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1. Introduction and Formulation.

In this paper, we are interested in the problem of simultaneous inference and selection
from among k(> 2) populations in comparison with a standard or control. The populations
are denoted by my, ---, m;. The random variable X; associated with m; has the density
f(23|0;) = c(0;)e=/%h(z;) with h(z) > 0 in (0, 00), where the unknown parameter 6; is the
characterization of population ;.

Let 6 denote a standard or a control. In practical situations, we desire to differentiate
between good and bad populations and select good ones and exclude bad ones. Here a popu-
lation ; is said to be good if 8; > 6, and bad otherwise. This type of decision problem has
been considered by many authors. For example, see early papers: Paulson (1952), Dunnett
(1955), Gupta and Sobel (1958), Lehmann (1961), and later: Gupta and Hsiao (1983), and
more recently: Gupta, Liang and Rau (1994), Gupta and Liang (1999), among others.

Let Q = {5 = {61, ++,0c} : 6; > 0,i =1,2,---,k} be the parameter space. Let A =
{@={a1, ++,ac}:a;,=00r1,45=1,---,k} be the action space, where a; = 1 means that
population m; is selected as good, a; = 0 means population m; is excluded as bad.

The loss function we use is

(1.1) L(6,a) = il(&-, a;)
i=1
with
1(6;, a;) = ai; (00 — 0;)Ijg,<00) + (1 — a:)0:(0; — 60) I 19, >4,]-

We also assume that 6; is a realization of a random variable ©;, and ©4, - -, Oy are inde-
pendently distributed with priors Gy, - - -, Gy respectively. Let G = ITf_; G;(6;).

Let X = (X1, -, Xk) and X be the sample space of X. Here X; may be thought of as a
sufficient statistic based on several i.i.d. samples.

The selection procedure 8 = (&1, - - -, ), where §;(F) is the probability of selecting popu-
lation m; as good when X = 7 is observed. To ensure that the Bayes rule exists, we assume
[ 6%dG;(0) < oo fori=1,--- k.

Based on previous assumptions, a straightforward computation shows that

(12) RG.H) =3 Ri(G.8)
and
(1.3) Ri(G,8) = [ 8:@)T] fila)hwi(w)h(e)di + T,
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where
filz) = /()ooc(Q)e_””"/gh(:ci)dGi(O),
wi(z:) = /0009(00—G)C(G)e_f‘i/edGi(t?),

T, = /0 0(0 — 05 I1g6,1dG5(8).

Here f;(x;) is the marginal density of X; and T; is independent of the selection rule 6. Clearly,

a Bayes selection procedure dg = (8, - - -, dgx) is given by
(1.4) dgi =

Let a;(z;) = [$°0c(0)e™*/%dG:(0) and ;(z;) = [5°0%c()e™/%dG;(6). Denote ¢i(z;) =

¥;(x;)/a;(z;). Then dg; can be expressed as

(1.5) 5o = { 1 if ¢i(zs) > 6o,

If G; is unknown, the Bayes rule cannot be applied and the selection cannot be made.
The empirical Bayes approach is a way to help one to make the decision when past data
are available. Since Robbins (1956, 1964) introduced the empirical Bayes approach, it has
become a powerful tool in decision-making. Empirical Bayes approach in statistical inferences
has been used recently by Singh and Wei (1992), van Houwelingen and Stijnen (1993), Pensky
(1998), Pensky and Singh (1999), and Liang (2000a, 2000Db).

Foreachi=1,...,k, let (X;;,0;),7 =1,2,... be random vectors associated with popu-
lation 7; and stage j, where X;; is observable while ©;; is unobservable. It is assumed that
©;; has a prior distribution G;, for all j = 1,2, ..., and conditioning on ©;; = 6;;, X;; follows
a distribution with density f(z;;|0;;) and (X;,0:5),¢i = 1,...,k,5 = 1,2,... are mutually
independent. At the present stage, say, stage n + 1, we have observed X = %. The past
accumulated observations are denoted by (le, e ,Yn) = :n, where )7] = (Xyj,--, Xkj) I8
the observation at stage 5. Based on ?n and Z, we wish to construct an empirical Bayes rule
to select all good populations and to exclude all bad populations. Such an empirical Bayes

rule can be expressed as

it

5n(F, X) = (6u1(F, Xn), -, 6 (F, X))

where Jni(?v',)? ) is the probability of selecting m; as good if X, and 7 are observed. Let



R(G,5,) denote the overall Bayes risk of b,. Then

(16) R(G,5) = 3 B(G ),
where
(1.7) Ri(G, 0ni) = /XE[%'@ X)) - [1;[ fi(z5)] - wi(zi)h(z:)dz + T

The regret Bayes risk is defined as r, = R(G,8,) — R(G,d¢), which is used to measure
the performance of empirical Bayes rule bn. If 1y = o(1), we say that 6, is asymptotically
optimal (a.0.). If 7, = O(B,) for some positive B, such that lim,_,., 8, = 0, we say that On
is asymptotically optimal at a rate of O(S,).

