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Abstract

For density estimation, block thresholding is very adaptive and efficient over a
variety of general function spaces. By using block thresholding on kernel density
estimators, the optimal minimax rates of convergence of the estimator to the true
distribution are attained. This rate holds for large classes of densities residing in
Besov spaces, including discontinuous functions with the number of discontinuities
growing with sample size. The results hold for both convolution and wavelet
kernel methods. Additionally, the proposed wavelet estimator is an improvement
on previous estimators in that it simultaneously achieves both local and global
optimal rates through careful choice of block length and a truncation parameter
for the estimate’s orthogonal series expansion.

1. Introduction

Wayvelets have been shown to be very successful in density estimation. Specifically,
they excel in the areas of spatial adaptivity, optimality, and low computational cost.
Typically, this adaptivity is achieved through the use of term-by-term thresholding of
wavelet coefficients, such as the VisuShrink method of Donoho and Johnstone (1994)
for nonparametric estimation of a noisy signal. There, the noisy signal is transformed
into empirical wavelet coefficients by the discrete wavelet transform, these coefficients
are shrunk, or “denoised”, by comparison with a specified thresholding rule, and the
underlying function is estimated by applying the inverse discrete wavelet transform
to these modified coefficients. This method is adaptive, i.e., it works well without
knowing the exact amount of “smoothness” of the function ahead of time, and is within
a logarithmic factor of the optimal minimax convergence rate over large classes of Besov
functions. This optimal rate is measured in a global sense via the mean integrated
squared error.

The earliest wavelet density estimators were linear in nature, introduced by Doukhan
(1988) and Doukhan and Leon (1990). These linear estimators belong to the class of
orthogonal series estimators first studied by Cencov (1962), who introduced the idea
of relating the coefficients in the orthogonal series expansion of a density to the ex-
pected value of their corresponding basis functions. Kerkyacharian and Picard (1992)
and Donoho et al. (1996) showed that these linear wavelet density estimators can achieve
fast convergence rates when the density lies within Besov spaces.
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A drawback to linear wavelet density estimators is that they may be suboptimal,
see Vidakovic (1995). Better density estimators can be found by introducing thresholded
wavelet density estimators. This thresholding of the wavelet coefficients makes the
new estimators nonlinear in nature. With these nonlinear density estimators, Donoho
et al. (1996) attain a convergence rate that is within a logarithm of the optimal rate of
n~2s/(2s%1) This rate is attained by the use of term-by-term thresholding.

Block thresholding has been shown to be superior to term-by-term thresholding in
terms of convergence rates. For certain Sobolev spaces, Pensky (1999) has shown that
block thresholding can result in the optimal rate of convergence without the logarithmic
penalty term. Her blocks are large, each consisting of an entire resolution level of
coefficients. For the more general Besov spaces, Hall et al. (1998) have set forth wavelet
and convolution kernel estimators that also achieve the minimax optimal convergence
rate without penalty through the use of block thresholding. Here, a specified number of
coefficients within a resolution level is used as a block, rather than an entire resolution
as in Pensky’s case.

In both of these papers in the preceeding paragraph, the rate of convergence is
in the global sense rather than a pointwise sense, i.e., it is measured via the mean
integrated square error between the true function and its estimate. In this paper, an
estimator similar to that of Hall et al. (1998) is proposed that not only achieves the
same optimal rate over Besov spaces, but which attains the optimal local, or pointwise,
convergence rate as well. This is achieved in main part through the careful choice of
block size and a truncation parameter for the estimator’s orthogonal series expansion.

Section 2 of this paper gives some background on wavelets and the function spaces
of interest. The wavelet and convolution kernel density estimators and the theorems
regarding their convergence rates are set forth in section 3, and their proofs are given in
section 4.

2. Definitions and Notation
2.1 Wavelets

The wavelets used in this paper are defined in terms of a multiresolution analysis.
Starting with the space Ly of real functions, decompose it into a series of nested spaces
Vi, where

.V DVioViaiD...,

UW=L27
(v ={0},

and
feVie f(2) € Viyy for any L.

Then, carefully choose a function ¢ such that for any integer ¢, the set of functions
{¢i;]%, 7 integers} is an orthonormal basis for V;,where

bi; = 217924+ —j).



The function ¢ is called the scaling function or the “father” wavelet. Let W, be the
orthogonal complement of V; in the space V;;;. Then a space V; can be decomposed into
subspaces V;_; and W,_;:

V; —= V1 —>VJ_2 — ... — Vo
NWior N Wi N o0 N\ W,
or,
J-1
Vi =Vmo Pw,

where m < J. In particular, the entire space Lo can be written as

for any fixed m. It can be shown that each space W; is spanned by functions 1);;, where
i = 22p(2- ),

and these “mother” wavelet functions can be constructed explicitly from the father
wavelet ¢. Additionally, the father and mother wavelets are contructed so that

Jo=fo=[v=
[v=0

Although it is assumed here that the collection of ¢;; are an orthonormal basis for
V;, this requirement can be loosened. It is only necessary that these functions form a
Riesz basis.

Several types of wavelets have been constructed, but the best known are those of
Daubechies (1992). In her construction of the functions ¢ and v, she uses ¢ that give rise
to an orthonormal basis. Each collection of {¢;;|j an integer} and {1;;|j an integer} is
then an orthonormal basis for V; and W;, respectively. By definition of the spaces
Vi and W;, the functions ¢;; and ;; are orthogonal to each other as well. Addition-
ally, Daubechies’ method also results in compactly supported wavelets. Note that in
Daubechies (1992), an alternate method of indexing the multiresolution analysis is used.

The wavelet functions created above can be used to represent functions in Ls. Let
f be any real function in L. The projection of f onto the space V; is

projy, f(z) = Z ;05 (%),
J

and

where

oy = (f, i) = / Iy



is the inner product of f and ¢;;. Likewise, the projection of f onto the space W; is

proj W; f Z Bij ¢U

where
Bij = {f, i) = /fwij

is the inner product of f and 4;;. The function f can then be written as

Z Qi ¢mj (-'17 + Z Z ,Bm ¢zg

i=m j
for some fixed m.
2.2 Besov, Hélder, and other spaces
We start by defining the Besov space B, ;. For 0 < p,q < oo and s > 0, a function

f is said to be in this space if its Besov norm is finite:

1fllz5, < o,

where, for 0 < s <1,

N
_ [ % ( |f +h) - (')||LP] dh) . g < o0,
”f”Bg,q = Hf”Lp + f ”Lp

sup , q = o0.
h>0

The usual L, norm is used here,

1= |f|”>%

Fors>1,s=s"+t0<t<1,and s* the largest integer strictly less than s,

s*
1£llBs, = D IF™ s,
m=0

Roughly, a function f in a Besov space B, has s derivatives and is in L,.
This paper considers functions whose Besov norms are bounded. For any 0 < M <
0o, we define the Besov ball as:

By (M) ={f:|lfllzs, < M}.

g

As a measure of the local risk at a point, the local Holder class A*(M, xo,9) is
used. For 0 < s <1,

AS(M,3o,0) = {f : |f(z) — flz0)| < Mz — zo|°,x € (x — 6,30 + ) }.
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For s > 1
A*(M,0,6) = {f : |£*)(z) — F&)(0)| < M|z — zo|',z € (z — 6,70 + 6)},

where t = s — s*.
Also of interest with regards to Besov spaces are some inclusion properties. If
s>s ors=s"and g < ¢, then

B:, C BS,. (1)
Ifp>pand s =s—1/p+1/p, then
B, C By, (2)

See Hardle et al. (1996).

In section 3, the functions of interest lie in a subset of a Besov space. Additionally,
it is further assumed that the functions are compactly supported and uniformly bounded.
Following Hall et al. (1998) notation, define

F;q(Ma L) = {f € B;q : Suppf € [_L7 L]a ”f”B;yq < M} (3)

The functions f to be estimated can be written as a sum of two functions f; and fs.
The first function will be assumed to lie in the space Fy (M, L). The second will be
an irregular function that does not lie in the same space as f;. This second function
will lie in one of two spaces, denoted by Hall, Kerkyacharian and Picard as P, and
F(Zl-l-l/2)"1,oo(M’ L).

Py ;1 is the set of piecewise polynomials of degree d, support in [—L, L], and with
the number of discontinuities no more than 7. F¢l,; o1 o (M, L) is defined by (3) above.

