

Example 10. Let X have the Pareto density f(z) = m ;_"If—“)o“"l. Then, easily, f
is completely monotone, and so X is infinitely divisible. It can be verified that in the

representation X =Y Z as above, Y has a Gamma density.

There is an extension of the Goldie-Steutel law that is sometimes useful. The ex-
tension says that certain improper exponential mixtures are also infinitely divisible. The
statement is as follows:

Extension of the Goldie—Steutel Law. Let X have a density f(z) of the form

f(z) = / " exp(—at)g(t)dt,

where g(-) changes sign once. Then X is id.

Now let us see the continuous analogs of some of the results we saw in the discrete
case. First, a characterization of id laws in terms of the density function:

Characterization of nonnegative id laws with densities. A nonnegative random
variable X > 0 with density function f(z) is id if and only if there is a nondecreasing
function 7(u) on [0, 00] with [ u~1dr(u) < oo, such that f(z) may be written as f(z) =

7t [§ fz — w)dr(u).



Verifying whether a given f may be written in the above form corresponds to solving
an integral equation with difficult constraints. So as in the discrete case, the above char-
acterization is not necessarily easy to apply. But fortunately, there are certain verifiable
sufficient conditions and necessary conditions for applications. We give one pair below.

Sufficient condition. Let X be a positive random variable with a strictly positive de-
creasing and twice continuously differentiable density f(z). Then X is id if

Fe) 1. @)
W) 7 Fle)

Voi<y<Luz.

This is very explicit and one can attempt to analytically verify it. Another extremely
elegant necessary condition is the following.

Necessary condition. Let X be a positive id random variable with a density f(z). If
f > 0 in some neighborhood of 0, then it cannot have any zeroes.

Remark 12. Note that this parallels the result for the discrete case that the support of
X cannot have any gaps.

3. Properties of id laws

Id laws have very interesting properties in terms of their characteristic function, mo-
ments and tails. Moreover, subclasses of id laws such as those that are unimodal, totally
positive etc turn out to be quite interesting. We shall discuss some of these below. The
important subclass of stable laws is treated separately in subsection 3.3.

3.1 Properties of the characteristic function.

Characteristic functions of id laws satisfy some clean properties. Such properties are
useful to exclude particular distributions from being id and to establish further properties
of id laws as well. They generally do not provide much probabilistic insight, but are quite
valuable as analytical tools in studying id laws. A collection of properties is listed below.

1. Let ¢(t) be the characteristic function (cf) of an id distribution. Then ¢ has no real
zeroes. The converse is false.

2. Let ¢(t) be the characteristic function (cf) of an id distribution. Then for all A >
0, ¢*(t) is also a cf. Here ¢*(t) is to be defined as exp(ALog[¢(t)]), where Log].]
denotes the distinguished logarithm.

3. Let ¢1(t), ¢2(t) be two id cfs; then ¢1(¢)d=2(¢) is also an id cf.

4. Let ¢(t) be the characteristic function (cf) of an id distribution. Then ¢(t), the
complex conjugate of ¢, and |@|%(t) are also id cfs.

5. Let ¢,(t) be a sequence of id cfs, converging pointwise to another cf ¢(¢). Then ¢(t)
is also an id cf.



6. Let ¢(t) be the characteristic function (cf) of an id distribution. Then there exist real
constants a, b, such that |log¢(t)| < a + bt? for all .

Remark 13. Proofs of properties 1 and 2 can be found in any advanced text on proba-
bility. Property 3 just says that the convolution of id laws is id. Property 4 says that the
negative of an id random variable X is id, and therefore if X; and X5 are iid and id, then
(X1 — X2) must also be id. Property 5 is essentially a restatement of Characterization #
1. Let us see a quick example that shows that the converse of Property 1 is false.

Example 11. Consider the function ¢(¢) = (cost + 2)/3. This is the cf of a symmetric
distribution supported on {—1,0,1} and obviously has no real roots. And also, evidently,
this random variable cannot be id.

3.2 Moments and tails of id laws.

An id random variable may have all moments, some moments, or even no moments.
For instance, the normal has all moments, the Cauchy has no moments, and intermediate
t distributions have some moments. But one can say some definite things about the tails
of id laws. For example, roughly speaking, no id law can have tails thinner than that of a
normal. We state these and connections to the canonical measures of id laws below.

Let X be an infinitely divisible random variable with cdf F(z) and corresponding
canonical measure A as in Form B of its characteristic function. Then,

1. —log(l1 — F(z) + F(—z)) = O(xzlogx) as x — oo unless F' is a normal cdf;

2. There cannot exist any reals a > 0, b > 1 such that 1 — F(z) + F(—x)
= O(exp(—az'*?)) as x — oo unless F is degenerate;

3. There cannot exist any reals a > 0,0 < b < 1 such that 1 — F(z) + F(-z) =
O(exp(—azx't?)) as £ — co unless F is normal;

4. If lim F(z)/®(z) =1, then F must be ® itself;
T——00

5. For a given p > 0,1 — F(z) = O(z™P) as ¢ — oo if and only if [~ dA(u) = O(z™P)
as ¢ — oo; and F(—z) = O(z7?) as ¢ — oo if and only if [~” dA(u) = O(z7P) as
z — 00.

6. For a given p > 0, E(|X|P) < oo if and only if [ |ulPdA(u) < oo.

Remark 14. The connections of F' to the canonical measure A via their respective tails
as in 5) are nice; so is the equivalence between existence of absolute moments. It is also
interesting that the assertion of 4) is false if the cdf in the denominator is an id cdf G(z)
other than ®(z).

Example 12. Suppose X has the density function f(z) = 1/(2I'(5/4)) exp[—=?]. Then,
from 1) or 2), it follows that X cannot be infinitely divisible. The tail of f(z) is too thin
for X to be infinitely divisible.



Or, suppose X has a mixture normal distribution pN(0,0%) + (1 — p)N(0,02), for
unequal 0%,02. Then, from 1), it follows that X cannot be id.