The aim of this paper is to construct an empirical Bayes rule d,, for the selection problem
described above. For most distributions in the family f(z;|6;), under the above general
setting or, in some cases, with one additional condition [5°6°dG(8) < oo, we show that
nr, — m, where m is a computable constant depending on G.

It should be pointed out that Gupta and Liang (1999) studied the selection problem
for gamma(z|0, s) populations, a special case of above problem, firstly through an empirical
Bayes approach. They constructed an empirical Bayes rule 5,"; and established its convergence
rate O(n~!) under some regularity conditions. A rate of O(n~'logn) was obtained there
under the condition that O}s are bounded. Gupta and Liese (2000) showed that the limiting
distribution of nR, is a linear combination of independent x? random variables, where R,
is the conditional regret of a modified version of rule §;.

The remaining part of this paper is organized as follows. In Section 2, an empirical Bayes
selection rule &, is constructed. The asymptotic behavior of O is investigated in Section 3.
In Section 4, we provide a few typical examples as applications of our results. The proofs of

our results are given in Section 5.
2. Construction of Empirical Bayes Selection Procedure O

The construction of &, can be divided into three steps. First, we construct an estimator
of w;(z). Second, we localize the Bayes rule. And then we complete the construction by
mimicking the Bayes rule using the estimator of w;(z).

The construction of an estimator of w;(z) follows the idea of Gupta and Liang (1999).

For the loss function (1.1), an unbiased and consistent estimator of w;(z) can be obtained.



Foreach:=1,---,k,7=1,---, n, and z > 0, define

90 +x— Xz
. Vi; = ———Iix..5>a
(2.1) (z) h(X) [Xij >a]

Through a standard calculation, we have E[V;;(z)] = w;(z). Based on this nice property, an

unbiased and consistent estimator of w;(z) can be constructed as:
1 n
j=1

for each : =1, - -+, k, and z € (0, ).

We call the next step as a localization of the Bayes test. Examining the Bayes selection
rule dg, we see that dg; depends on Z only through z;. Also ¢;(z) is increasing for i = 1,
.-+, k. If z; is large so that ¢;(z;) > 6y, we have dg; = 1; If z; is small so that ¢;(z;) < 6y,
we have dg = 0. Since G is unknown, we do not know at which point we should accept H,
or reject it. But, one will be more likely to take action a; = 1 if the observation of X; = z;
is quite large and take action a; = 0 if it is quite small. By knowing this, we want to find
two numbers B, and L, such that we select n; as good if we observe z; > L, and exclude it
as bad if x; < B,. Here both B, and L, depend on n. This could be understood as follows.
As n increases, we have more information from the accumulated data, and we should adapt
new B, and L, so that our decision can be made more precisely.

Certainly, the exact form of f(z|0) and the distribution G affect the choice of B, and L.
Since we have no knowledge about G except that [;° 0dG(6) < oo, we rely on f(z|6) itself.

If limgyo h(z) > 0, let B, = 1/L, and L, = (fplogn/4) v 10. If lim, o h(z) = 0, let H,
and L, be the two sequences of positive numbers such that H,el»/% = nl/4 and H, — oo,
L, — oo as n — oo. For example, L, = (fylogn/12) V 10 and H, = n'/%e~t+/%_  Then
define B,, = [inf{z < 1: h(z) < 1/H,}V(1/L,)]A0.1. 1t follows that B, — 0 since H,, — oo
as n — 0.

According to what we mentioned at the beginning of this section, we propose the following

empirical Bayes procedure: For each 1 =1, ---, k, and z;,

1 if (z; > Ly) or (B, < z; < L, and Wy(z;) < 0)
0 if (z; < By)or (B, <z <L, and Wy;(z;) > 0)

This empirical Bayes procedure says that, at stage n + 1, if the present observation z; from
m; is relatively big or small, a decision will be made based on z; only. If it is not too small or
too big, we have to resort to past data information and use Wp;(x), the estimator of w;(z),

to make the decision.



