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Abstract

A general approach to study fractional factorial designs with multiple groups of factors
is proposed. A structure function is generated by the defining contrasts among different
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Structure Function for Aliasing Patterns in 2~" Design with Multiple Groups
of Factors

By Yu Zuu
Purdue University

A general approach to study fractional factorial designs with multiple groups of factors is
proposed. A structure function is generated by the defining contrasts among different groups of
factors and the remaining columns. The structure function satisfies a first order partial differ-
ential equation. By solving this equation, general results about the structures and properties
of the designs are obtained. As an important application, practical rules for the selection of

“optimal” single arrays for robust parameter design experiments are derived.

1. Introduction. Two-level fractional factorial designs are arguably the most popular experi-
mental plans in practice. Their practical and theoretical importance has long been established [Box,
Hunter and Hunter (1978)], and has been further addressed and developed lately [Wu and Hamada,
(2000)]. Let 2!~" denote a fractional factorial design that involves [ factors and has 2/~™ runs. Much
effort has been dedicated to understanding the structures and properties of fractional factorial de-
signs [Bose (1947)]. Several general criteria, such as maximum resolution [Box and Hunter (1961)]
and minimum aberration [Fries and Hunter (1980)], have been proposed to select optimal plans. A
27" design is determined by its defining contrast subgroup, denoted by G, which is generated by any
n independent defining words. Defining words are factorial effects that are aliased with constant.
A simple yet important characteristic of G is its wordlength pattern, W = (Wy, W, - -+, W;), where
W; is the number of defining words of length ¢ in G (1 < ¢ <1). Wordlength pattern W contains
information about the aliasing among factorial effects. Both maximum resolution criterion and
minimum aberration criterion are based on wordlength pattern. For fixed run size 2™ (m =1 —n),
W becomes more complex when the number of factors increases. Tang and Wu (1996) suggested
using complementary designs to characterize fractional factorial designs with a large number of
factors. This technique has led to many interesting results [Chen and Hedayat (1996)].

Recently fractional factorial designs involving different types of factors have received much

attention. Suppose a 2!~ design is employed to investigate ! factors. If the [ factors do not need to
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be distinguished further, they are said to be symmetric, and the columns of the design matrix are
randomly assigned to them. However, this symmetry property does not hold in several interesting
designs. For example, blocked fractional factorial designs involve non-blocking factors and blocking
factors [Sun et al. (1997) and Sitter et al. (1998)], and split-plot designs involve whole-plot factors
and sub-plot factors [Bingham and Sitter (1999)]. Another important case is robust parameter
design. Two types of factors, control factors and noise factors, are present in a parameter design
experiment. The basic idea of parameter design is to explore the effects of control factors, noise
factors and their interactions on certain response of a system, then choose optimal settings of control
factors to adjust the mean response on target and “dampen” the variation caused by noise factors.
Control factors and noise factors play very different roles in response optimization and variation
reduction. They need to be treated separately in any proper experiment planning. Taguchi (1986)
proposed the use of cross array (or inner-outer array in his terminology) to run parameter design
experiments, which is generated by “crossing” an orthogonal array of control factors with another
orthogonal array of noise factors. In order to improve efficiency and run size economy, Welch et
al. (1990) and Shoemaker et al. (1991) suggested the use of single arrays. A single array is a
fractional factorial design with some of its columns assigned to control factors and the rest columns
to noise factors. So single arrays are fractional factorial designs with two distinct types of factors. A
comprehensive review on parameter design can be found in Wu and Hamada (2000). The selection
of optimal single arrays is considered in Wu and Zhu (2001). In general, one can have more than
two different groups of factors. We will focus in this paper on the case with only two distinct groups
of factors, which are denoted by group I and group II. All the results in this paper can be extended
to cover more general cases. And we will only use single arrays for illustration and application.