3.3 The stable laws

The subclass of stable laws occupies a special position in the class of id laws. Their
probabilistic properties have been studied extensively. They have also found numerous
applications in statistics. In this subsection we discuss some of the probabilistic properties
of stable laws. In section 6 we shall look at the statistical importance of this class.

Characteristic function of stable laws: Starting from Form B of the characteristic
function of id laws, it is possible to derive the following characterization:

¢(t) is the cf of a stable law F:

with index o # 1 if and only if it has the representation

log ¢(t) = ibt — o®|t|*(1 — iBsign(t) tan %) (3)

with index a = 1, if and only if it has the representation
) . 2
log ¢(t) = ibt — o|t|(1 + iBsign(t)—=log |t]).
T

The scale parameter o > 0, the location parameter b and the skewness parameter
B of F' above are unique. The possible value of § ranges in the closed interval [-1, 1].
The possible values of b are the entire real line. It follows trivially from the characteristic
function that F' is symmetric (about b), if and only if 8 = 0. If @ = 2 then F' is normal.
In this case, the value of § is irrelevant. If = 1 and 8 = 0, then F' is a Cauchy law with
scale o and location b.

Moments and tails of a stable law. The stable laws also have some very nice moment
and tail and properties. But first an easy fact:

The first moment of any random variable, if it exists, is equal to the first derivative
of the cf at zero. Thus by using the above characterization, it is easy to see that if X is
stable with a > 1, then E(X) =b.

What can be said about other moments? Of course, if @ = 2, then all moments exist.

Moment behavior: If X is stable with 0 < a < 2, then for any p > 0,

FlIXP<ooifandonlyif 0 <p< a

This property of the moments suggests that the tails of a stable law behave as z~2.
This is essentially correct:



Tail behavior: If X is stable with index 0 < o < 2, then there exists a non zero constant
Cq # 0, such that,

li)m zP{X >z} =Co(1+ B)o®/2

lim z*P{X < z} = Co(1— B)o®*/2

00

Thus a stable law of index 0 < o < 2 has at least one of the tails of exact asymptotic
order x7<. If 8 # 1, —1, then both tails are of this order.

3.4 Unimodality, total positivity and the class L.

The standard examples of id laws are all unimodal. Even the discrete ones are discrete
unimodal. But it is not difficult to construct simple continuous id random variables which
do not have unimodal densities. Let us see an example.

Example 13. Suppose X; has the N(0,02) distribution, and X, independent of X7,
has a Poisson () distribution. Consider the convolution X = X; + X,. Evidently, X
is infinitely divisible. However, for given A, the density of X will not be unimodal for
sufficiently small o. Figure 1 gives the density of X when A =1 and 0 = 1/4. An X of
this form, in general, has a density with finitely many distinct local maxima.

PIGURE 1

In view of this, it is interesting to ask what can be said about unimodality of id
laws. It turns out that a large class of id laws having a certain property known as self
decomposability are indeed unimodal. We first give the definition.
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Definition 3. Let X be a random variable with characteristic function ¢(t). X is said to
be self decomposable if for every 0 < ¢ < 1, ¢(t) can be factorized as ¢(t) = ¢(ct)1(t), where
1 is another characteristic function. In other words, X can be written as a convolution

XZ2cX +Y for every 0 < ¢ < 1. The class of all such laws is called the class L.

Remark 15. Clearly, normal and Cauchy distributions are self decomposable. We state
a more general result below in 2).

1. Every id random variable that is in the class L is unimodal.
2. All stable distributions belong to the class L.

3. All stable distributions, which are a fortiori id, are unimodal.

Remark 16. Thus, we have a nice subclass of id laws,namely all stable laws, that are
unimodal. The proof that every density in the class L is unimodal is nontrivial. Note
that the result stated above indicates how to construct other large subclasses of id laws
that would also be unimodal. For instance, take a convolution of a normal random variable
with a stable random variable. This will be id, and will also be unimodal because a normal
random variable is strongly unimodal and a stable one, as we just stated, is unimodal.

For one sided, i.e., either positive or negative, stable laws, it is sometimes possible to
assert a very strong kind of unimodality. It is the following :

Let X be a positive stable random variable with index o = 1/k for some natural number k
and |5| = 1 in the canonical representation of its characteristic function. Then the density
of X is totally positive.

3.5. Approximation of sums in total variation by id laws.

Take iid random variables X7, X2,... having some common distribution H. Under
well known conditions, S, = X; + X2 + ...+ X,, when centered and normalized, will
converge to a normal distribution. However, the convergence is not necessarily in total
variation. A simple example is that of iid Bernoulli random variables X,,. In this case, for
all n, the total variation distance remains equal to 1. However, if H is continuous with
a unimodal density, then the convergence will also be in total variation (in fact a more
general result is true outside of this narrow central limit structure).

So it is interesting that if the approximating class is enlarged to the class of id laws,
then it is possible to say definite things about convergence in total variation. A few results
are as follows:

Let X7, X5,... be an iid sequence with some common distribution H. Let Z denote
the class of all id laws and let H,(z) = P(S, < z). Then

1. lim sup %nngV(Hn,F) = 0;

TL—»00 H
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2. There exist finite constants c¢1, ¢o, such that

c1(nlogn)~t < sup inf dpy (Hp, F) < can™Y3(logn)?;
H FeI

3. If X; are iid Bernoulli (p), then

sup inf dry(Hy,, F) = O(n~%/3),
O<p<l F'eZ

4. Multivariate id laws

Let X be a k—dimensional random vector. Then the definition of infinite divisibility of
X is the same as in one dimension. Many of the results are similar too, for instance inclusion
of the multivariate stable laws, canonical representations of the characteristic functions,
etc. The basic theorems about id random variables were generalized to id vectors as early
as 1954. Early references in this area are Rvaéeva (1954), Takano (1954) and Dwass and
Teicher (1957).

Of course if a random vector is id, then all the lower dimensional components are also
so. However, interesting things happen when we consider other aspects. In the subsections
below, we discuss some aspects of multivariate id laws, such as, independence, Gaussianity,
existence of moments etc.

4.1. Some interesting examples.

We will report here a collection of results and examples which explore the connec-
tion between the concepts of infinite divisibility of the full vector and lower dimensional
transformations.