Let Vyr(F5 (M, L)) be all the functions f that can be written as f; + f;, where
fi € F3 (M, L) and f2 € Pyr1. 1731(F23,00(M , L)) will be the space of functions where
f1 is as above, and f; € F(ssl+1 J2)-1, (M, L). The theorems presented in the next section
will involve functions in these spaces intersected with Bo,(A), the set of all functions
uniformly bounded by A < oo.

Finally, wavelet coeflicients for functions in Besov spaces have the property that
the Besov norm of the function f can be represented as a sequence norm in terms of its
wavelet coefficients (see Meyer (1990)). If f € B, and {am;,Bi;} is the collection of
wavelet coefficents of f, then, when p < co

(Zi’io [2i(s+%_%) <Zj |ﬂz’j|p) %] q) % , g<00

1
i 1_1 ?
SUD;5 21(51E73) (Ej | B |z>)” , q = 0.

Ifllss,, = (Z(amj)”) 4

J
When p = oo, (37| - [P)!/? is replaced with the supremum over the summation index.

3. Density Estimation
3.1 The Kernel Functions



Two types of kernel estimators will be examined in this section: wavelet kernels
and convolution kernels. Following the notation of Hall et al. (1998), let K(z,y) be a
kernel function on R?, and define

Ki(z,y) = 2'K (2, 2%),i=10,1,2,... .
Additionally, K;f will be the integral operator defined as
Kif @) = [ Kiw,0) )y

For independent, identically distributed random variables X7, Xs, ... , X, from the dis-
tribution f, let

. 1 —
m=1

Note that K;(z) is an unbiased estimate of K;f(z) for all z:

B(Ri(z) = E % > Kits Xm>]
i(z Xl)]
/K z,y)f

= K;f(z

In the convolution case, K(z,y) = K(z — y). In the wavelet case,

K(z,y) = Z ¢z — 5)¢(y — ),

where ¢ is the father wavelet used in the context of a multiresolution analysis of

Daubechies (1992).
Additionally, there will be several restrictions on the choice of K. First, there

exists a @ € L? (and hence in L') such that
|K(z,y)| < Q(z —y) for all z and y. (5)
Next, K must satisfy the moment condition of order N:
/|x|N+1Q(x)dz < 00
and (6)
/K(x,y)(y—— z)*dy =6qy, for k=0,1,...,N.

Finally, @ is compactly supported, say
Q(z) = 0 when |z| > go. (7)



Condition (5) implies (by Young’s inequality) that
1K fllo < [1QI Il (8)

for all p > 1. Condition (6) is the usual assumption about the order of a kernel.
Condition (7) is presented only to simplify the proof. The conditions (5), (6) and (7)
are met in the wavelet case if the mother wavelet 1) has N vanishing moments

/:L‘kwij(:c)dz =0,k=0,1,...,N,

and if ¢ and v are both bounded. See Kerkyacharian and Picard (1992).
Hall et al. (1998) defined their “innovation” kernel as

Di(z,y) = Kipa(z,y) — Ki(z, )

for i =0,1,.... Let D;f be the integral operator K;.;f — K;f. Then, similarly to f{i,
an unbiased estimator of D;f(z) is

. 18
Dz(x) = n E ,Dz($7Xm)
m=1

In the wavelet case, K and D; can be associated with the projection operators of the
multiresolution analysis. K(z,y) is the projection operator on to the space spanned
by ¢ and its integer translates. In the notation of multiresolution analysis, this is the
“coarse” space Vy. D;(z,y) is, then, the operator projecting on to the “detail” spaces
W, of multiresolution analysis. The number of projections on to these detail spaces to
be used will be finite, say R.

K and D; perform similar tasks in the convolution case: namely, projection oper-
ators on to coarse and detail spaces. This innovation kernel will be used to define the
density estimator in the next section.

3.2 The Density Estimator

The density to be estimated may be written as

o0

f(z) = Kof(z) + Y _ Dif (z). 9)

=0

The linear part, Ko f(z), will be estimated by Ko(z). The remaining part will estimated
using thresholding methods, and hence is nonlinear in nature. The index ¢ will be
truncated to some finite value R.

To understand the thresholding method, the wavelet case will be examined first.
Let ¢ and ¢ be bounded father and mother wavelets of the multiresolution analysis
satisfying conditions (5), (6), and (7). Define the dilations and translations of these two
functions as

¢i(z) = doj(z) = ¢(z — 7)
and

Wi (z) = 229(2'z — 7).

7



Let a; =< f,¢; > and B;; =< f,1);; > be the usual inner products as defined in section
2. Unbiased estimates of o;; and B;; are

. _ 1y
==Y ¢i(X
n
m=1
and
I
= »
m=1
The linear part Kof(x) can be written as

Kof(z /ny

The estimate of Ky f(z) is then

o(z) =3 dye(z)

=33 8= )é(Xm )
—% > K(z,Xm)

Similarly, note that K;.i(z,y) — K;(z,y), ¢ > 0, is the projection operator onto the
detail space W;. From Vidakovic (1995), the projection onto W; can also be written as

Z% )i (y

S0
Di(z,y) = Kis(z,y) — Ki(z,y) Z’% z)hi; (y

Therefore, in a manner similar to that used above on KO f(z),

T) = Z Bijtii (z)



The estimate of the nonlinear part D;f(x) is, then,
£) = Bitii(o)
J

In the wavelet case, we can then rewrite (9) as

= Zaj¢j(-'”) + 30 Bithis (@), (10)

i=0 j

and estimate (10) as

where R is a finite truncation value for the infinite series. Thresholding will now be ap-
phed to the nonlinear part ), 3. Bijtbii (). The variance of fiji;(z) is
n~tvar (1;;(X))®Z(z) and the squared bias when leaving out the term associated with

Bi; in (11) is 2 fj(x) It seems reasonable to keep the term f;;4;;(z) whenever the
squared bias for removing that term is greater than its variance. Thus, Bij¢ij (z) would
be replaced by B;;v;(x)I(B% > cn™") for some constant c. But, since f; is unknown,

Bijbii () I( Afj > cn™!) will be used. This term-by-term thresholding method of (11)

leads to the following estimate of f:

Z ;b (x) + Z > Bigtii (2 (B > en™Y). (12)

=0 3

However, this term-by-term thresholding estimate results in poor mean squared
error. The optimal rate can never be achieved. In fact, the best rate that can be
attained is n~* for some s’ strictly less than 2s/(2s + 1). By using clog(n)/n rather
than cn™' as a threshold, the convergence rate of (12) can be improved to a constant
multiple of (n~log(n))?/®?s+1) which is still less than the optimal minimax rate. See
Hall et al. (1998).

Instead of using this term-by-term thresholding method and the estimate at (12),
block thresholding will be used to create a new density estimtor. In each resolution
level 4, the indices j are divided up into nonoverlapping blocks of length . Within
this block, the average estimated squared bias [~1 Eje B(k) ,BA% will be compared to the
threshold. Here, B(k) refers to the set of indices j in block k. By estimating all of these
squared coefficients together, the additional information allows a better comparison to
the threshold, and hence a better convergence rate. If the average squared bias is larger
than the threshold, all coefficients in the block will be kept. Otherwise, all coefficients
will discarded.



Letting

and estimating this with

zk: _l_ Z e

j€B(k)

the wavelet-based estimate of f to be used in this paper becomes

F(z) =Zozj¢J +ZZ 3" Bitpis(@) I (By > en™). (13)

i=0 k jeB(k)

The non-wavelet, convolution kernel case will be treated similarly. First, note that

By =171 >

jeB(k)

e / 22 (2)di
2 (@A J(()

jeB(k)
2

:l‘lfj Z ,BZJ’I,/)ZJ(J)) dx

ik \jeB(k)

=17 /Jk (D f (z))* dz

2
where

zkf Z /sz"pz]

j€B(k)

and

U {z: ¢ii(z) £0} = | {supp 3}-

j€B(k) jeB(k)
By a like argument,

zk—l ! Z

jEB(k)

=71 /J D2 (z)dx
ik

= Y Bity(x)

jeB(k)

where

The size of the interval Jy, is D27 for some constant D which depends on the length
of the support and the amount of overlap of 9;; since, with the exception of the Haar
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wavelet, the support of wavelet functions overlap one another. The wavelet density
estimator (13) may then be written as

fz ) + ZZDm I(z € Ju)I(By > cn™b).