3. Asymptotic Optimality of On.

In this section, the asymptotic behavior of O 1S investigated. We derive the regret Bayes

risk first. From (1.2) and (1.3), the Bayes risk of d¢ is R(G,d¢) = X% | Ri(G, 6a:) with
Ri(G, b6:) = /0 ™ 66i(F)wi(z:)h(zi)dz; + T
From (1.6) and (1.7), the Bayes risk of 6,(%) is R(G,8,) = S5, Ri(G, 0n;) with
Ri(G,b) = | Blows(&)ws(z)h(z)da: + T

Thus the regret Bayes risk of d,, the difference between R(G, &,) and R(G,b¢), is

k
(31) Tn = Zrni)
i=1

where

L

L. n
(3.2) Tni = /B P(Whi(z) < 0)wi()I[w;(z)>0h(z)dx +/ P(Whi(z) > 0)w;(z) [y, (z)<q h(z)dz.

n

Under the assumption f;° 682dG;(#) < oo, we have [§° |w;(z)|h(z)dz < oo from the inequality
/oo Jw;(z)|h(z)dz < G /00 oi(z)h(z)ds + /00 ;i (z)h(z)dz < 6y /oo 0dG;(0) + /00 62dG;(6).
0 0 0 0 0

Since W,(z) is a consistent estimator of w;(z), P(Wyi(z) < 0) — 0 if w;(z) > 0, and
P(W,i(z) > 0) — 0 if w;(z) < 0. Applying the dominated convergence theorem, we have

Tni = 0(1). Thus we have the following theorem.

Theorem 3.1. Assume that [ 02dGi(0) < oo for each i = 1,2,---,k. Then §,, as
defined by (2.8), is asymptotically optimal.

Besides the asymptotic optimality, the convergence rate of an empirical Bayes procedure
is also an important factor to be considered when the procedure is applied. The following
discussion shows that the procedure 8, achieves the rate of convergence of order O(n™1).

From now on, we consider only those members of the family f(z|8) in which limy;o, h(z) >
0 and A(z) is bounded from below for any inner closed subset of (0,00). These members
belong to one of the following cases:

Case 1. limgteo M}z > 0 and limg o h{z) > 0.

Case 2. limgtoo Mzﬂ > 0 and limg o h(z) = 0.

h

Case 3. limgteo —(xﬂ = 0 and limg o h(z) > 0.



Case 4. limgoo Mzﬂ = 0 and limg, o h(z) = 0.

Before presenting the main results, we introduce the following definition. If dg; = 1 for
all z € (0,00) or dg; = 0 for all z € (0,00), we say that dg; is degenerate; otherwise we say
that dg; is non-degenerate.

If dg; is non-degenerate, i.e., limg o ¢;(z) < Gy < limgpeo i(x), then @;(x) is strictly
increasing. Therefore there exists a point ¢; € (0,00) such that ¢;(c;) = 6o, ¢s(z) > 6y for

z > ¢; and ¢;(z) < by for x < ¢;.

Theorem 3.2. Assume that [{°6?dG;(0) < oo fori=1, -, k. In Case 3 and Case 4,
we also assume that [°0*c(0)dGi(0) < oo fori=1, ---, k. Then

k
(3.3) lim nr, = ;m
where
(3.4) m; = { 0 if 0g; 1s degenerate,
%ﬁﬁm if dgi is non-degenerate.

and Var([Vii(c;)]) is the variance of Vii(c;), wi(c;) is the derivative of wi(z) at ¢;, wi(c;) # 0

if 0g: 1s non-degenerate.
Proof. The proof is given in Section 5.

In Case 3 and Case 4, the assumptions [;° 62dG;(0) < co and [° 6*c(0)dG;(0) < co can
be simplified into f;° #*dG;(f) < co. So we have the following corollary.

Corollary 3.3. In Case 3 and Case 4, if [;°6°dG;(0) < oo fori=1, .-, k, then (3.8)
as well as (3.4) holds.

Proof. Note that 6c(0) = 6[fy° exp(—z/0)h(z)dz]™* and for § > 1,
co o] 2
(3.5) o1 /0 /0 h(z)dz = /0 e~Vh(yb)dy > e~ /1 h(ve)dy > e [min h(t)

It follows that 6c(#) is bounded for # > 1. Thus from [;°#3%dG;(#) < co we have both
152 6%dG;(9) < oo and [° 6%c(0)dG;(0) < co. Then Corollary 3.3 follows Theorem 3.2.

From Theorem 3.2, one sees a rate of order O(n™') is obtained under a (quite) weak

condition. We only require [;°6%dG(f) < oo in Case 1 and Case 2. The assumption



Js° 6%dG(0) < oo guarantees the existence of the Bayes rule. This assumption is natural and

not very stringent. In Case 3 and Case 4, we require one moment condition, [5° 8*dG(8) < .

The applications of our results to a few typical distributions are presented in the following
section. It includes the construction of 8, and the statement of convergence rate for each

distribution there.