Example 14. It is possible that a random vector X is not id, but all linear combinations
of the coordinates of X are id. Here is a somewhat natural example. Let Z be a standard
bivariate normal vector. Define a new bivariate random vector X = (¢'Z, Z'AZ), where ¢
is a 2-tuple and A is a 2 X 2 symmetric matrix. If ¢ is not in the null space of A, the vector
X is not id. However, every linear combination of the two coordinates of X is infinitely
divisible.

Example 15. It is possible that every lower dimensional projection of a multivariate
random vector X is id, while X itself is not id. Towards this end, take Z;, Zs to be iid
N(0,1), and define a new trivariate vector X as X = (Z2,71Z,,72). Then, it is easily
verified that each two dimensional projection (and hence, each one dimensional projection
as well) is id, but X itself is not id.

Example 16. For iid univariate normal observations, the sample variance is a scaled chi-
square and hence id. Curiously, the corresponding result for the multivariate case is not
true. For simplicity, let us assume that we have a nonsingular normal distribution. Thus,
suppose we have iid observations from a k-dimensional normal distribution, and suppose
S is the usual Wishart matrix of sample variances and covariances. Then, S is not id.

12



Example 17. Let X be an id random vector. Then it is possible that although X is not
multivariate normal, certain linear combinations ¢’ X of X are univariate normal. Indeed,
¢’ X is univariate normal if and only if the Lévy measure corresponding to the distribution
of X is supported on the manifold {z : ¢’z = 0}. Of course, such examples of normal
projections of nonnormal vectors are well known; but now the full vector itself is id.

Example 18. This example shows that one can have a bivariate random vector that
is not id, but the product of its coordinates is id. It thus gives a nonlinear function of
the coordinates that is id, while linear functions were considered in some of the preceding
examples. Towards this, take a N(0,1) random variable Z and write Z as Z = X; X»,
where X1, X5 are iid. This is possible. Take the random vector X to be (X3, X3). Now,
clearly, X, X5 is id by construction, but X is not infinitely divisible. To show that X is
not infinitely divisible, it is enough to show that X; is not id. The reason for this is that
X1 has too thin a tail. Indeed, if | X[, |X3| are each larger than some z, then |Z] is larger
than z2; hence,

P(|X1| > ) < P(|Z] > &*)!/? = O(z™" exp(—2*/2)),

and from the first fact 1) listed under moments and tails of id laws (section 3.2), we see
that X cannot be id.

4.2 When are components of an id vector independent?

Recall the universally known fact about Gaussian random vectors: if (Xq,...,X,,) is
Gaussian then the components are mutually independent if and only if they are pairwise
independent which in turn happens if and only if Cov(X;, X;) =0V ¢ # j.

Now assume that X = (X,...,X,,) is id. A natural question is when are the compo-
nents independent? Are there any necessary and sufficient conditions available as in the
normal case?

It turns out that if the id vector has finite fourth moment, then pairwise independence
is still equivalent to total independence. Thus if we restrict to id vectors with finite fourth
moment, then the problem reduces to that of finding conditions for pairwise independence.

Since an id vector can, in general, have Poisson components, it is clear that the
covariance condition which is necessary and sufficient for pairwise/total independence when
X is normal does not remain so when X is merely id. But interestingly, the addition of one
extra condition leads to a satisfactory solution. Assume that X is id and has a finite fourth
moment. Since total independence is equivalent to pairwise independence, it is enough to
concentrate on the case where X is a 2-vector, X = (X3, X»). To simplify expressions,
assume that E(X;)=0fori=1, 2.

Let
B = (2,2) cumulant of (X1, X»).

This cumulant is given by:
B = Cov(XZ?, X2)—2(Cov(X1,X2))%
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From the results of Pierre (1971) (see also Sclove (1981)), it is known that 8 > 0.

In general, the two components X; and X, are independent if and only if
Cov((X1, X3) =0 and Cov((X%, X2))=0.

In several special cases, S carries the information on independence of the components.
For example, if (X1, X2) has no Gaussian component, then X; and X, are independent
if and only if 8 = 0. In particular, if X is discrete then X; and X3 are independent if and
only if 8 = 0. It also follows that in general, the Poisson components are independent if
and only if = 0.

4.3. When are id vectors Gaussian?

Suppose X = (X3,...,X,) is id. As we have discussed in Example 17, it is possible
that certain linear combinations are normal but X is not normal. What happens if suf-
ficiently many linear combinations are normal? Indeed, if each X} is Gaussian, then X
is Gaussian. One can say more. If there is at least one component k such that the 4th
cumulant of X is zero then also X is Gaussian.

Recall that the regression functions of Gaussian vectors are linear. Further, all con-
ditional distributions are homoscedastic. That is, the dispersion matrix of any subvector
given any other is free of the conditioning subvector. For characterization of normal vectors
using such ideas, see Kagan et. al. (1973).

However, for id X, homoscedasticity and the linearity for vectors up to a pair guar-
antees Gaussianity of X, We can state the following precise result.

Suppose X is square integrable, linearly independent (to avoid trivialities) and with
pairwise nonzero correlations. Suppose for some i, 7, k,

B(Xi|X;) = ai; X; + paj
Var(X¢|Xj) = bij
E(Xi| X, Xk) = a4,(,5,6) X5 + 0k, (1,5,6) Xk + i (5 1)
Va'r'(Xi|Xj,Xk) = bi,jk

Then X is Gaussian. For more information on such characterizations, see also Wesolowski
(1993) and Arnold and Wesolowski (1997).

4.4 Multivariate stable distributions.

Multivariate stable laws forms a subclass of multivariate id laws. While they have not
found much applications in statistical modelling yet, it is believed that this situation will
change in the near future. In particular, they are anticipated to be of much use in economic
data modelling. There are different ways of extending the univariate notion of stability,
giving rise to different classes of multivariate stable laws. We will take the following as our
definition:

Definition 4. A random vector X = (X3,..., X) with distribution F is said to be stable,
equivalently F' is said to be stable if for independent copies X(1) and X® of X, and for
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any positive numbers a and b, there exists a positive number ¢ and a vector D such that
aX® +bX@ 2 X 4+ D. If D=0, then X is said to be strictly stable.