=0 k

If the support of the 1;; were nonoverlapping, then the length of J; would be D’ 274,
where D' depends only on the length of the support of the ;;. Furthermore,

By, = 11 /, (Daf@)f ds =17 /J (Dif (@), (14)

and
By =1 / (Disf (@))* do = 11 / D (z)dz, (15)
Jik Jik

since the J;, would only include the supports of the );; in the kth block. The nonover-
lapping wavelet density estimator (13) may then be written as

f(x) = f{o(x) + Z Z z)I(z € Jzk)I(Bik >cnh).

=0 k

This alternate form of (13) is the model for the convolution kernel estimator. Replace
the intervals J;;, with nonoverlapping intervals I of length 27%. Then analogously to
(14) and (15), define

Ay, = l_l/ (Dif (z))*dz,
Ly

and estimate A;, with
Ay =171 / D?f(z)dz.
'Lk

The convolution kernel block thresholded equivalent of (13) is then
~ R A A
i=0 &

3.8 Convergence Rates for the Density Estimators

The optimal minimax rate of convergence of an estimate of a density in a Besov
space to the true underlying density is O(n=2¥/(23+1)) for a function with unknown
smoothness parameter s. For the wavelet kernel density estimator (13) and the appro-
priate choice of block length [ and series truncation parameter R, this rate is achieved
over the space V;, (F§ (M, L)) N By (A) as defined in section 2.
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Theorem 1 Let f be the wavelet kernel density estimator (18). Let the block length |
be logn, R = |log,n'¢]| for some fized € € (0,1/2] and suppose ¢ and 9 are bounded.
Ifs; —s>s/((2s+ 1)(1 —¢)), ¥ has N — 1 vanishing moments, and

2
2N
c = A(0.08)7" <Cz||Q||2+||Q||1 m) ’

where Cy and Cs are the universal constants from Talagrand (1994), then there ezists a
positive constant C such that for all 1/2 < s < N,

_ sup E||f = flI < On~ /@D,
£ €Ty (Ff o (ML) B (4)

The convolution kernel estimator (16) also achieves the global, optimal minimax
convergence rate with this smaller block length, although over a different space of irreg-
ular Besov functions.

Theorem 2 Let f be the convolution kernel density estimator (16). Let 7, be a sequence
of positive numbers such that for all { > 0, 7, = O(n¢FY/CN1) " Let the block length |
be logn and R = |log,n'~¢|, where € = p[(2N +1)(2(N — p) + 1)]™*, and p is any fized
number such that 0 < p < N —1/2. Let

¢ = A(0.08)~* (CzIIQllz + ||Q“1\/01(22((x:§)))+ 1)) ’

where Cy and Cy are the universal constants from Talagrand (1994). If K satisfies (5),
(6) with order N —1, and (7), and 1/2 < s < N —p, then there exists a positive constant
C such that

sup sup B||f - fI} < On /@40,
d<N,7<7n fE€Vyr (F§ oo (M,L))NBoo(A)

These two theorems differ from Hall et al. (1998) in that the block length [ is logn
instead of (logn)? and that their truncation parameter R does not contain the exponent
1 — ¢. Additionally, in theorem 1, the range of the functions covered by their estimator
is slightly larger, and in theorem 2, the range of the unknown smoothness parameter
has been lessened.

In the wavelet kernel case, the only restriction on the irregular part f» of the
function f in Hall, Kerkyacharian and Picard’s paper is that s; — s > s/(2s + 1).
Although the range of € extends to 1/2 in theorem 1, to increase the scope of the spaces
under consideration to be closer in size to that of Hall et al. (1998) it is advantageous
to choose € to be near zero.

In the convolution kernel case, theorem 2 has reduced the range of the smoothness
paramater s found in Hall, Kerkyacharian and Picard from (1/2, N) to (1/2, N — p) for
an arbitrarily small constant p > 0. However, if the reader is unhappy with the upper
limit of N — p, and insists on N, this can be overcome by choosing a kernel with N
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vanishing moments instead of N — 1. Or, one may choose p to be very small. However,
by changing the value of p, the constant C = C(p) will increase.

Another way of dealing with reduction in the range of s in theorem 2 is by modifying
the number of discontinuities. In Hall, Kerkyacharian and Picard, 7, is a sequence
such that for all ¢ > 0, 7, = O(nétY/@N+1)). By changing 7, to a sequence of order
O(n'/@N+1)=¢) for some fixed ¢ € (0,1/(2N + 1)), the range of s is restored to (1/2, N).
In this case, theorem 2 becomes:

Theorem 3 Let f be the convolution kernel density estimator (16). Let 7, be a sequence
of positive numbers such that for a fized ¢ € (0,1/(2N +1)), 7, = O(nY/@N+D —_ (). Let
the block length | be logn and R = |logyn*~¢|. Let

2
2N
c= A(0.08)7" <02||Q||2 + QI m) ’

where Cy and Cy are the universal constants from Talagrand (1994). If K satisfies (5),
(6) with order N — 1, and (7), and 1/2 < s < N, then there exists a positive constant
C such that

sup sup E|f = fl3 < On2/@H),
d<N,7<Tn feVdT(Fég,oo (M,L))NBoo (A)

The reader is then left to decide between theorems 2 and 3 as to which is more
beneficial to the problem at hand: larger range of adaptivity for the unknown smoothness
parameter s, or the ability of the estimator to handle a larger number of discontinuities.

In all of the preceeding theorems on densities, the rate of convergence of Hall,
Kerkyacharian and Picard is not affected by changing the block length, and indeed,
there is an advantage to using this smaller block length in regards to local adaptivity.

Theorems 1, 2 and 3, show that the estimators (13) and (16) are globally adaptive
in terms of the smoothness parameter s. The local adaptivity of a function at a point
xo is determined by

E(f(xo) - f(wo))z-

As a measure of the local risk at a point, the local Holder class A*(M, ¢, d) defined in
section 2 is used. To achieve local adaptivity, Brown and Low (1996) showed that there
is a penalty sufferred. Namely, a logarithmic factor appears in the convergence rate. By
using a block length of [ = logn in the wavelet and convolution kernel estimators, the
local minimax convergence rate of (n~!logn)?/(2s+1) is achieved simultaneously with
the global optimal rate.

Theorem 4 Let f be the wavelet kernel density estimator (18). Let R, 1, C1, Co and
¢ be as in theorem 1, and suppose ¢ and v are bounded. If 1/2 < s < N, ¢ has N — 1
vanishing moments, and

2
2N
c = A(0.08)™ (Cqu”z + IIQlll\/C—l(;—:)) )
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then there exists a positive constant C such that

sup  E(f(zo) — f(20))? < C(logn/n)*/sF1).
feAs(M,x0,0)

Furthermore, for I = (logn)'*",r > 0, this upper bound is not met, i.e., local adaptivity
is not attained with a block length of order larger than logn.

Since the goal is to have a single estimator that achieves both global and local
minimax rates simultaneously, this theorem intentionally uses the same threshold as
theorem 1. However, it could be lowered to a smaller number without a loss in the rate
of convergence. This lower threshold value for local adaptivity only is

¢ > (0.08)7'C3| fll QI3 (17)

Using a block length of order larger than logn, the global rate may still be attained
(for example, [ = (logn)? in Hall et al. (1998)), but the local rate will not.

The threshold values in each of these theorems depends on two universal constants.
The numeric value of these constants C; and Cs are not specified directly in Talagrand
(1994), but must be inferred from this and an earlier work of his (Talagrand (1989)).
From these two papers, a value of 24e'7/1 may be obtained for C,. A value of C; is then
derived from the relation C; = (C)~2.

The values for ||@||2 and ||@||1 can be obtained by examination of or numerical
integration of the kernel function K.