4. Examples and Results.
We select a few distributions as examples.

Example 4.1 (ezp (0)-family). Consider the exponential populations having density
1
(4.1) f(z:]6:) = Ee—xi/f’f, z;>0, 6;>0, i=1,--- k.
Here h(z) = 1. This family belongs to Case 3. Take B, = 1/L,, L, = (6ylogn/4) v 10 and

construct 4, as

1 if (z; > Ly) or (B, < z; < L, and Wp;(z;) < 0)
0 if (z; < By)or (B, <z; <L, and Wy;(z;) > 0)

7

Then applying Corollary 3.3, we have the following result.

Result 4.1. If X; has density f(z;|6;) given in (4.1) and [;° 63dG;(0) < oo for alli =1,

-+, k, then bn, as constructed in (4.2), has a rate of convergence of order O(n™?).

Example 4.2 (Gamma (0, s)-family with known s > 1 ). Consider the gamma popula-
tions having density

s—1
(4.3) f(il?7,|ez) = I‘zl(;s)@;e_zi/ei’ xz; > 0, 91 > ()’ 7 = 1, el k.

Here h(z) = z°~!. This family belongs to Case 2. Let L, = (plogn/12) V 10 and B, =
[n=Y/6G-D1 v [-1] A 0.1. Construct 6, as:

Lo i > Ln Bn, <z; < L, and Wy(z;) <0
w1 R e s o
0

0 if (z; < By)or (B, <z; <L, and Wy;(z;) > 0)

?

Then applying Theorem 3.2, we have the following result.



Result 4.2. If X; has density f(z;|0;) given in (4.3) and [5° 62dG;(6) < oo for alli =1,

.-, k, then &, as constructed in (4.4), has a rate of convergence of order O(n™1).

Example 4.3 (A population having the density with infinite many discontinuities ). Con-

sider the exponential populations having density

o0

(4.5) F@il6:) = c(8;)e™™/% > (1 + D) Iyca<i41), z;>0, 6; >0, i=1,--- k.
=0

Here h(z) = 320(I + 1)Iycz<ity. This family belongs to Case 1. Take B, = 1/L,,
L, = (plogn/4) V 10 and construct 4, as

1 if  (2;> Ln) or (By < 23 < Ly and Wi(z;) < 0),
> 0).

0 if (z;<By,)or (B, <z; <L, and Wp;(z;) )

Then applying Theorem 3.2, we have the following result.

Result 4.3. If X; has density f(z;]0;) given in (4.5) and [5° 02dG;(0) < oo for all i =1,

.-, k, then &, as constructed in (4.6), has a rate of convergence of order O(n™1).

Remark. Gupta and Liang (1999) considered the same selection problem for the gamma

population (4.3). In that paper, an empirical Bayes rule was constructed as

O (:) =

The convergence rate of 6 = (8%, - - -, ~x) is affected by the tail probability of the underlying
distributions. In our paper, we split the interval (0, co) into three parts (0, B,,), [Bn, L] and
(Ln, 00) by localizing the Bayes test. Then we construct the empirical Bayes rule as (4.4).
So the influence of the tail probability of the underlying distributions is controlled and a

rate of O(n™') is obtained under quite weak conditions as shown in Result 4.2.

5. Proof of Theorem 3.2.

The main idea of the proof is to use a classic result about the non-uniform estimation
of the difference between the normal distribution and the distribution of the sum of i.i.d.
random variables. We shall prove it in the following two subsections according to whether

all d¢; are non-degenerate or not.
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5.1. All 5 are non-degenerate. We shall prove Theorem 3.2 assuming that all
dg; are non-degenerate in this subsection. Then there exists a point ¢i € (0,00) such that
#i(c;) = 6o, ¢s(z) > 6 for > ¢; and ¢;(z) < b, for £ < ¢;. Since we consider the asymptotic
behavior of 8,, we assume ¢; € (Bp, Ly,) for all n without loss of generality.

Lemma 5.1. For each i =1, ---, k, wi(c;) < 0 and further there is a neighborhood of
c;, denoted by N(c;, €;), such that N(c;,€;) C (Bi, L1) and
(5.1) pemin  Jwi(z)]

Denote ciy = ¢; — €, ¢ig = ¢;+¢€;. Then for all z € [By, cin]Ulcia, Ly, there ezists an M; > 0

such that

(5.2) lwi(x)| > Mze Ln/%,

Proof. For z > 0, the derivative of w;(z) exists and can be expressed as
wl(z) = —fo / e=*/¢(0)dG; () + / ” 0e=21¢(0)dG ().
0 0

From Jensen’s inequality, we see that for x > 0

[ 0e10(0)dGi(0) i 6%e*17¢(6)dG(6)
[P e (§)dCH(8) & 9e—7c(6)dG:(0)

Plugging c; for z in the above inequality, we have

I 0e=c/%c(0)dG;(0)
J5° e~il?c(6)dGi(6)

< 0.