As in the univariate case, if X is stable, there is an o, 0 < a < 2, called the index of

X or F, such that for any n > 2, there is a vector D,, such that X + X® .. .4 x(m 2
nt/®X + D, where X ... X®) are iid copies of X. Moreover, this can be taken as the
definition of multivariate stability, equivalent to the one given above.

Example 19. Of course, as in the univariate case, if & = 2, then X is multivariate normal.

Example 20. It is not hard to verify the following: If X is « stable (respc. strictly stable)
then all linear combinations are « stable (respc. strictly stable).

What about the converse? It turns out that the converse is partially true and we have
the following facts:

1) If all linear combinations of the coordinates of X are stable with o > 1, then X is
stable.

2) If all linear combinations of the coordinates of X are strictly stable, then X is
strictly stable.
3) If all linear combinations of the coordinates of X are symmetric stable, then X is

symmetric stable. (Here symmetry is defined as X Z_x ).

Example 21. The conclusion in 1) is false in general if 0 < o < 1. To see this take
U(ty,ta) = exp{—r*+iprcos(3¢)} where t; = rcos(¢), ta = rsin(¢p). Then for sufficiently
small p > 0, ¥ is a characteristic function of a vector X which is not stable. However, it
is rather easy to check via the characteristic function that any linear combination of the
two coordinates of X is stable.

Remark 17. Actually, in the above example, X is not even id. In general, if we assume
that X is id and all linear combinations are stable then X is also stable.

The spectral measure of a stable law. If X is stable with 0 < o < 2, then its

characteristic function has the following representation. This representation can be arrived
at starting from the representation of id laws.

Let S denote the unit sphere in k& dimensions and I" a finite measure on S. Then, with
<,> denoting inner product, the cf of a stable law has the representation

U(t) =exp{i <t, u>— /S | <t,s> 1% x[1—isign(<t, s>tan %)]F(ds)}, (4)

if a # 1.

15



If « =1, then

2
U(t) =exp{i <t, p> —/ | <t,s>|x][1 +i;sz’gn(< t, s>log| <t, s>||I'(ds)} (5)
S

The pair (T, 1) is unique. The above representation is called the spectral representa-
tion. I' is called the spectral measure.

Example 22. The characteristic function of the multivariate Cauchy random variable X
is given by

U(t) = exp{—(t'SH)Y/2 +i < t, u>}

If 3 is the identity matrix and u = 0, then X is spherically symmetric stable with "
being the uniform measure. Its density is given by

fl@)=0@m) YA +22+22)7%? —oco <1, 23 <0

Example 23. From the above representation, we can derive a criterion for the inde-
pendence of the components of a stable vector. If X is stable, then its components are
independent if and only if the spectral measure I' is discrete and is concentrated on the
intersection of the axes with the sphere S.

4.5 Joint moments and linearity of conditional expectations.

Recall that if X is a one dimensional stable variable with index ¢, then E|X|? < oo
for all 0 < p < a. The moment of order equal to « need not be finite as the Cauchy law
where o = 1 shows. Thus when we deal with stable vectors, we must at least assume that
o > 1 for the moments to exist in general. By using Holder’s inequality, this not only
assures the finiteness of the first moment of every component, it also implies every product
moment of combined order p < « is finite. To be precise, if X is stable with index «, then

n n
sz‘<aa iEH|X¢|pi<oo.
=1 i=1

The converse is false in general. However if X = (X1, X5) is a stable vector with only
two coordinates, and with index o < 2 then, the converse is indeed true.

What happens to regression functions for stable vectors? In particular, if X =
(X1,...,X,) is stable, is F(X;1|X, ..., X,) linear in Xs,...X,?

Again, the answer is yes, if we have a two vector: if X = (X;, X;) is stable with
index 1 < a < 2, then E(X3|X1) = c¢X; for some constant ¢. If X = (X1,...,X,), n > 2,
then in general it is not true E(X1|Xs,...,X,,) is linear in (X, ..., X,).
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There are several conditions under which this linearity can be claimed. We give one
which is related to the spectral measure I'.

If X is strictly stable with index 1 < a < 2, and spectral measure I', then,
n—1
E(Xn|X1,...,Xn-1= ), a;X; if and only if
i=1

n—1 n—1
Vr, /(mn — Z aimi)(z rix)* D (z) =0
S i=1 i=1

5. Simulation of id laws

To understand the behavior of different statistical procedures where id laws are in-
volved, it is important to be able to simulate id and stable laws. We shall concentrate here
on simulation of id laws in general. The simulation of stable laws is a significantly more
specialized task and will not be discussed here. The interested reader may consult Adler
et. al. (1998) for material on simulation of stable laws. We discuss two approaches.

Approach 1: via Poisson processes. Bondesson (1982) noticed an interesting connec-
tion between Poisson processes and id laws as follows.

Let Z(u), u > 0 be a family of non-negative independent random variables. Let T;,
i=1,2... be the points (in increasing order) in an independent Poisson point process of
rate A on (0, c0). We set

X = i Z(T;).

Note that if we define

X()=3 2(-T))

TI<t
then it is a shot noise process and X = X(0). So the distribution of X is called a shot

noise distribution.

Set

Xr= Y Z(Ty)

T;<T

where T' is a truncation point. Its Laplace transform (LT) is given by

7T)

Elexp{—sXr}] = exp {/\/(0 (Y(s,u) — 1)du}

where

¥(s,u) = Elexp{—sZ(u)}]. (6)
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This can be proved in at least two ways. One proof is based on a conditioning on the
number of points in (0, 7], and the other, more stringent one, is based on an approximation

(in distribution) of X7 as ZE&% Z(k/n)I}}, where I is one or zero depending on whether
or not there are any points in (k¥ — 1/n, k/n]. It follows that X has the LT

8(s) = exp {A /( Wl - 1>du}. ()

We assume that X < oo almost surely. (Otherwsie X = oo almost surely: this
follows from the zero one law and the fact that the process X7, T' > 0 has independent
increments.)