To determine the value for A, the following method is suggested. Since the “coarse”
projection K f does not involve the thresholding constant ¢ (recall that the linear portion
of the estimator is not thresholded), use the maximum value of Ko(z) in place of A. Using
these numeric values, the threshold c for the wavelet estimator is

2
N 2N
c= {mg?ux_K'O(:z:)}(O.OS)_1 (24617/16||Q”2 + |IQ||1\/(24617/16)—2(2N n 1))

= {max Ko(a)} (24e”) (|Ql1 + |QI 2N/ EN + 1)) /(0.08) (18)

A drawback to these projection-type density estimators is that they may lead to
negative values for f. This problem will be overcome by using only the positive portion
of the estimate. Clearly, since f > 0,

E|fy - fII3 < E|If - £1I5-
So the theorems are not changed by substituting f+ in for f

4. Proofs
4.1 Preliminaries

Before the proofs of the theorems are given, several preliminary results are neces-
sary. First, a simple lemma based on Minkowski’s inequality:

14



Lemma 1 Let X;, Xs,...,X, be random variables. Then

E (}n_: Xi) i(EXf)W]

Second, a theorem from Talagrand (1994) as stated in Hall et al. (1998).

Theorem 5 Let Uy, U,, ..., U, be independent and identically distributed random vari-
ables. Let €,,¢€9,...,€, be independent Rademacher random variables that are also in-
depndent of the U;. Let G be a class of functions uniformly bounded by M. If there
exists a v, H > 0 such that for all n,

sup var g(U) < v,
geG

Esup Em < nH,
gGGZ 9(Un)

then there exist universal constants Cy and Cs such that for all A > 0,

sup(nZg ))2)\+02H

geG

< e—ncl( —Ii‘z) )

Finally, a lemma, from Hall et al. (1998).

Lemma 2 If K(z,y) is a kernel satisfying condition (1), Q@ € L?, and J a compact
interval, then

B [ (o)~ Kof @) de < [l QU1
and

E / (Dile) ~ Dif (@) da < 4] 7| QIE |/,

where |J| is the length of the interval J.

4.2 Proof of Thoerem 2
Recall that

f(z) = Kof (= +ZDf

and

f(.’]?) = KO(:I;) + ZZDZ(!II)I(QT € Izk)j(fizk > cn_l).

i=0 &
The goal is to bound E||f — f||2. To do this, let 4, be the integer such that

22'5 S nl/(23+1) < zis—{—l.

15



Then Minkowksi’s inequality implies that

2

is

Z { [Z DI (I I(Ag > cn‘l)] — Dif}

N ~ 2
BI|f - fI§ < 4B Ko — Ko | +4E

=0 5
R [ 2
+AE| Y { > Dl (Iy)I(Ag > cn—l)] - D; f}
i=i3+1 L & 9
o 2
+4| > Dif
i=R+1 9

=N +L+T3+1

Each piece T; will be treated individually in its own section.
Bound on the linear part 11
To bound the linear part 77, use lemma 2 and the fact that the support of f is contained
in {-L, L.
Ty = 4E|| Ko — Kof I3

<CE /L (f(o(l‘) - Kof(:v))2 dz (19)

—-L

< 2L flloo QI3 /7
=Cn7L

The constant C is a generic constant that, for simplicity, will represent numerous con-
stants throughout this paper.

16



Bound on the nonlinear part T,

To bound the nonlinear part 75, note that for a fixed i < i,

(Z ZA)i(x)I(z € Iik)I(flik > cn—l)) — Dif(:v)] dx

<8 [ (Do) - DS @) d I > e
+EE/ (D;f(z))* dz I(Ag < en™)I(Ay < 2en™)

+ EZ/ (Dif (2))* dz I(Ai < en™')I(Ag > 2cn7")

+EZ/ (D;f(z))*dz I(Ay < 2en™)

+ EZ / (D:if(2))? dz I(Ag < en DI (Agg > 2en™?)
=Ty + Tzz + Tos.
Ty and Ty, are bounded as in Hall, et al. Hall et al. (1998):
To1, Tos < C2¢/n. (20)
To bound T3z, the following lemma, from Hall et al. (1998) is useful:
Lemma 3 If [ (D;f(z))*dz < lc/(2n) then
{/I (ﬁi(x))zdx > lc/n} - {/I (Dz(x) - Dif(x))zda: > 0.0SZc/n} ,
ik ik
and if [, ( £))? dz > 2lc/n then
{ /I (f),-(:v))zd:c < lc/n} c { /1 (Di@) - Dif (@) do > 0.16lc/n}.
i i

Using this lemma,

Tos < EZ/I“E (D;f(z))*dzx I (/ (Dz(x) - Dif(x)>2dx > 0.16lc/n> :

Iik

17



By (8), and the fact that the length of the interval I is 1/2¢,

/I- (sz(:v))2 dz :/ (Kip1f(z) — Kzf(.’li))zdx

L

<2 / (Kiaf (@) +2 / (K (2))?de

f Ly,
<2 [ Wiafldo+2 [ 1S
L Lk
< 4[|fIZ Q5 /2"
So,

A 9 1/2
T23§4||f||§o||QII?l/2iZP([ / | (Dz-(x)—Dif(x)) dx] zm). (21)

I;

To bound the above probability, Talagrand’s theorem (theorem 5) will be used. From
Hall, et al. it is shown that

{/Izk (Dz(x) - Dif(x))zdx}l/z

~ sup {1 > [ ol@)Dile, Xn)do ~ B | s@pia, Xl)dz} ,

gea | 1 Iy,

where the function set G is

o={ [ sDi iz lola <1},

I;
and values for M, v, and H in theorem 5 are:

M =272(1Qll.,

v=fll-lQIf,

H = /Ul fllellQUI3/n-

Letting A = /0.16lc/n — Ca+/1||f]|||@||3/n > 0, Talagrand’s theorem then implies

P(|f (b- Dif(a)" ] Taan Cz\/lllfllooIIQH%/n)

< exp {—nCy [(W/11/1llQIE) A (A/(272]1Q112)] } -

and

18



Now, if 0 < ¢ < i, then A2/ (|| f[l||Ql12) < A/ (272]|Q||2) for large n and positive A:

N/ (1l QI < A (27211Q112)
& X < [1fllllQUE/ (27211Q112)

& V0TG- Oyl el < LUl -

T (V0166 - Onyllcl@lf) < i=l@Mp-ivz - (a9)

_ 1 llc Q13
& /2 logn/n <
(V0182 - Co/MFTIIQTR) l1Qll:
Isilon
(V0160 - G/ 17 TNIQMB) 119113

< n large enough, say n > n”.

& n~2/@H) o0 <

Therefore,

P ([/I (Do) - Dif(x))zd:c] 1/22 \/m)
< C-exp [—-nCi /|| flloo| Q]

r 2
= C-exp [—nC) (\/0-16lc/n_02\/l||f||oo”Q”§/n> /IlflloollQllf} (23)

[
=C-exp |-C (\/0-160—02 ||f”oo”Q”2> Ifl il 210gn}

=Cn~¢,
where ¢ is the constant
2
Ci (VO162 - Co/I7T-I1QTE)

£ oo QI

Putting (21) and (23) together with the fact that the number of nonoverlapping intervals
I, that intersect the support of f is no more than 2L2%/,

T23 S Cn_‘s. (24)

All pieces are now available to bound T3. Using Minkowksi’s inequality,
2

Ty, = 4E ;{(ZDI w) I (A > cn 1)>—Dif} 2
ca (g (i)

19



and using lemma 1 with X; = H { <Zk 1A71-.T(_T,-k)I(fL-;c > cn_1)> — Dif} )

_ o\ 1/272
T, <4 Z(E ZDI a) (A, > en” ))_Dif] )
; 2

i _ 1/27 2

; (E / (Zf)i(x)l(w € Ip)I(Ay > cn—1)> — D; f(:v)} dx)

is 2
<4 (Z (Toy + Top + T23)1/2>

i=0
2
<C (ZT1/2+T212/2+ 1/2) .

Using the bounds from (20) and (24),

ol (enens]

=0
< C (25n7 + 2070 (25)

-C [ —2s/(2s+1) + (10g2 nl/(23+1))2n—6] )

Il
] M

Bound on the nonlinear part Tj

For a fixed 4,4 +1 <¢ < R,

5

(Z ﬁ,(m)](x € Iik)I(Aik > cn‘1)> — Dz-f(x)] dz

<EY / (biw) - D, £(z))” dz I(As > en™)I(Au > ¢/ (2n)

PR

+EY / D;(z) — D; f(:v)>2 dz I(Ay > en 1) I(Ay < c/(2n))

r Yk

+ Ezk: /I (D@ o 1A < en (A < 2™

+EY / (Dif (@) dz T(Ag < on™)I(As > 2en™Y)
Ik

Ts; and Tss are treated the same as in Hall, et al. Hall et al. (1998) and have the same
bounds to within a constant:

Ty, Tos < C (2% + la(n)nt/CN 7 =1270) (26)

20



where r > 0 is arbitrary and a(n) = O(n¢) for all ¢ > 0.
By lemma 3,

Ty = ZE /I | (f)z-(a:) ~ Dif(a)) do I(Au > on™)I(A < ¢/ (2n)
< ZE [/ ( — Dif(z ))2
I ({/I (D) - Dif(m))zda:}l/z > \/W}{)] .