This implies that wj(c;) < 0.
Note that w}(z) is continuous in (0, c0). So an N(c;, ¢;) can be found such that N(c;, ¢;) C
(B1, L1) and

A; pmin |wi(z)| > 0.

Then (5.1) is proved. On the other hand, rewrite w;(z) as w;(z) = a;(z){6o — ¢s(z)]. Noting
that ¢;(z) is strictly increasing in z and ¢;(c;) = 6y, then for z € [By, ci1] U [ciz, Ly),

160 — ¢i(z)| > (6o — di(caa)) A (dilciz) — bo)-

For z < L,
afz) > [ " be(0)e10dGy(6) > e/ [ ™ 6c(6)dGi(8).

6o 9o
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Thus
lwi(z)] > [(60 — ¢scir)) A (bilciz) — bo)]e™ /% /9:0 0c(6)dG;(6).

This completes the proof of Lemma 5.1.

Next lemma deals with the bounds of the moments of W,;(z).

In Case 1 and Case 3, ming<y<oo h(z) > 0. Let S, = 1/[mingcz<co A(z)]. In Case 2 and
Case 4, Let S, = H, V [1/ minj<z<oo A(z)]. Then h(z) > S;! for z > B, in all four cases.
Recall L,, = fplogn/4 in Case 1 ans Case 3 and H,e’"/% = n'/% in Case 2 and Case 4. Then
we have S,eln/f0 ~ pl/4,

In Case 3 and Case 4, we know [° 8%c(6)dG;(0) < oo and let C; = [7° 0*c(0)dG;(9).

Without loss of generality, we assume h(z) > z for £ > 1 in Case 1 and Case 2.

Lemma 5.2. Let 0%(z) = E[(Vij(z) — wi(2))?] and v(z) = E[|Vij(z) — wi(z)|®]. Then
for x € [Bp, L],

5 (28, (00 + 1) + 1] for Case 1 and Case 2,
(5.3) o;(z) <
Sn[(60 + 1)?ay(z) + 2(6p + 1)C;]  for Case § and Case 4,
and
4]25,(60 + 1) + 1] + 4|w;(2)? for Case 1 and Case 2 ,
(5.4) () < o (
' 1652[(63 + 6)a;(z) + 6C;] + 4|w;(z)]?  for Case 8 and Case 4 .

For z € [ci1, cig], there exist a constants‘Ch > 0 such that
For z € [By, ca] Uciz, L] and large n

(5.6) n*®lwi(x)|/|o3()| > 1.

Proof. Consider z € [B,, L,|. Note that h(x) > S;'. In Case 1 and Case 2, if z > 1,

h{z) > z, and
[Vii(2)] < Iix;>a100/M(X;5) + Iix;20)(X5 — ) /A(X;) < 60Sn + 1.
If B, <z <1, it can be shown that |V;;(z)| < 25,(6p + 1) + 1. Thus

ol(z) < E|Vij(z)[%] < [28n(60 + 1) + 1]%
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For ;(x), using |a + b]* < 4|a|® + 4]b[*, we have
Yi(x) < 4E[|Vis()[*] + 4hwi(2)[* < 4[284(60 + 1) + 1]° + 4|wi (=)

Then (5.3) and (5.4) are proved for Case 1 and Case 2. In Case 3 and Case 4, a simple

calculation shows that
o2(z) < Sp[020(z) + 200i(z) + 2 / * g3e(6)e=*1dG(6)].
: 0
By breaking the interval (0,00) into (0,1) and [1,00), we have 9;(z) < Cj 4 o;(x) and
[2° 63c(0)e~2/%dG;(0) < C; + ay(z). Thus

o2(z) < Su[(@o + 1)2au(z) + 2(60 + 1)Cy).

Similarly,

vi(z) < 16S%[(63 + 6)ay(x) + 6C;) + 4|wi(z) .

Now consider z € [c;1, ¢in]. It is easy to see that

[m1n1;>c11 h(z)
1 (6346)ai(ci1)+6C;
[mingy.,, h(z )2

(o) < { [ﬂ%—ﬂL]?’ + 4 max,, <z<c, |wi(2)P = Cy in Case 1 and Case 2
Yi\Z

+ 4 maxe, <z<e;, |Wi(z)]? = Ciy  in Case 3 and Case 4

Then (5.5) holds. Next we prove (5.6). From (5.2), |wi(z)| > Me=i~/% for z € [B,,ca] U
[cia, Ly]. In Case 1 and Case 2,

wi(z) Mye~En/% ~1,~Ln/60

> ~ 1 - —1/4.
) 2 28T )1 €

In Case 3 and Case 4

wi(w)l S |60 — ¢i(=)| .