It is obvious that X is id.

Let Z(u) have the distribution function H(y,u). Changing the order of integration,
we may rewrite (7) as

#(s) = exp {)\/[0 oo)(e‘sy - 1) (/(0 - H(dy,u)du) } (8)

Of course the measure H(dy,u) must as a function of u satisfying certain regularity
conditions.

Now we consider simulation from an id distribution F' with Levy measure A(dy).
Suppose we can find a simple family of distribution functions H(y,u) on [0, oo) and a A
such that on (0, 00),

A H(dy,u)du = N(dy)
(0, o0)

or equivalently, for z > 0,

)\/(0, oo)H(:c,u)duz/(m, c>o)N(dy):N(sr:)

where I = 1 — H. Then simulate points 7; in a Poisson (M) process by for exam-
ple adding independent exponential randon numbers and after that, values Z(T;) from
the distribution functions H(z, T;) and set X = > °°. Z(T;). Then X has the desired
distribution. If the sum converges rapidly, only a few terms are needed to get a good
approximate value of X.

Bondesson (1982) showed how different classes of H lead to different id distributions
such as, the generalized convolutions of mixtures of exponentials (class 75 of Bondesson
(1981)), generalized gamma convolutions (Thorin (1977, 1978)) and the generalized nega-
tive binomial convolutions (Bondesson (1979)).
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Approach 2: via structural theorem(characterization #4). Recall characterization
#4 given earlier for id laws as limit of sums of independent Poisson type random variables.
We state this fact again here in the form of a theorem, commonly known as the structural
theorem. A proof may be found in Loeve (1960, page 298).

Theorem: A characteristic function ¢ is id if and only if it is the limit of sequences of
products of Poisson types. That is there exists a,; and b, such that

%(t) = lim (exp[) _ itank + Anr{exp(—itbur) — 1})

7L—>00
k=1

The algorithm of Damien, Laud and Smith (1995) to generate an observation from a
given id law with characteristic function ¢ proceeds as follows:

Let A be the appropriately defined (finite) Levy-Khintchine measure associated with
1.
Let A1,..., A be iid. from the distribution d A (z) where k = [ d A (z).

o0

Let V; ~ Poi (BUtAy =1 . . n

nA?
n
Let X, = > (A;Y; — -5-). Then ¢x, (t) — %(t) ¥ t, as n — oo,
i=1 *

In particular, they use this algorithm to generate observations from several stable
distributions and study the accuracy via the Kolmogorov-Smirnov metric.

This has interesting applications in Bayesian nonparametrics. Consider the problem
of estimating an unknown cdf F on [0, co) based on n iid observations (possibly censored)
from F'. This requires putting a prior distribution on the space of distribution functions F.
Viewing F' as a stochastic process, let F'(t) = 1 — exp(—Y;) where {Y;} is a Levy process,
that is, a process having Y (t + s) — Y(¢) > 0; independent V s, t > 0). The posterior
distribution is also a Levy process. See Ferguson and Phadia for details. The increments
of this process, when the jumps are removed, are id. Using the above approach, these
continuous increments can be simulated. The jump components are independent and
hence simulating the increments corresponding to these jumps is standard. Combining
these two simulations, the total increments of the process are simulated. This implies that
a complete Bayesian analysis of the posterior distribution is possible. In particular, the
authors show how to implement the idea for estimating the survival function using the
three priors, gamma process, Dirichlet process and the simple homogeneous process.

Apparently, no results are known regarding the rate of convergence of the generated
samples, but the simulation results of the authors are quite promising.

Related papers in Bayesian nonparametrics where particular Levy processes have been
used are (i) Hjort (1990) who uses beta processes, and (ii) Ramgopal and Smith (1993)
who use extended gamma processes.
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6. Stable laws in inference

As we have seen earlier, no id law can have tails thinner than the normal tail. However,
the tails of an id law can be quite heavy. As data from a steadily increasing number of fields
have exhibited heavy tailed behavior, the importance of id laws in statistical modelling
and inference has grown.

We have very briefly mentioned the use of id processes in Bayesian inference in the
previous section. However, since the class of id laws consists of the weak limits of triangular
sums, it is a huge class and is not convenient for most statistical modelling and inference
problems.

On the other hand, any stable law is obtained as the weak limit of sums of iid random
variables. Thus it serves as a very natural model in situations where aggregation is involved.
This explains the importance of the normal distribution when the observations have finite
second moments. But this leaves out the distributions with heavy tails.

As we have seen in section 3.3, at least one of the tails of a stable law decreases as the
ath power. This offers flexibility in modelling heavy tailed phenomena by stable laws with
an appropriate choice of &, 0 < a < 2. Instances where the stable model holds exactly are
not very frequent. The earliest known example came before the stable laws were formally
introduced by P. Levy.

Example 24. As early as 1919, before the concept of stable laws was introduced by Paul
Levy, Holtsmark found that under certain natural assumptions, the random fluctuations
of the gravitational field of stars in space has a probability density whose cf is given by
exp{—A|t|*/2}, t € R® where ) is a positive constant determined by certain physical
characteristics. This is a three dimensional spherically symmetric stable law with o = 3/2
and is known as the Holtsmark distribution.

Since we cannot hope to have exact stability of the observations we must look for
approximate stability. This leads to the concept of domain of attraction.

6.1 Domain of attraction.

Definition 5. A distribution F' is said to belong to the domain of attraction of a stable
law with index « if there exists real sequences {a,, > 0} and {b,,} such that if X1,...X,, ...
are iid with distribution F then b,'(X; + ...+ X,, — a) converges in distribution to this
stable law. We write F' € D(a).

Example 25. Any stable distribution is trivially in its own domain of attraction. All
distributions with finite second moments are in the domain of attraction of the normal
law. .

Plenty of distributions with infinite second moments are also in the domain of the
normal law. It will be easier to provide such examples after we give the criteria for
checking whether a distribution belongs to D(a).
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There are two such simple but powerful criteria. To state these, recall that a function
L(-) is said to be slowly varying if for every z > 0, L(tz)/L(t) — 1 as t — oco. Below, L is
any such slowly varying function.