To bound this, note that for any non-negative random variable Y,

EY?I(Y > a) =/OOP(Y2[(Y>a) > u) du

2

:/ P(YzI(Y>a)>a2)du—|—/ P(Y’I(Y > a) > u)du
0 o

:/ P(Y>a)du—|—/ P(Y?>u)du
0 a

2

=a’P(Y > a) +/ 2yP(Y > y)dy,

The integrals in T35 are of this form with

_ [/Ik (D) - Dif(x)>2d:v] "o

K

and a = /0.08lc/n. From Talagrand’s theorem,

P(Y >y)=P[Y > (y— C:H) + C2H]

( CZ ) ’y—Cz_H
< ex N =
= p[ (ufuoonc;nl 272([Qll>
and therefore

— CyH — Cy,H
P> 0 < oo [ (ﬁ?fnoonzc)n)? 4 gﬂznénz)]

+ 2“""[ (nfnoonczw Aszzncznz) y]

= T391 + T390.
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Now, (@ — CoH)? || F11221QI72 < (a—CoH)27%2||Q||;* for large n and (a—CoH) positive:
(a ~CoH)*/ (Iflloo IQIF) < (a = C2H)/ (272]1Q112)

i (V0052 - oy all) < ULl

(27)
2 4
o 2Plogn/n < IRl
(V008 — GV TFITQIE) Q113
< 28 < n'~¢ for some fixed ¢ > 0 and n > n'.
Therefore,
2
2 1/0.08cl/n — Cav/|| fllo||QI3L/ 7
Ty <C (V0.0Scl/n) exp ¢ —nCy ( 5 )
1 fllool| QI
2
- . | (V0T — o ITT=TQE) | 28)
=Cn'logn exp { — ogn
1 1/l
< Cn~ " logn,
where -y is the constant
2
G (Vo.08e - /N1 Q1)
. (29)

7= TMEIR

For T390, first assume that

2
0 < ap= WelQlk o AT m.

|QI|22¢/2
Then,
" — G, H)? ° — CoH
T390 = / 2y exp <—nCl W) dy +/ 2y exp (—nCng/Hﬁ) dy
a &0 a0

= T3o91 + T3022.

To bound T3201, note that by a change of variables and increase in upper limit of inte-
gration,

00 yz
T3901 < / 2y exp (—nCl——) dy
A A [1flloo|QIIF

00 2
Y
+/ 2C,H exp (—nC —) dy
ol i llQI2

_ 2, —1,—1 _ (a—C’2H)2>
— |l @G exp( G (30)

o0 2

Y

+ 2C,Hy(1/y) exp (—nC ——————) dy
/a_czH Hy(1/y) If o QN
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The first term on the right of (30) is bounded by Cn~'~7, where v is the constant in
(29). To bound the the second term, use integration by parts.

2

|, pCeH) exp ("”01 ||f||ff||@'||%) 4

—CoH
CoH  [|fllool|QII2 ( m—@mj
— exp | —nCj—— L
o—CH nC, =P "l QI

* | fllol|@I1Z 1 ( y? )
- CoH—————— exp | nCr———5 | dy.
/a—C'zH 2 nCy y? ' ||f||oo||Q||%

Since the integrand in second term on the right side above is strictly positive,

[e%s) 2
|, 2y exp (’”Cl ||f||ff||@'||%> W

—CoH
p) 2
B V11 - L A L S
v/0.08clogn/n — Caov/|| flleo||@|2logn/n  nCi

< Cn7177,

where again v is from (29).
Now to bound T3y92. Using integration by parts,

[ y—CoH
T3902 = / 2y exp (_ncl———2i/2||Q|Iz) dy

ag

212]1Q] |2 ag — CoH
= 2&07 exp (—nC’lW (31)
*272|Qll ( y— CoH
+/ 2——— = exp | —nCi1=+—— ] dy.
ao nCl 122/2“62”2
The first term of (31) is bounded above by
: 3 Cill fllollQU3
IQIL27> " * ’ 2]QI3
-1 ~1 - nd
<C (n +n7 /20 logn/n) exp | =77 |
and the second term is no moge than
I 1| ]l QIF i - nd
C (n~1212)? exp (_n LU, Ly <C2n 2 exp| ——
(n27%) 2TQN8 7
where d is the constant
2
L Gl lllQlE )

QI3

If a > ag, then,

T = 2y e —nC~——— | dy + wexpl| —nC;Z—=—1d
/ Y Xp( el ) YT S, P T g, ) Y
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Since the first integral is strictly negative, the same bound holds as shown above in (31).
Therefore,

Tsy = Z (Ts21 + Ts221 + T3292)
k

SCZ [’12_7_110g11+17,_’y ! (n +n7ty/2logn/n + 2n~ ) exp (—Z—?)]
k
(33)

Since the number of blocks k intersecting the support of f is no more than 2L2¢/logn,

: , : d
T3 < C2'/logn {n""l logn + (n_l +n~1/2logn/n + 2’n_2) exp (—2—2)} . (34)

To bound the piece T3, using Talagrand’s theorem, it is critical that 2F < nl—¢
(or, more generally, 2% < Cnl~¢). If 28 > n, then for i = R, the argument at (27) is
invalid. Letting ¢ = R,
((I - C2H)2
1flleoll QU

which, for large n, is greater than

a — 02 -1
= Cn™"y/logn.
272[Qll &

Thus, at (28) the bound becomes (for i = R)

— _ p
Ty < C( 0.086l/n)2exp {—nCl (,/0.0SCl/n n1?;2”Q||||fHOO”Q”2l/n)]

= Cn"tlogn,

= Cn~'logn exp (—D\/@)

for some constant D. This equates to adding the term exp (—D\/log n) to the bound
at (34). Now, for any constant C and all s in (1/2, N — p) there exists n large enough
such that

28 D 2s
. =C- 1 o> D+/1
C %11 Vogn 25 11 08> Dylogn

= Cn=it > exp <D\/log n)
= Cn~ 541 < exp (—D\/logn) .

This added term therefore prevents the estimator from attaining the optimal minimax
rate of convergence.

The only way around this problem without finding a sharper bound than that
provided by theorem 5 is if the block length ! were (logn)? or larger. However, as
pointed out in section 3, this block length will not result in optimal local adaptivity.
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Also, for (27) to remain true for values of 4 approaching R, larger and larger values
of the constant C' are necessary in (28). No single constant C' would suffice in (28).

To bound T34, observe that the only difference between Th3 and T34 is the range
of the index i. Therefore, by repeating the argument for T3, the bound for Ts4 is the
same as at (24):

Tsy < Cn~%. (35)

To bound T3, use lemma 5 and Minkowksi’s inequality in a manner similar to the
treatment of T5.

2

R
T3 =4F Z (Z ﬁzI(Izk)I(Azk > cn_l)) - sz:|
i=ig+1 k 2
R 9 1/27 2
<4|> |E / (Z Di(z)I(z € Ix)I(Ay > cn—l)) — D; f(ac)] dz
i=ia+1 k
R 2
co S meeen T;f) 6)
i=ig+1
/R 2 R 2 R 2 R 2
<c (Z T;{Z) + ( 5 T312/2> + ( 3 T313/2> . ( 3 T314/2)
| \i=is+1 i=ig+1 i=igt+1 i=ig+1
First, for 7 =1 or 3, from (26) we have
R 2 - R 2
(3 m) =0y (3 Qg V1274
i=ia+1 [ i=i,+1
R 2
<C Z 9—is | \/(log n)nl/(2N+1)+Cnr—12—ir>
i=ig+1
- o )
< C n—23/(23+1) + (logn) nl/(2N+1)+{+r—1 ( Z 2—ir/2)
i i=is+1
<C [n—2s/(23+1) + (logn) nl/(2N+1)+C+7‘—1—r/(23+1)] .
Now,
R/ @N+L)+CHr—1—r/(2841) _ ,=28/(25+1)
whenever
1/(2s+1) = 1/(2N +1) > 2rs/(2s + 1) + ¢. (37)

Since s < N and {,r > 0 are arbitrary, this is easily accomplished. Let x be the positive

integer such that for the /zeta and r making (37) true,
il @NFL+CHr—1—r/@2s+1) _ ,,—28/(26+1)
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Then,

(logn) n/@N+U)+CHr—1-r/(25+1) _ (logn) n 28/ (2541)

< Cn——Zs/(Zs+1)

and

R 2

Next, from (34),

( i Tsxlz/z)2 <C (ER: (2in—(7+1))1/2>2

i=ts+1

2
+ (Z (21(77, logn)_1\/2i logn/ne_%g)l/2>
SR Ny 2
+ (Z (22"'(712 log n)‘le_%f) )
2

Observe that for large n and positive d,
logn < nfd = n < ™% =enl-s,

Therefore,
. nd
2<n<ez forali=0,1,... ,R.