A fractional factorial design with two different groups of factors is also determined by its defining
contrast subgroup G. But W becomes a poor summary of G, because defining words of same length
may consist of different numbers of group I factors and group II factors, so that they may have
different implications on effect aliasing. For instance, let D' and D? be two single arrays with
G1 = {I,ABa,Cbc, ABCabc} and Gy = {I, ABC,abc, ABCabc} respectively, where A, B and C
are control factors and a, b and c¢ are noise factors. D! and D? share the same wordlength pattern
W = (0,0,2,0,0,1). But they actually are quite different in the sense of effect aliasing. Assume

that effects with order greater than 2 are negligible. All the control-by-noise interactions in D?
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are estimable, while in D!, only five control-by-noise interactions, Ab, Ac, Bb, Bc and Ca, are
estimable. This example shows that it is necessary to distinguish defining words with same length
to reflect complex aliasing patterns. Hence a finer summary of G with the consideration of the
difference between the two types of factors is in order.

The purpose of this paper is to develop some theoretical results for fractional factorial designs
with distinct types of factors. In Section 2, notation and basic definitions are given. Several new
concepts such as wordtype pattern, structure index array N and structure function f are defined.
Based on Tang and Wu (1996), a recursive equation for N is derived. In Section 3, a first order
partial differential equation of f will be generated. Main theorems about N and a closed form
solution to the partial differential equation are obtained. In Section 4, two alternative approaches
are introduced and commented. In Section 5, the theoretical results from the previous sections are

applied to the selection of “optimal” single arrays.

2. Notation and Definitions. Some concepts and techniques from finite geometry will be
used in this section. A brief introduction of them can be found in Bose (1947) and Mukerjee and
Wu (1999). Let F2 be the Galois field {0,1}, and let EG(m,2) and PG(m — 1,2) denote the m-
dimensional Euclidean geometry and (m — 1)-dimensional projective geometry over Fg respectively.
In this paper, we do not distinguish a matrix from the collection of its row vectors. Two matrices
with the same collection of row vectors are considered to be identical. Let P be a m x (2™ — 1)
matrix whose columns consist of all the distinct points of PG(m — 1,2). Sylvester-type Hadamard
matrix H,(2) is defined to be a 2™ x (2™ — 1) matrix whose row vectors form the k-dimensional
subspace generated by the row vectors of P. Thus there exists an one-to-one correspondence
between the columns of H,(2) and the points in PG(m — 1,2). It is well known that the design
matrix of a 2!~ design is a collection of [ different columns from H,,(2) with rank m(= [ — n).
Let 2(1t2)=7 denote a fractional factorial design with {3 group I factors, Iy group II factors and
2™ runs (m = l; + 13 —n). Let G and D be the associated defining contrast subgroup and the
2™ x (I3 + l2) design matrix. As discussed in Section 1, wordlength pattern W is not a proper
summary of G. Define A;; to be the number of defining words in G that consist of ¢ group I
factors and j group II factors. Let A = (4;;), i.e., the (I1 + 1) x (lg + 1) matrix with entries
A; ;. A is called the wordtype pattern of the design. The design matrix D has l; + s columns
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from Hp,(2), among which /; columns are assigned to group I factors and the other I5 columns to
group II factors. Let [3 = 2™ —[; — Iy — 1. Marking off the columns used in D from H,,(2), there
are [3 columns left in H,,(2) which can be used to form a design for another /3 factors. We call
these columns the remaining columns, the design the remaining design, and the possible factors the
remaining factors. Hence a 2(a+2)=" design induces a 3-way partition of the columns of Hy,(2),
and it further induces a 3-way partition of PG(m — 1,2) because of the correspondence between
Hp(2) and PG(m — 1,2). Since D = {uG : u € EG(m,2)}, where G is an m x (I; + l2) matrix
whose column vectors are different points in PG(m — 1,2) with the first I; vectors, denoted by
oq, 0, -, ay, corresponding to the columns assigned to group I factors, and the other I3 vectors,
denoted by S1, B2, -, Bi,, corresponding to the columns assigned to group II factors. Denote the

remaining points in PG(m — 1,2) by v1,72, - ,Y,- Let

L:l - {alaa2)' e )all}:EZ - {ﬁ17ﬁ27” : )ﬁl2}7£3 = {717727' o ’7l3}'