Criterion 1. A distribution F' belongs to the domain of attraction of a stable law

(i) with index 0 < a < 2, if and only if there exists 0 < p < 1 such that,

lim 1 = F()
g—oo 1 — F(z) + F(—x

j =P (9)
and

—

1-F(z)+ F(—z) ~ 2 7 %L(z) as x — oo (10)

(ii) with index @ = 2 (normal law), if and only if

/w y2dF(y) ~ L(z) as £ — oo. (11)

-

Example 26. Consider the Pareto law discussed in Example 10 which has the density
f(@) = S(z5)°", © > 0. It is easy to see that it belongs to D(a).

Example 27. By using the criterion above, it is easy to construct examples of distribu-
tions F' whose second moments are infinite but which belong to the domain of attraction
of the normal law. For instance, the distribution F with density f(z) = 2|z|~3logz for
|z| > 1 has infinite second moment and belongs to the domain of attraction of the normal
law. The ¢ distribution with one degree of freedom is the Cauchy law and so is stable. The
t distribution with degrees of freedom three or more has finite second moment and hence
is in the the domain of attraction of the normal law. The ¢ distribution with two degrees
of freedom has the density f(z) = c(1 + x2)~3/2 where c is a constant. So it does not have
finite second moment. However, it is easy to check that Criterion 1 (ii) is satisfied with
L(z) = log z. Hence the t distribution with two degrees of freedom belongs to the domain
of attraction of the normal law.

Example 28. In the definition of domain of attraction, we used sums of variables. If we use
other composition operations, we obtain other notions of stability. While we do not wish to
present all such notions, we wish to discuss one such alternate notion of stability, obtained
by taking mazimums. Suppose that Xi,..., X, are iid F. Let M, = max{Xy,...,Xp}.
Suppose that {a, > 0} and {b, € R} are sequences such that a,'(M, — b,) converges
in distribution to some distribution G. We write F' € maxD(G). The class of limit
distributions obtained in this way is called the class of extreme value distributions or max
stable laws. A parametric description of this class is given in section 6.4. One subclass of
this class consists of the Frechet distributions defined as:
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®,(z) = exp{—z~“}, £ > 0, where o > 0.

It is known from the extreme value theory that F' € maxD(®,) if and only if
1— F(z) = z7*L(z). Note that this condition is a part of the condition for F' to belong
to D(c). We discuss the use of connection between stable laws and max stable laws in
statistical estimation in section 6.4.

We now present the second domain of attraction criterion. An application to the
problem of estimation of @ may be found in section 6.3.

Criterion 2. A distribution F' belongs to the domain of attraction of a stable law with
index 0 < o < 2, if and only if

2?1 - F(z) — F(~z)] 2-«
S, v2dF(y) a
6.2 Estimation of o, preliminaries.

as £ — oo. (12)

The normal law has a rapidly decreasing tail and corresponds to @ = 2. For modelling
heavy tailed phenomena, we restrict our discussion to the class of stable laws with index
0 < a < 2. This leads to the following basic question:

Question: Suppose we have iid observations from a distribution F' € D(a). How does
one estimate the parameter a?

Note that even if we assume that F' itself is stable, the problem is still not easy. As
mentioned earlier, except for the three special distributions normal, Cauchy and Levy, no
closed form expressions are known for the density of stable laws. This makes the problem
of estimating a quite difficult. Possible approaches to the estimation problem are already
offered indirectly in the discussion of section 6.1:

(i) Example 27 suggests that the extreme order statistics have a role to play.

(ii) Criterion 1 suggests how the sample versions of F', namely the empirical distribution
F,, may be used to obtain estimates of . Likewise, Criterion 2 also suggests estimates for
o.

(iii) The cf of stable laws is available in a closed form, Thus the use of empirical charac-
teristic function offers another possible approach, at least when F' is exactly stable.

Example 29. Consider the one parameter Pareto distribution with parameter o whose
cdf is given by
1-F(z)y=2z"% z>1. (13)

Assume that X,..., X,, are iid observations from this Pareto law. Since the distribu-
tion and the density in this case are explicitly known, we can use the method of mazimum
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likelithood to estimate . By writing down the joint density of X3, ..., X,,, it is easily seen
that the mazimum likelihood estimator of v = o~ is given by

n n
Ap =n"t Zlong- =n! ZlogX(i) (14)
i=1 i=1

Above, X1y < ... < X(y) are the order statistics of X1 ...X,. We shall use this notation
in our subsequent discussion also.

The nice thing about this estimate is that it involves the random variables through
their logarithms which have finite second moments. Indeed,

E(log X;) =+ and Var(log X;) = v°. (15)

By using the central limit theorem, we thus have

nl/z(&n -v) 2 N(0, v?). (16)

Suppose now that F' € D(a). Suppose that the right tail is nontrivial so that equation
(9) is satisfied with p > 0. Then Criterion 1 implies that the right tail behaves like the
Pareto tail (13) in Example 28, except for a slowly changing function. This feature is
the basis of many estimators of « in the literature. In the next few subsections we shall
describe some of the estimators of a. For some comparisons of these estimators based on
simulations, see Pictet et. al. (1998). The general recommendation is that Hill’s estimator,
discussed in section 6.3, is the best to use.

6.3 The Hill estimator.
Assume that ' € D(«) is such that
1-F(z)=2"°L(z), as & — o© (17)

where L(-) is a slowly varying function. Note that this implies that if X(n—r) ts large,
then the following approximate relation holds:

1-— F(.’E X(n-—k:))

~x ¢, 18
1- F(X(n—k)) ( )
Conditional on X(,_), ( X)((‘i)k) ey X&%ﬁ;’) is distributed as the order statistics

from a sample of size k& from the distribution with tail

1—F(1E X(n-—k)) r>1
1-F(X(n-r)) =~
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which, as (17) holds, is approximately the Pareto tail. Thus going back to the estimate
introduced in the special case of the Pareto, it appears intuitively justified to use the
above ratios, for some large value of k, in the same way as all the observations were used
in defining (14) in the exact Pareto case. This leads to the famous Hill’s estimator (Hill
(1975)): choose k < n large in some appropriate way. Then the Hill estimate of v = a™!
on the basis of n iid observations from the distribution F' satisfying (17) is defined as

. IR X
Yen =k Z log
i=n—k+1

. (19)
(n—k)

The Hill estimate uses only the upper (k + 1) ordered statistics of the sample and
ignores the rest of the sample. The uneasy aspect is the dependence on the choice of k.
We shall address this issue below. But first let us see a result which guarantees that this
method works, at least asymptotically.