7i(®) ™ Sa”((00 +1)*/0a(w) + 200 + 1)Ci [eu (@) /2

It is easy to see that |0y — ¢;(z)| > min{|0y — ds(ci1)|, |00 — Pi(ci2)|}. We know from the proof
of Lemma 5.1 that a;(z) > e~E/% [° c(0)dG;(0). Then

~ TN

(5.7) |

SL2[(By + 1)2/a(z) + 2(6g + 1)C;/ [ (z)]?]/? ~ SH/2eln/,

Thus |wi(z)/oi(z)| = O(S;Y/2e~Ln/%) = O(SY2n=1/4). This completes the proof of Lemma
5.2.

Note that V;;(z) are i.i.d random variables for fixed z. For large n, the central limit
theorem tells us that 37, [Vi;(z) — wi(z)]/[o:(z)/n] is close to N(0,1) in distribution. Fur-

thermore, we have the following non-uniform estimation of the difference between the normal
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distribution and the distribution of the sum of i.i.d random variables. This result can be

found in Petrov (1995, P168).

Fact. Let X1, Xo, -, Xn be i.i.d random variables, EX; =0, EX} = 0% >0, E|X;]* <

00. Then for oll x

P
. — < [ M—
(5.8) |Fa(z) — ®(2)] < A\/ﬁ(l + |z])3
Here ®(x) is the c.d.f. of N(0,1), F,(z) and p are given by
1 n E|X1|3
F,(z) P(a\/ﬁ JE:IX < z), p 3

Now, we are ready to prove our main result.

Proof of Theorem 3.2. Rewrite P(W,;(z) < 0) as
- Vnw;(z
s M) —wi < Y
\/na j=1 os(x)

Then applying (5.8), we have

p (@) Ayi(a)
PWale) <0 < =00 Jilor®) + valw@))P
Similarly,
P(Wm( ) ) <1-— q)(\/ﬁlwl(xﬂ + A7z($)

oi(x) Vn(oi(z) + /nlwi(z)|)®

Plugging above two inequalities in (3.2), we obtain

. G _\/T_lwi($) Avi(z) w2 h(z)de
s, P oy ) e+
_ (Vi) Ai(z) wi(z)|h(z)dz
[ =T e+ v e
= I+11.

From (5.3), (5.4), (5.5) and (5.6), we see that w;(z), oZ(z) and v;(z) have different behavior

for different z. So we decompose I into four parts.

59) I = / a(- ‘/;“(’;()x)) J(2)h(z)dz + / q»(—f“(“()”’)) w;(z)h(z)dz

a1 Avyi(z)w(z )h(a:) ip 4 [ __Ar@uwi(@)h(z)
B /n(0i(z) + v/nlwi(z)|)? er V/n(oi(x) + v/nlwi(z)])?

= Il+Iz+I3+I4.

dz
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Consider I; first. According to (5.6), as n is large, w;(z)/0s(z) > n~3/8 for x € [By,, cal, It
follows that \/nw;(z)/o:(z) > n'/®. Then applying it to I;, we have |

(5.10) I < 3(—n?) / wi(@)h(z)dz = o(n~1).
For I,, letting h; and &; be the maximum values of h(z) and o;(z) on [c;1, ¢io]. Thus

I < h; / \/~w1 ))wl(a:)dzc

Using (5.1) and letting y = +/nw;(z)/a;,

C; '—_2 o0 o
o (— i(2)/0:)w; < z/ (- =
[ emda)/z ) < 54 [ a(-yudy = 7
Then
h.52
A1 li I, < L.
(511 imsupnt; < 7

Next we consider I5. From (5.2), |w(z)] > Mze=»/% for x € [B,,cs]. In Case 1 and Case
2, applying (5.4), we have
/Cil 4[25, (60 + 1) + 1]® + 4|w;(z)|?

» o Vnloi(z) + Vnjwi(z)])?
4[27‘;”32;32201] /B wi(z)h(z)dz + % /B wi()h(z)dz

= o(n7h).

(5.12) Iy wi(x)h(z)dz

In Case 3 and Case 4, using (5.4) again,

cir 16S2[(63 + 6)ci(z) + 6C;] + 4|w;(z)]?
5.13 L n S h(z)d
(5.13) 3 =< /n N COENOIE wi(z)h(r)ds
1652(63 +6) fean 96.52C; ci1
m/&l az(x)h(:zz)dx+ W/Bn wz(a:)h(a:)da:+
4 ci1
5/, w;(z)h(z)dz
= o(n71).