So,
. nd
2'e” 20 < C for large n.

26
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Therefore,

( i T312/2> <C I:n—(’r+1) (i 2i/2> 4 (Z <n‘1 2/ logn))1/2>

i=ig+1 is+1 ist1
R 2 R 2
+ (Z (2°(n*logn)™") Y ) (Z nlogn) 1/2>
is+1 is+1
<C [2Rn_(7+1) + <n nlog n) (Z 21/4>
is+1

+ (n®logn)” <Z 21/2> (nlogn)™" RZ:I (39)

is+1

<C [n” + (m/nlogn) - oR/2 4 (n? logn)_1 2R

+ (nlogn)™ (log, nl_e)z]
<C(n"+n7t).

And finally, from (35),

(Z T314/2) (logy n* E)2n”‘5. (40)

i=ig+1

Putting (38), (39), (40) together yields

Ty < C [n—28/(23+1) +n"T4+ (logz n1—8)2 n-—é] ] (41)
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Bound on the nonlinear part Ty

From Hall et al. (1998),
||sz||§ <C (2—2si + a(n)nl/(2N+1)2—i) :
where a(n) = O(n¢) for all ¢ > 0. Then, by Minkowski’s inequality,

- 2
Z D;f

i=R+1 2

0o 2
<cl| Y ||Dif||2)

i=R+1

Ty =4

S 9
SC Z (2—23i+a( ) 1/(2N+1)2 )1/2] (42)

Li=R+1

< C ( E 9= 82) +CL 1/(2N+1) ( Z 9~ Z/2)

| \i= R+1 i=R+1
=C (2—2Rs + a(n)nl/(ZN-i-l)z—R)
=C (n—Zs(l—e) + n(+1/(2N+1)—1+e) ]

Determination of constants y,d, €, and ¢

Using the bounds from (19), (25), (41), and (42),

E\f-fl2<C [n—-Zs/(23+1) + (log, nl/(23+1))2n—6 e

+ (10g2 nl—s)Z n~% + p~25(1-e) 4 n(+1/(2N+1)—1+e] .

First, a bound for €. Note that

pSH/@N+1)=14e =2/ (25+1) (43)
if and only if
2N B 2s >Cte
2N+1 2s4+1 "~ '

Since it is desired that (43) hold for all 1/2 < s < N — p, choose ¢ and ¢ such that

2p
(2N+1)( (N—p)+1)

(+e

¢ can be any arbitrary positive number, so for simplicity take it to be the same as €.
Then (43) is satisfied if

p
T eNTDRN-p) +1) (44)
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This choice of ¢ is less than 1/2, so

n—Zs(l—e) < n=s < n——23/(2s+1),

forall1/2<s< N —p.
For ~,

n~Y < n—2s/(2s+1)

for all 1/2 < s < N — p if and only if

_ G (VO - CoVIFI=IQE)” (v - )
T M 2N —p 1

The above constraint is met if the value of the threshold c is set accordingly:

y = ez — o))
¢ > (0.08) (02\/||f||oo||czuz+\/ o ) ,

or, since ||f||co is unknown but bounded by A,

= A(0.08)” (02HQ||2 + ||Q||1\/ e 1)> - (49

Note that the condition at (27) that a — CoH be positive is met if (45) holds.
a - CoH = /0.08cn 1 logn — Gy /n~tlogn| Il Q1
= v/ Togn (V652 - Cay 71l 1)

J/nilogn ( 4C21QI - 02\/||f||oo||c2||§)
= V/n 105G Qll2 (VA ~ V[Tl
> Q.

For 4, note that

& (VOT6e ~ 0o/ IFTTQTR)
°= 17IelQR
(&) 1

> 7. (46)
Therefore
[(10g2 nl/(23+1))2 + (log, n1—5)2] = < On—2s/(2s+1).

A similar argument to the one above shows the condition at (22) that A be positive is
met if (46) holds.
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Therefore, using the bounds for € and ¢ at (44) and (45),
E||f = fllf < Cn=2/Gs),

and the theorem is proved.

One might be tempted to conclude that since the upper bound is N — p for any
p > 0, the upper bound for the unknown smoothness parameter s is really N. However,
by letting p go to 0, (44) shows that & goes to 0 and the argument for the term T3y at
(27) is not valid. See the discussion in section 4.2.3 following the bound for Ts,.

4.3 Proof of Theorem 3

The proof of theorem 3 follows closely that of theorem 2. Substitute ¢ for € through-
out the proof of theorem 2. The only remaining differences are those involving the pieces
T31, T33, and Ty. These are the pieces that involve the number of discontinuities.

First, from (26)

T31, T33 S D (2_2i3 —+ (log n)nl/(2N+1)—Cn7‘—12-—ir) ,

where 7 > 0 is arbitrary and ( is a fixed number in (0,1/(2N +1)). So, for j =1 or 3,

R 2 R 2
< Z Talj/z) < O |n~2/@s+) | (log n) nl/@N+D-CHr-1 < Z 2—2’1‘/2)

=it i=ig+1
<C [n—2s/(25+1) + (log n) nl/(2N+1)—(+7_1_r/(2s+1)] _

Now,
n/@N+D)—CHr—1-r/(2s+1) _ ,—2s/(25+1)

whenever
1/2N+1)<1/(2s+1)+7r/(2s+1)+(— .

Since s < N and r > 0 is arbitrary, this can be accomplished by taking » = ¢ > 0.
Therefore,

L/ @NH)—C+r—1-r/(2s+1) _ ( pl/@N+1)—1-¢/(2s+1)

(logn) logn)

(log n) n—Zs/(2s+1) n—(/(2s+1)

<
< Cn—23/(23+1) :

and

R 2
( E T;J/z) <C (n—23/(2s+1)) _

i=ig+1
The bounds for T3, and T34 are unchanged from (34) and (35). Then, the bound
for Ty at (41) becomes
T < C [n” + (log, n1_4)2 n7 + n_zs/(25+l)] ,

where v and 6 are as in the proof of theorem 2.
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For the piece Ty, we have as in the proof of theorem 2 that
IDifIl5 < C (272 + nH/ENHD=27).
Repeating the argument at (42),
T, <C (2—2Rs n n1/(2N+1)—g2—R)
< O (n209) 4 pl/@ENH)=¢=(-0)
—C (n—zs(1—g) n n—ZN/(2N+1))
<C (n—23(1—g) n n—2s/(2s+1)) ,

for 1/2 < s < N. Since the other pieces are not affected by the change in the number
of discontinuities of the irregular part of f, we have.

'E||f B f||§ <cC [n_zs/(zs+1) i (10g2 nl/(2s+1))2 n + 0
+ (logyn~¢)*n % + n_zs(l_o] .

This bound will be of order smaller than n~2*/(2*1) whenever ¢ € (0,1/2) and v >
2N/(2N +1). This condition on + is satisfied if

2
2N
¢ = A(0.08)7* <02||Q||2 + (1@l m) :

Although ¢ may be as large as 1/2, it does not make sense unless the order of the
number of discontinuities is a positive power of n. Therefore, the restriction on ( is that
it lie in the interval (0,1/(2N + 1).