Consistency of the Hill estimator. Suppose that n — 0o so that we have a sample size
which increases indefinitely. Let k = k, be such that £ — oo but k/n — 0. This means
that we use a very large proportion of the ordered statistics but leave out a significant
fraction. It turns out that this guarantees that (Mason (1982))

~ P
Yo — 7. (20)

Note that no additional assumptions on F' are required for the above result. So the
Hill estimator is indeed consistent under minimal assumptions.

In practice, one has to deal with data which are not iid. Extensions of the above
consistency to situations where {X;} is a dependent sequence may be found in Rootzen,
Leadbetter and de Haan (1990), Hsing (1991), and Resnick and Stiricd (1998).

Asymptotic distribution and confidence interval. In applications, one is not sat-
isfied with a point estimate and a consistent interval estimate is more comforting. This
requires establishing a nondegenerate (asymptotic) distribution of the estimator with an
appropriate norming and centering. Unfortunately, the class of all FF which are in the
domain of a stable law with index « is still too large and such a result is not available.
However, under suitable restrictions on F' the same limit law (16) as in the exact Pareto
case holds. This result is actually true under several different sets of sufficient conditions.
The reader may consult de Haan and Resnick (1998) and the references contained there
for more details. Under suitable conditions on k and F,

K2 (3. — ) =5 N(0, 7). (21)

It is assuring that the limit distribution is normal and the limiting variance involves F'
only through . This makes setting up an approximate confidence interval for v easy. Fix
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a confidence coefficient 1 — 8 and let ®~1(3/2) be the upper 3/2 percentile of the standard
normal distribution. Then a 100(1 — 3)% asymptotically correct confidence interval for -y
is given by:

In = Fen{l+£72071(8/2)}, Axn{l - k72071 (6/2)}]. (22)

The consistency result (20) and the asymptotic normality result (21) together imply
that P{jxn € In} — 1 — 8 under the conditions alluded to. The equivalent statement for
the estimate of « is of course obtained by taking the interval with the end points as the
inverses of the end points of I,,.

Choice of k: the Hill plot. The consistency and asymptotic normality property of the
Hill estimator depends on k¥ = k, going to infinity at an appropriate rate. In practice,
given a sample of size n, one has to decide on the value of k& to use. One approach is to
use the Hill plot. This is simply a plot of the estimator (§x,)~! against k. On this plot
we look for a range of values of k where the plot is flat. This gives a range of possible
values of k which can be used to calculate the estimate. Empirically, it has been seen
that the estimator is quite insensitive to the eventual choice of k in the chosen range. For
more information, see Drees et. al. (2000). This article also carries information on various
refinements of the Hill plot.

Bias of the Hill estimator in small samples. Since the Hill estimator is based on an
approximation of the tail of F', it is natural for it to have some bias in finite samples. The
amount of the bias is determined by the finer behavior of the tail of F. One possibility
in studying the bias is to work with specified subclasses of F'. Here is one such result.
Consider the class of F' € D(«) which satisfy for some a > 0 and 8 > 0,

1 - F(z) = az~®[1 + bz ~® + o(z~F)] (23)

Then if k = k, — oo, k/n — 0, the asymptotic bias B of the Hill estimator is given
by:

po

B=-—""_4

_a(a + B)

Rl

(E)5 1+ 01)) (24)

An asymptotic expression for the variance can also be derived:

)&+ ﬁ] +o(1). (25)

,3262 28

V(LT'(’S’k,n) = [WG

G

See Goldie and Smith (1987), Hall and Welsh (1985) and Pictet et. al. (1998) for bias
expressions in various situations and recommendations for the choice of k.
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Unsatisfactory behavior near a = 2. While the Hill estimator is one of the best and
popular methods, its unsatisfactory performance is documented in the literature when o
is close to 2. A possible explanation is that while the tail of a stable law with index o < 2
is like 2%, the tail of the normal law (@ = 2) is exponentially decreasing. Further, a few
upper order statistics cannot be expected to yield good estimators for “near normal” laws.

6.3 de Haan and Pereira’s estimator.

de Haan and Pereira (1999) focussed on the situation where o may be close to 2.
Let 8 = 2TT°‘ Note that if « is close to 2 then S is close to zero. In this situation, it
appears to be reasonable to consider Criterion 2 and start with (12) to build an estimator.
Consideration of the sample analogue of Criterion 2 leads to their estimator.

So suppose we have iid observations on F' € D(ca). Let the order statistics of | X;],
1 < i < n be denoted by |X|1) < ... < |X|n). Let G, be the empirical distribution of
{|Xi], 1 < i < n}. Motivated by (12) we may choose a k = k, — oo and define the

estimator ﬂn of B8 = 2 —2 38

B _ k|XI%n—k:)

n =

(26)

n—k

> X[,

i=1

It may be noted that this estimate uses the (n — k) lower order statistics of the
absolute values. The estimate of 8 is easily transformed into an estimate &, of o as
bn =2(1+B,)7 ¢

Under various assumptions on {ky,}, and F, the consistency and asymptotic normality
of Bn hold. However, the norming is not as simple as the one in the Hill estimator. As with
the Hill estimator, in our statement, we shall leave out the exact assumptions required. For
details of the conditions required, see de Haan and Pereira (1999). To state the asymptotic
normality of Bn, let

k: 1

Np = —2{108|X|(n _iy —log | X1, _p}
1=0

B = —{g —k/n)} // o £)2dt

where G~! is the inverse of G(z) = F(z) — F(—z). Then under appropriate conditions,

K2 (gﬁ - 1) 2, N(0, 28+ 1)7Y) (27)

6.4 A moment estimator.
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In Example 27 we have seen a parametric subclass of the max-stable laws. It turns
out that the entire collection of extreme value distributions can also be parametrized. The
approach to estimating this parameter leads to an estimate for the stability index o as
well.