Then PG(m —1,2) = L1 J L2 L3. Similar partitions were derived by Chen and Cheng (1998) for
studying a general theory of blocked designs and Mukerjee and Wu (2000) for studying mixed-level
designs. For any fixed triplet (7,7, k) such that 0 <1 <1I;,0< 7 <ly and 0 < k < I3, a collection
of i points from £;, j points from £y and & points from L3 is said to have a [i, j, k]-relation, if they
sum to be the 0-vector in EG(m,2). Let N, ; denote the total number of different [4, , k]-relations
and N the (Iy + 1) x (I2 + 1) x (I3 + 1) array with entries N; ;. N is called the Structure Index
Array. Regarding H,(2) as a design for group I, group II and remaining factors, N; ;, represent
the number of defining words in the associated defining contrast subgroup which involve 4 group
I factors, j group II factors and k remaining factors. When I3 equals 0, D becomes a regular
fractional factorial design involving only one group of factors, (N; ;) reduces to be (N; o) that
is exactly the same as (N;4x(¢)) defined in Tang and Wu (1996). Clearly wordtype pattern A of
D is equivalent to (N; ;o) with 0 < ¢ < l; and 0 < j < ly. Since L1 N L2=L1 () L3=L2 N L3=0,
Nijx=0when 1 <37+ j+k <2 For some technical purpose, we define Nyggo = 1.

LEMMA 1. For i +j + k > 2, N; ; ; satisfy the following iterative equation,

(i + D Nigjx + (G + DNy ik + (B + 1N jrq1 + Nijp
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= ( h ) ( l2 ) ( l]:’ ) — (=i + N1+ (Lo — 7+ DNy jo1 6 + (s — b+ 1)N; j p—a]. (1)

PrROOF. We know that PG(m — 1,2) = £1U£2U£3 with l Ly l= Iy, | Lo |: lo, | L3 |= I3 and

I +1la+ 13 =2™ — 1. There are ( l.l ) ( Z.Z ) ( l’: ) different ways to select ¢ points, j points
i
and k points from £, £2 and L3 respectivily. Suppose one of them is given by {a1,---,a;} C
L1, {B1,--,B;} C Ly and {y1,---,v} C L3. This combination induces a further partition of
PG(m—-1,2). Let A={o,  +,i}, B=L1—A, C={p1,---,B;}, D=L2—C,E={m, -, %},
F=L3—-Fand G ={0}. Nowconsider g =1+ -+ +pi+--+8+m+ -+ A
combination with ¢ € A is said to be of type A, and a combination with ¢ € B is said to be of
type B, and so on. We claim that a combination cannot be of two different types simultaneously,

and any combination must be of one of the types. We now count the type A combinations. Since

¢ € A, there exists an ig (1 < 4y < ¢) such that
art o top+fit Bttt = e
This implies that
o1+t g1t g1+ o+ Pt B+ =0,

ie., {o1, ,06-1, 0041, 506,81, , B, 71, Tk} has a [i — 1, 7, k]-relation. So a type A com-
bination corresponds to a [i —1, j, k]-relation. In the converse, every [i—1, j, k]-relation can generate
(I — i+ 1) combinations which are of type A. Since different [¢ — 1, 7, k]-relations must generate
different combinations, the number of type A combinations is equal to (I; —é-+1)N;_; ;5. Following

similar arguments, we have
| B |= (i + 1)Nit1jk, | C |= (o — § + 1) Ny j—1,

| D |= (G +DNejsrps| El= (s =k +1)N;jp-1,| F|= (k+ 1)Nyjps1-

Clearly | G |= N; ;- Since

l ly ls
( )( .)(k)=|AI+|B|+|C|+]D|+|EI+IF|+|GI,
g j
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equation (1) follows.

The structure index array N of a fractional factorial design with two distinct groups of factors
can be used as a good description of the structure and properties of the corresponding design. We
define the structure function of the associated design by

1 o I3

flz,y,2z ZZZNJ T’ y ik =1+ Z Ni,j,kwiyjzk, 2)
i=0j=0k=0 i+i k23

where the second equality follows from N;;x =0for 1 <:+j+k < 2.

3. Main Results. In this section, we will derive a first order partial differential equation
satisfied by f based on (1). The differential equation unveils the intricate relations among the
N; ;% - Then an explicit solution of the equation will be obtained. Denote the run size by r = 2™,

First, we have the following theorem.