For z € [c;, ci1), 1i(z) < Ci. Let g; be the minimum value of o;(z) on [ci1, ci]. It is easy
to see that o;(xz) > 0 for each = € [ci1, 2] C [B1,L1]. Noting that o;(z) is a continuous

function of z, then g, > 0. It follows that
w;(z)dx < ACiyhy [VRw(e) Yy 1

o TG D S W b G =)

Combining (5.9) to (5.14), we have limsup,,_,.  nl < }_%Z?. Note that I is independent of ¢;,
h; — h(c;), 72 — Var([Vi(c:)]) and A; — |wi(c;)| as € — 0. Then

. h(c;))Var([Va(e)])  my
e = T ()] 2

(5.14) Iy < ACyh;
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Similarly lim sup,,_,o, nII < m;/2. Therefore

lim sup nry; < m;.

Note that
. c; \/'ﬁwz(x) _ A’yz(x) w (VI
A e e v e ey e L
_ \/"wz() B Av;i() P
<[ @) ) V(o) + alm@)e ke

We have proved that fL” \/ﬁﬁ(g‘;&“\/@&fz wdr = o(n™t), [ @(—Vf:‘(’;)w))wi(x)h(a:)dx =

o(n) and [[1 — (XYl (2)h(z)dz = o(n"?). Then
Vnw;(z )) d:l:—{—/ 1— \/_wZ( )

————)——)wl(x)h(x)dx]

Using the same idea applied to I, it is easy to prove the left-hand-side of above inequality

liminf nry; > lim infn /01'1[ (- oi(z)

is not smaller than m;. So the proof of (3.3) and (3.4) is complete.

5.2. Some components of i are degenerate. We shall prove Theorem 3.2 assuming
that some of components of bc are degenerate.

For simplicity, we assume that only 0 is degenerate without loss of generality. We need
to show 7,3 = o(n™1). If P(6; = 6y) =1, wi(z) =0 and 7,3 = 0. Assume P(f; =6p) < 1in
the following. From the proof in Subsection 5.1, we only need to prove that (5.2)-(5.4) and
(5.6) hold for all z € [B,, L,]. Notice that (5.3) and (5.4) do not depend on the assumption of
non-degeneracy of dg1. Then we only need to show (5.2) and (5.6). If G is degenerate, then
(5.2) and (5.6) are obvious. Next we assume that G, is non-degenerate and lim, o ¢1(z) > 6o
or limgpeo ¢1(2) < 6g. Denote ¢1(0+) = limy o ¢1(z) and ¢1(co—) = limgreo ¢1(z). We shall
show (5.2) first.

If ¢ (04) > 6y and G1(6p—) = 0, for z € [By, Ly, |wi(z)] > e7Lr/%0 [2°(0—05)0c(0)dG1(6)
and ay(z) > e En/% [ 0c(0)dG,(6). Then (5.2) holds.

If ¢1(0+) > 6y and G1(6y—) > 0, then o;1(0) < co and ;(0) < co. The reason is in the
following. Since G1(fp—) > 0, we can find € > 0 such that G1(6y — ¢) > 0. From (3.3), we
know 60c(f) is bounded on [fy — €, 00). Then [;°, 0c(0)dG1(6) < oo. Therefore, if a;(0) = oo,
then [P 0c(0)e=*/°dG,(0) — oo as z — 0. And since

(60 — €) J3° < 0c(0)e~1%dG1(0) + [5°_. 6%c(6)e=/°dG1(6)
J370c(0)e2/0dG1(0) + [5o_. 0c(0)e~=/6dGy(6) ’

() <
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we have ¢1(0+) < 6y — e. This contradicts ¢;,(0+) > 6. Thus a;(0) < oo and 9,(0) < oo.
Then we have w}(0+) < 0. Let ¢;; > 0 such that —wj(z) > d; > 0 for z € (0,c11). Asnis
large, By, < c11. Then for z € [By,cu], £ > 1/L, and |w(z)| = |w(z) — w(0)| > zlwi(z*)| >
dy/L,, where z* € (0,z). It is easy to see that (5.2) is true for = € [c11, Ly]. Then (5.2)

holds for all z € [B,, L] in this case.
If ¢1(0co—) < 6y, we must have G1(6y) = 1. The reason is in the following. If G1(6p) < 1,
let € > 0 satisfy G(6p +¢€) # 1. Then
s [P0t g2e(g)e o107 =00+ G (8) + (B0 + €) [y Bc(0)e=210T o+ 4G, (9)
1(z) > T he(6)e—+10- 1~ 00 1dG (0) + [5°, , Be(B)e==l07 ~Co+1dGy (§)
Therefore limgpeo ¢1(z) > 6o + €. This contradicts ¢1(co—) < 6p. Since G1(6) = 1,
wi(z) = [% 66y — 0)c(8)e*/0dG1(8) > e~F=/% [7° 00y — 0)c(0)dG1(0) for = € [By, Ly).