4.4 Proof of Thoerem 1

Recall that the wavelet estimator is

flz) = Zdjﬁbj(a?) + 30> Bt (@)I(Bi > en™)

i=0 k jeB(k)
R A~ A
= Ko(z) + Z ZDik(x)I(x € Ju)I(Bg > cen™).
k

The proof in the wavelet case is very similar to that of the convolution case. As before,
write

is 2

Z [Z DyI(J)I(By > en™) - Dif}

=

~ ~ 2
BI|f - f1If < 4B | Ko — Ko, +4E

2

R 2 0 2
+AE| > [Z DuI(Ju)I(By > en™) = Dif ||| +4| > Dif
i=ig+1 k 2 i=R+1 2

=W +Wo+ W3+ Wy
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Lemma 1 implies the bound on W is the same as in the convolution proof,

To bound W, the following integral for a fixed ¢ is of use. Using the orthogonality
of the wavelet functions,

E/ (Z ﬁzk(a:)l(x € J,-k)I(Bik >cn”t) — Dif(:v)) dx

/ (Z Z (ﬂmd’m By, >cn -1 —,Bzﬂb”(x))) dr

k jeB(k)

_E/Z[

ﬁzﬂl’m( r)l ( ik > CN )_:Bij¢ij(x)):| dx

ieB(k)
- ZE/ |: Z (ﬂuwu( )M ( &% > cn ) —,sz’l,sz(zv)):l dz
Tik | jeB(k)

= ZE/M Dzk zk > Ccn 1) - Dzkf(l'))zdl'

Then, in a manner similar to section 4.2,

5/

Z lA)zk(:v)I(sz > cn_l) — sz(:c)] dz
k

< E/ (Dila) - Dif (@) do
+ EZ/ (Dixf () dz I(By < 2cn™)

+ EZ / Dipf(z)) dz I(By < en™)I(By, > 2cn™t)
= Wa1 + Wag + Was.
Wo1 and Wase have the same bounds as in the proof of theorem 4,
War, Was < C2i/n.
W3 will require lemma 3 and Talagrand’s theorem. Lemma 3 1s unchanged if Jy, is

substituted for I;;, and D;f and D; are replaced by D;,f and Dzk, respectively. For
Talagrand’s theorem, make the same subsitutions as above, and change G to G', where

G = { / (@) Dale, )G € Bz ol < 1} ,
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and

Dzk z y Z "7/)13(-77 'szj )

Jj€B(k)

Then the same values of M, v, and H are obtained as in section 4.2. Following the
arguments in for Tag,

Was < Cn™?,
and
W2 < C [n—Zs/(23+1) + (10g2 nl/(2s+1))2n—6] ,

where the value of J is the same as in (46).
The bound for Ws is found in a similar manner to Hall, et al. and section 4.2 of
this paper. Write

(Z f)zk(x)l(x € Jzk)I(sz > cn_l)) — sz(.'L')] dx
<EY /J  (Dule) - Da 1)) do I(Bi > en™)(Bax > ¢/(2n))

+ F Z/ (f)zk(a;) - Dtkf(il,'))z dx I(sz > cn_l)I(Bik < c/(2n))
+ EZ / Daf () dz I(By < en~)I(By, < 2en™)

+ EZ/ (Dgf(x))? dz I(By, < en ™ )I(By > 2en™)
= Wa1 + W3y + Waz + Wis.

Wso and Wiy are bounded with Talagrand’s theorem just as T3 and T34 are at (34) and
(35) in section 4.2. As there, it is required that 2R < p'~—¢. Additionally, the same values
of v and ¢ are obtained.

. . . d
Wso < 2%/logn [n"’"l logn + (n_l +nty/2tlogn/n + 2’n_2> exp (_7;_1)] ,

Was < Cn™?

For W3; and Wiss, the argument from Hall, et al. Hall et al. (1998) is unchanged and
results in a bound of

Wiy, Wag < On~28/(2s+1),

provided s; > s. Therefore,

Ws < C [n—zs/(23+1) 4+ 7+ (logz nl—s)2 n—a] .

33



)

The final piece W, is easily bounded:

Z D;f

i=R+1

=C > > B (47)

2 i=R+1 j

Wy=C

Since f = f1 -+ f» where f; € B  and f> € B(ssl4_1/2)_1’c>o C B3P by (2),

Bij = /f($)¢ij($)dx
~ [ (@) + @) (o)
= Brsj + Baij,
and (47) becomes

Wy C { > > (B +Bay)

i=R+1 j
From (4),
> B < C27
j
and
2, < Ca-Res),
j
Therefore,

o0
s §: romsrne)

i=R+1
(2—2Rs + 2—2R(81 —s))

C
C (n—zs(l—s) + n—2(sl—s)(1—e))
Cn—23/(23+1)

IAIA A

provided that

§1—8§ > and € <1/2.

(2s+1)(1—¢)

S0, by choosing ¢ such that

2
0y (VO0Be - Cov/ITTIQIE) | o

— > .
! TSI > SN+ 1
or,
2N ’
c = A(0.08)" (02”Q||2 +[1Qll1 m) , (48)
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the desired bound is attained:
B||f - I3 < Cn72e/C4D),

4.5 Proof of Thoerem 4

To simplify the proof, assume that f is in A*(M) rather than in the local Holder
clasees A*(M, iy, 6) for points ¢, in the support of f. Write f(¢o) — f(to) as

f(to) — f(to) = Z (&) — a;) ¢;(to)

ZZ Z (IBZJ,I/)"/] to)I zk > cn 1) - ﬂz’j%‘j(%))

i=0 k jeB(k)

i Z Z (:Bzﬂ»bw to)l Zk >cn 1) _5ij'¢ij(t0))

i=istl k jeB(k)

+ Z > Bijtis(to)
i=R+1 j
=L+ Ly+ L3+ Ly
where i is as before. Then

E ( Fto) - f(to))2 < C(EL?+ EL% + EIZ + EL3). (49)

In each of these sums, the total number of indices j that intersect the support of 1);;
for any resolution level 1 =0,1,..., R or ¢; is no more than 2gy. This fact will be used
several times in the following proof.

Bound on the linear part L,
Recalling that [ ¢® =1 and that ¢ is bounded,

EL} < OB [(8 — o) (b))
<ClgILEY (@
_ CEZ/(dj — o;)? ¢2(3).

Using the orthogonality of the ¢;,



By applying lemma 6,
EL}<Cnt (50)
Bound on the nonlinear part Lo

To bound L, break it into the following sums:

EL% [ZZ Z (ﬁzy ,82_7) %(to) (B zk>cn 1)

i=0 k jeB(k)
2

-+ Zzlguwm tO zlc <cn 1)

=0 3

= E(Ly + Lx)?
< C (BL3 + EL3,)
To bound Lo, first apply lemma 1:

ELy <E [EZ Z (ﬁm :811) Y35 (to)] (Bix > cn l)jl

(51)

i=0 k jeB(k)
1/27 2

< i( |:Z Z (,Bw ﬂz]) ’(ﬁ”(to) (B zk>cn l)jl ) (52)

=0 k jeB(k)

; 1/2\ 2
3 . R 2
< IIE, (Z 22 | B (8 - B } ) -
i=0 j
Now, EZJ(B” — Bij)? is of order n™!:

E Z ;sz /sz — ZV&I’ ,Bij

S Z n_lvar ’l/)ij (Xl) (53)

< 27| f oo [ ¥()da
Using this result, (52) becomes

is

2
ELgl S C [Z 27./2 (n—l)l/z]
i=0
< Crn—2s/(2s+1)_
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The bound for L, is found by breaking it in to two pieces.

L22 - ZE Z ﬂzﬂ@y tO zk < cn I)I(Bz'k > 2C’I’L_1)

i=0 k jeB(k)

+ ZZ Z Bijtbi(to) I (B, < en™')I(Biy, < 2cn™!) (54)

i=0 k jeB(k)
= Loy + Loggo.