TuEOREM 1. The structure function f of a 2(1H2)=" design satisfies the following first order

partial differential equation

@=L+ - 0L+ 2oL sty (0t RO =0, @)

where I3 = 2atle—n 7, 1, 1,

PROOF: Multiplying both sides of (1) by z'y’2*, and rearranging the terms, we have
I Iy l3 ik ik . i ik e
, . k 2y 2" = Nijpz'y’ 2" + (h — i+ D Nic1jp3'y’2° + (0 + 1) Niga g2y’ 2
t J

(Iz — 5 + D) Nigore + (G + D Nijrrpz'y? 2 + (s — b+ DN j 12y’ 25 + (b + )N jrna'y’ 2" (4)

Summing both sides of (4) over 4,4,k withi+35+%k2>3,7>0, 7 >0 and k > 0, we have

Z > Nigwa'yah = -1, 5)

c=3 i+j+k=c

Z Z (h—1+1 Ni_l,j’kxiyjzk

c=3 i+j+k=c
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r—1 r—1
. . yo
=hz Z > Nigpa' /2" =3 > i'Nyjpa’ THF
c=3 i _|_‘7 +k=c c=3 Z’+]+k=c

of
=haz(f -1) - 2=
1 (f ) ax’
r—1 o +00 ¥ ,
Y. D EHLNipjpaty’sh =3 Y. Npgea® Th
c=3 i+j+k=c =3 yijtk=c+1
i >

o . .
= a—i - Z ZNi,j,kIEZ lyjzk.
i+j+k=3

Similarly, we have

Z Yo e =5+ DNij12'y' 2" + (5 + )Ny 2y’ 2]
c=3 i+j+k=c

of of . P
pnd — 2__ — ]’V . 1,,7 1 k
l2y(f 1) ay + a Z+j§+k:=3.7 ’Ly])k‘,L‘ Yy 4

and

Z > [Us = k+1)N;jp12'y 2" + (k + 1)N; j g2’y 2¥]
c=3 i+j+k=c

0 0 i e
= l3z(f — 1) - 228—£ + a—ﬁ - Z kNid’kmzszk L
i+itk=3

r—1
PIEDY ( l-l ) ( l? ) ( l3 ) gy = L+ o) (1+y) 21 +2)B
c=3i+j+tk=c \ @ J k

L1 —1) 5 l(la—1) 5 I3(l3—1)
2 z° + 9 Y+ 5

Notice that

-—[1 +hax+ly+lsz+ 2%+ lLilszy + Lilsxz + lzl3yz],

and

> Nyjp(iz 2R + jaiyd Tk 4 kaiylZF )
i+j+k=3

= (3N3,0,0 + Naj1,0 + No1)z® + (3No3,0 + N12,0 + No2,1)y? + (3No o3 + Niga + No12)22
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+(2N2,1’0 + 2N1,2,0 + N171,1)my + (2N2,0’1 -+ 2N1’0,2 + N1,111):EZ + (2N0’2’1 + 2N0,1’2 + N17171)yz.
Applying (1) again with i + j + k = 2, we have
2N310+2N120+ N1 = lils,

2N201 4+ 2N1g2 + N111 = lils,

2No21 + 2No12 + N1 = lols,

I1(l; — 1

3N300 + Najo + Nop1 = ¥,
. Ia(ly —1

3Np30+ Nioo+ Nooi1 = ¥,
I3(l3 —1

3Ngo3+ Nigo + No12 = —3—(32—)

Collecting all the terms, we have (3) and the theorem is proved.

Let D12, D13 and Dy 3 be the designs generated by £; and L3, £ and L3, and £y and L3
respectively. Then {N;;o}, {Nior} and {No;x} are the wordtype patterns of the designs corre-
spondingly. Since any of the designs induce the same partition of PG(m — 1,2), it determines the
other two designs. Intuitively, it is also true that any of the wordtype patterns determines the
other two wordtype patterns, and further determines all the structure indices Nj ; x, which are only
dependent on the partition. For instance, if we know {Ng ;}, all the other NV, ; x can be uniquely
determined. This provides an opportunity to study D;2 in terms of D; 3 or Dy3 whichever is
simpler. Employing the derived partial differential equation of f, not only can we show the above
result rigorously, we can also derive the relations explicitly. In the following, we will first state a