Next we shall prove (5.6). It is obvious for Case 1 and Case 2 from (5.2) and (5.3). We

only prove (5.6) for Case 3 and Case 4.

If ¢1(0+) > 6y and G1(6o—) =0, as(z) <[5, 0c(0)dG1(6) < oo for all z > 0. Then (5.6)
follows from (5.2) and (5.3).

If ¢1(0+) > 6y and G1(6p—) > 0, a1(0) < oo from previous result. Then (5.6) follows
from (5.2) and (5.3).

If ¢1(c0—) < by, G1(6p) = 1 and ¢:1(z) < G for all z > 0. We know B, < 1 for large
n. Then for x € [1,L,], a;(z) is bounded. Then (5.6) follows from (5.2) and (5.3). For
« € [Bn, 1], a1(z) and 6y — ¢1(z) are bounded from below. Then (5.6) follows from (5.7).

Now the proof of Theorem 3.2 is complete.
6. Simulation Study.

A simulation study was carried out to investigate the performance of the proposed em-
pirical Bayes selection procedure (2.3) for small to moderate values of n.

We consider exp(f) family in this simulation study, i.e.,

1 _=
mi ~ f(:16;) = 0.¢ %

This is also Example 4.1. We consider the case in which & = 3. That is, there are 3
exponential populations (treatments) 7y, m and 7s. We shall make a selection using the
procedure (4.2). Assume that the prior distributions G, G2 and G3 are i.i.d. having a

density

1
5O =G=gwc "> 920

D=
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where s > 4 so that [6%¢;(6)df < co and the requirement of Corollary 3.3 is satisfied. It is

easy to compute that

rz+1
; = , O
di(x) P z >
and the marginal density of X
s—1
i\T) = ) >0
e = Ty v

fori=1,2,3. As (s —2)8 > 1, ¢ is nondegenerate and ¢; = (s — 2)8y — 1 € (0,00). Then

it can be computed that

3. 3(s—1)(s—2)62
mE2 M=y

According Corollary 3.3, the regret of the empirical Bayes selection (4.2) is close to = as n

is large. Note that
wi(z)  [fo(s —2) — (z+ 1)}z +1)

fi(z) (s —1)(s-2)

Following (3.1) and (3.2), the regret of the empirical Bayes selection rule can be expressed

as

3 Oo(s —2) — (X; +D](X; + 1
Th = E{ Z[I[Wni(xi)so’xi<(s_2)00_113n<X,-<Ln][ 0( (l _(1)(5 — ;])( )]}

i=1

where the expectation is taken over the probability generated by ()7 1, )?2, sl X, X ). Denote
D as
3 [6o(s — 2) — (X; + D](X; +1)
D = Y [ I[Woi(X:)<0,X: <(5-2)0~1,Ba < Xi<L] = 1)E o 2]) ]

i=1

The scheme of the simulation is described as follows:

(1) For each ¢ and n, generate independent random variables as follows:

for j=1,...,n,
(a) first generate ©;; from an inverse gamma distribution with density g¢;(9),

(b) then generate X;; from an exponential ezp(f;;) distribution.

Likewise, generate ©; from an inverse gamma distribution with density ¢;(6), X; from

exp (0;).
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Table 1
Performance of the selection rule

when s = 6 and 6y = 0.6

n D, SE(Dn) %
10 0.13577026 0.003197456 0.16000000
20 0.06920616 0.003120035 0.08000000
30 0.04476671 0.003669832 0.05333333
40 0.03566289 0.002416336 0.04000000
50 0.02786863 0.003738685 0.03200000
60 0.02122455 0.003135153 0.02666667
70 0.01999013 0.003188093 0.02285714
80 0.01898793 0.002517613 0.02000000
90 0.01945126 0.002356803 0.01777777
100 0.01715247 0.002609822 0.01600000
150 0.01190080 0.002147165 0.01066667
200 0.01011384 0.002052432 0.00800000

Likewise, generate ©; from an inverse gamma distribution with density g¢;(f), X; from

ezp (0;)-

(2) Based on the past observations ()’Z:J, j = 1,...,n) and the present observations

X =(Xy,...,X%), we compute D.

(3) Repeat steps (1) and (2) 10000 times. The average of the D’s from the 10000 repetitions,
denoted by D,, is used as an estimator of the difference r,,. The standard error, denoted by

SE(D,), is also computed.

Table 1 gives the results of this simulation study on the performance of the proposed
empirical selection procedure. For a specific n, three columns give Dy, SE(D,) and 2. In
this case we choose s = 6 and 6, = 0.4.

Figure 1 gives the plots of (n, D,,) and (n, 2). The dotted line gives the values of 2 the

solid line denotes the values of D,,.
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Figure 1: Graph for Table 1.
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