Then EL%, < C(ELZ,, + ELZ%,). The piece Ly is bounded using Talagrand’s theorem.
First, note that by lemma 3 and the fact that

FenN(M)=> Z 2 < 027,

we have

k jeB(k)

2
(Z Z Bijtbij (to) I (Bix < en™)I(By > 2cn‘1))

2
>3 3 22 ool (Bix < en”)I (B > 2cn‘1>)

k jeB(k)

< 02_223EZ Z zk <cn I)I(sz > 2077,—1)
k jeB(k)

< C27%s Z Z P </ (-ﬁzk(x) — Dikf(z)>2dx > %) )

k jeB(k)

Using Talagrand’s theorem in a manner similar to that of section 4.2,

P (/ (bzk(x) - Dikf(x))zdx > w> <Cn”’,

where ¢ is as before. Therefore, using this bound on the probability and lemma 1,

1/2

=0 k jeB(k)

2
EL%ZI < Z [ (Z Z ﬂzﬂbw tO zk <cn I)I(sz > 2C’n—1)) ]
2
< C <Z2 is —5/2)

< Cn™°.
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To bound Lggs, observe that orthogonality gives

2
Z Z :Buwz](to zk <ecn I)I(sz < 207?,_1)
k jeB(k)
< O[5> D BHI(Bi < 2en7?). (55)
k jeB(k)

Now, B;; < 2cn~! implies that
Z Z . < Clogn/n.
k jeB(k)

By virtue of f being in A*(M),

Z Z 2 < c2~ 2z(s+1/2)

k jeB(k)
Therefore,
Z Z BZI(By < 2en™) < C (n~"logn A 9 2i(s+1/2)) |
k jeB(k)
and so \
Z Z ﬁzy",bz] (tO zk: <en” )I(Bik < 2cn_1)
k jeB(k)

< 09 (n_l logn A 2—2i(s+1/2))
Therefore, the bound on Lggs is
2- 1/2\ ?

EL222 Z Z Z ,Bzﬂpzy tO zlc <en )I(sz < zcn_l)

i=0 k jeB(k)
is 2
<C [Z 9i/2 (n——l logn A 2—21’(s+1/2))1/2:| '
=0

Now, n~logn < 2-24s+1/2) whenever 2¢ < (n(logn)~)" (2s+1) " Therefore, letting i, be
the integer such that 2 < (n(logn)~1)Y®+!) < gintl

P s 2
EL3, <C (Z 242, /logn/n + Z 2i/22’i(5+1/2)>

=0 i=1x+1

i 2 is 2
< Clogn/n (Z2i/2) +C’( Z 2_“)

=0 i=ts+1

SC]Ogﬂ( n )1/(28+1)+C(logn)28/(23+1)
n logn n

2s/(2s+1)
<C (logn> .

n
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The bound on ELZ, is therefore
C (n—é + (n—l lOg n)2s/(23+1)) ,
and hence

EI2 < C(EL + EI%) < C [n-“ + (n~'logn)™/ ‘23“’] . (56)

Bound on the nonlinear part Ls

As with L,, break L3 into the following parts:

EL? = (Z D (ﬂu ﬁu) Vi (o) [ (B > en™?)

i=is+1 k jeB(k)

+ Z Z z ﬂz]¢zg(t0 zk <en 1))

i=is+1 k jeB(k)
= E(L3 + Ls)?
< C(BI3, + ELY)
Additionally, L3; must be divided as well.

2
EL} < CE Z 3 (ﬁ” 5,J) i (to) I (Bi, > en™)I(Biy > cn_1/2)}
i=is+l k jeB(k)
2
+CE Z Z Z (:BZ] ,81_7) %,(to) ( ik > CN )I(Bik Scn_1/2):|
i=is+1l k ]EB(k

To take care of L311, notice that

k jeB(k)

B> > (ﬂw ,3”) Vi (t0) (B > en™)I( zk>cn‘1/2)]

< CZE [ Z (Bu - ﬂij) 1/%';‘(%)} I(Bg > cen™'/2)

j€B(k)

<C> onc'ByE
k

> (,éij—ﬂij> ¢ij(t0):| :

j€B(k)

As in (53),

2
> (Bij—ﬁij) %'(to)] < 2YILE (B"f_ﬁ"")z

jeB(k) jeB(k)

< C2'/n.
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Since
Z 2 <02 2z(s+1/2)

JEB(k)

i

the bound for EL2%,; then follows from an application of lemma 1:

i=is+1 k

R 2
_<_ Cl Z 2—is>
i=ig+1

< C,n—ZS/(Zs—i-l).

[ & 2n 2 &N
Z Z N 52

To bound EL2,,, Talagrand’s theorem will be used as in section 4.2. To begin, note that
by lemma 3

[Z Z ('811 521) i (to) (B Bix > ecn” I (Bix < cn”'/2)

k jeB(k)

<CHWIEEY. Y (B B5) I(Bu>en)(Bu < en”/2)

k jeB(k)

<CPEY /J ) (Daz) - Du @)’ do
T (/Jk <Dik($) - Dik;f(il?))2da; S 0_0_@_)

From (33) and the fact that the number of indices k intersecting the supportof ¢;; is
less than or equal to 2o/ logn, this is bounded by

C2i(logn)™ [n‘7‘1logn+n_7 ! (n +n"14/2ilogn/n + 2'n 2) exp (—Z—?)],

where v is as in (29) and d is as in (32). Therefore, repeating the argument for the piece
T32 at (39),
EIL2, < C(n™" +n™h).
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Only L3, still needs bounding.

R
EL§2=E(Z >
% k

2
ﬁzﬂpz] tO zk < cn 1))

i—is+1 j€B(k)
9o 172\ 2
R
<[ 2 |22 X st <eny
i=is+1 k jeB(k)
2
R
Z Z IIBz]")[)'LJ tO
i=is+l k jeB(k)
R 2
<C ( > 2‘102i/2||¢||oo2_i(s+1/2))
i=is+1
R 2
<oy )
i=is+1
< Cn—2s/(23+1).
The bound for L3 is then
EL% <C (n—2s/(23+1) + n_"’) ) , (57)

Bound on the nonlinear part Ly

L, is bounded much like L3, was. The only difference is the range of the index ¢ and
the lack of an indicator function.

2
EL;=E ( I ﬂij¢ij(to))
i=R+1 k jeB(k)

2

cl > Z > 1Bigtis (to)| (58)

i=R+1 k jeB(k)

o(%)

< Cn_(1_6)23.

VAN

Determination of constants v, 6, €, and ¢
From the bounds derived at (50), (56), (57), and (58),

R 2
E (f(to) _ f(t0)> <C (n—a + (logn/n)zs/@“l) LY 428/ ) n—2s(1—e))
< O’(log n/n)z.s/(2s+1)

41



if v, 4, and 2s(1 — ¢) are all positive.
Using (29) and (46) and the fact that § > +, if

¢ > (0.08) 7 C3lI fllo | QI3 (59)

then v and ¢ are positive. However, the choice of the threshold ¢ in theorem 1 is larger
than the right side of (59), so this requirement is satisfied.

All that is necessary for 2s(1 — €) to be positive is that ¢ < 1. The conditions of
theorem 3 require that ¢ € (0,1/2], so this restriction is met.

Block Lengths of Order Larger than logn

Suppose the block length [ in the wavelet estimator (13) is taken to be of order larger

than logn, say

I = (logn)™*"

for some r > 0. Then, assume that f is a function such that equality (to within a constant

. 2
factor) is attained in the various inequalities in the treatment of £ ( fto) = f (t0)> , Le.,

. 2
E ( f(to) - f(ts))" = C (BL + BI} + EL} + EL3)
= CEL2,, + various other terms.

Also, f is a function and ¢, a point such that equality (again to within a constnat factor)
rather than inequality is met in

9- 1/2

ELyp=C | Y |E|D. D Buyti(te)I(By < en™)I(By < 2en7")

=0 E jeB(k)
; 9~ 1/2
—C [ S 220le | [0 3 Byl(Bu < 2en7Y)
=0 k jeB(k)
; 2
=C > 27 > Byl (B < 2en7")
=0 k jeB(k)

Repeating the argument for the bound for E L2, earlier in this section with log n replaced
with (logn)"*"

> 3 1BlI(Bu < 2e07) = C (2 (logn) 2 A 272

k jeB(k)

)
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Letting 4, be the integer such that 2i < (n(logn)~1=")/®*) < gir+l

) . 2
ir 13
Engz =C (Z 2i/2 -1/2 (log n)(1+1')/2 + Z 2i/22—i(s+1/2))

i=ir+1

2
1/2 logn (7‘+1)/ZZ21/2+ Z 2—23)

i=0 1=ip+1

=C

|
Q

0( 112 (10g n) "2 (n(logn) 1) 2 4 (n(lo gn)_l_r)—s/(zm))z

log n) 2s/(@s+1) (log n)237‘/(28+1) .

Therefore,
EL2, > C (logn/n)?/@sth)

for any constant C' as n gets larger, and so

B (f(to) - £(t0))” > C (logn/n)*/E+D.
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