A distribution is an extreme value distribution if and only if up to a scale and location
shift, it is of the form:

G, (z) =exp(—(L+y2)™ ), vER, z>0. (28)

The case of v = 0 is interpreted as

Go(z) = exp(—e™7). (29)

The parameter v may be called the extreme value index of the distribution. For v > 0,
let a = y~!. Then this parametrization is consistent with the parametrization of the stable
class. That is, F' € D(a) for some 0 < o < 2, if and only if F € maxD(G,). Now consider
the problem of estimating v when it is known that F' € maxD(G,). Suppose that v > 0.
Dekkers, Einmahl and de Haan (1989) considered the problem of estimation of v and one
of the estimators they consider is obtained by a moment approach. For r = 1,2, let

n X,L T
HD =k Y <log @) ) (30)

i i1 N Xn—k)

Hence, H ,g,lr)b is Hill’s estimator. Define the estimator 4,, of v as

1/2
1 2) °
—(HM2/HS)

o = H) +1— (31)

Note that the estimator 4, is an estimator of the extreme value index -y and is defined
even if F' does not belong to D(«a). That is, it is an estimator of v irrespective of whether
a = 1/+ is in the interval (0, 2). This is an important aspect: suppose we do not know
whether F' has heavy tails. Then we will be wary of using the Hill estimator since it is
specially geared for the heavy tailed situation. We can then consider using the current
estimator.

The estimator is consistent for all values of v: if F' € maxD(v), k — oo and k/n — 0,
then

Y = 7. (33)



So then why use Hill’s estimator at all? This is reflected in the asymptotic distribution
of the estimator. As before we skip the precise conditions, which can be seen in Dekkers
et. al. (1990). Under suitable conditions,

EY2(3, — ) 2 N(0,1+2) (34)

Recall that the asymptotic variance of the Hill estimator is 42 and so, the current estimator
has a larger asymptotic variance than the Hill estimator.

6.5 Other estimators.

There are many other estimators that are available in the literature. We will not go
into a detailed description of these. Here are some of the more well known ones:

1. Pickands estimator: This is a very quick and easy estimator proposed in Pickands
(1975). Tt involves calculating the 25%, 50% and 75% quantiles. See Dekkers and de Haan
(1989) for its strong consistency and asymptotic normality under appropriate conditions.
The estimator is defined as

X (k) — X(2m)

~P -1
= (log2)""lo . 35

2. de Haan-Resnick estimator: This estimator is given in de Haan and Resnick
(1980) and involves only the maximum and one other extreme order statistics. It is thus
a simplified version of the Hill estimator.

~R _ IOgX(l) — logX(k)

n

6
log k (36)

3. The CD plot estimator. The log-log complementary distribution (CD) plot estimator
also has its genesis in the Pareto expression

1-F(z) ~z2~% as z — oo. (37)

This implies that log(1 — F'(z)) and z are linearly related for large z with slope —a.
In practice, we plot log(1 — F,,(z)) against z and choose a large 2o beyond which the plot
looks linear. Estimate the (negative) slope by fitting a straight line (with equally spaced
chosen points on the X-axis) and the negative of the slope is the estimate for a.

Remark 18. Even though in practice observations can rarely be assumed to be exactly
stable, it is illuminating to consider such a situation and investigate how the different
parameters (a, 8 and b) in the corresponding cf representation can be estimated. These
estimators can also serve as preliminary estimators in more complicated procedures which
involve observations which are not exactly stable. The McCulloch estimator is the simplest
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among these and is designed for the situation when the observations are from a stable law
with o € [0.6, 2]. The main virtue of the estimator is its simplicity of calculation. It
may be termed as the method of five quantiles and is known to perform remarkably well
in practice.

Suppose that F' is stable with the cf given in section 3.3. Let F, denote the pth
quantile of F'. Let

_ Fo.95 — Fo.05
Fo.75 — Fo.05

F F — 2F
and ®y(a, B) = 0.95 + £'0.05 0.50 (38)

q)l a4 ,3
(e, B) Fo.95 — Fo.05

It turns out that ®; is monotonic in a and ®, is monotonic in B (for fixed ) and so
we can invert these functions to get

a=V;(P;, ®2) and B = Us(P1, D2). (39)

McCulloch (1986) tabulated these values for various values of ®; and ®.

To form the estimators of o and f, first estimate the five quantiles above by the
respective sample quantiles. Use these to obtain estimates of ®; and ®;. Then use
McCulloch’s tables to obtain the estimates of the two parameters.

Another common approach is to use the representation of the characteristic functions
of stable distributions. The corresponding sample cf is used to build up these estimators.
It will take a lengthy treatment to do justice to them. The reader may consult Kogon and
Williams (1998) and the references contained in that paper for material on this topic.

7. Applications

Stable and infinitely divisible distributions have found the greatest aplications in fi-
nance and economics. There have been other applications as well in problems involving
heavy tails; see the recent book by Uchaikin and Zolotarev (1999). Here we will mention
a few applications in the areas of finance and economics.

Benoit Mandelbrot made the first attempt to use stable distributions for modeling
stock returns by questioning the use of normal distributions for that purpose; see Mandel-
brot (1963). Use of stable laws for analyzing stock returns is also made in Officer (1972).

Applications in capital asset pricing are discussed in Gamrowski and Rachev (1995),
and in a very nice review article by McCulloch (1996). Stable laws have also been used in
option pricing and for modeling foreign exchange rates; see McCulloch (1996) for compre-
hensive review of the models.

The finance and economics literature also contain methods for estimation of stable
law parameters, and this development has been partially independent of the probability
and statistics literature. Methods of parameter estimation are discussed in Arad (1980)
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in the context of stock returns, and in Liu and Brorsen (1995) in the context of modeling
foreign exchange rates, in particular.
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