theorem on the existence and uniqueness of the solution to (3) given {No jx}-

THEOREM 2. For given {Ny;r}, there exists a unique solution f to the first order partial
differential equation in (3).
PRrOOF. Since {Ny ;x} are given, f(0,y,2) =1+ 22'2:0 Efj‘zo No,; xy’ 2" is determined. Introduce u,
v and ¢t as the new parameters for the desired surface w = f(z,y,2). Let h(u,v) = f(0,u,v). The

existence and uniqueness problem of (3) given {Ny ; 1} is equivalent to the existence and uniqueness
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problem of the following system of ordinary differential equations:

dz 9
— 1
a - r
dy 2
— -1
dt ’
dz 9
— 1
a_c 0
d’LU 1 1
= = (14 ha+ly +ls2)w — (1 4+ 2)2 (1 +y)2 (1 + 2)’,
with the initial conditions
z(u,v,0) =0,
y(u,v,0) = u

z2(u,v,0) = v

l1 12

w(u,v,0) = > Y Nojx = h(u,v).

j=0k=0

(11)
(12)

(13)

(14)
(15)

(16)

(17)

Applying the standard existence and uniqueness theorem for a system of linear ordinary differential

equations [John (1971)], the theorem is proved.

With the help of the associated system of ordinary differential equations, we can get an analytic

solution of (3) directly and the analytical solution shows explicitly how N ; i, are related to {No;x}-.

First we solve the initial problem for the ordinary differential equation system given by (14),

(15), (16) and (17), and z, y, z and w can be expressed as functions of the parameters u, v

and ¢. Then we solve the system of functional equations involving z = z(u,v,t), ¥y = y(u,v,t)

and z = z(u,v,t) to represent u, v and ¢ in terms of z, y and z. Finally, replace the variables

of w with v = u(z,y,2), v = v(z,y,2) and t = ¢(z,y,2), and we get an explicit expression of

f =wlul(z,y,2),v(z,y, 2),t(z,y,2)). From (10),

d 1 1

r+1 zz-—1

Ydz = dt.

So a general solution for (10) is
1 1+=z
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Because z(u,v,0) = 0, we have
—1+e2

TE e (18)

Similarly, based on (11), (15), (12) and (16), we have

—1+4ce™2 14+u
y(u,v,t) = Tree where c¢= T (19)
—14de™?% 1+
Z(U,’U,t) Zm—, where d = ]_-—’U. (20)
For (13) and (17), the solution given z, y and z is
¢ ¢
w= (- / (1+2) (1 +y)2(1 + 2)2exp(— / (14 Lz + Ly + ls2)dt)dt + h(u,v))
0 0
t
exp( /0 (1+ iz + Loy + ls2)dt) (21)
Replacing z, y and z with (18), (19) and (20), we have
w(u,v,t) =24 (1 + )2 (L + d)B (1 + &)1 (c + €¥) 72 (d + €*) "Bexp(rt)h(u, v)
_2l1+l2+l30l2dl3(1 + 6215)—11 (C + e2t)—l2 (d + eZt)—lg exp(rt) -1 i (22)
r
Because
l—-z
2 _
N (23)
l1+yl—z
=_-'9 2
=12 yl+z’ (24)
1+21-2
= 2
1—21+2’ (25)
y—x z2—x (26)

= v =
1—yz’ 1—2zz’
w(u,v,t) can be re-expressed in terms of z, y and z. After some routine but cumbersome

calculations, we have
f(ma Y, z) = w(u(:D) Y, Z), ’U(iE, Y, Z)a t(IE, Y, Z))

= (14 @) 21— 2y /270l 3 No sy — @) (L - y2)2 7 (2 - 2)F (1 — z0)/s™
Jik

R O L B LI LR R LY CR C(EP LN c
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Similarly, by following the same argument, f can also be expressed in terms of IV; g , or in terms
of N; ;o as follows,

Fx,y,2) = (L +y)2 21— y) 270757 N o (2 — 9) (1 — y2) 274z — )R (1 — y2)le*
ik

—%(1 + )22 — )P+ ) (1 + 2)B + %—(1 +2)1(1 +9)2(1 + 2), (28)

f(@,y,2) = (L+2)B572(1 = 2) 27878 Y N oz — 2)H(1 - 22)1 7 (y — 2)7 (1 — yz)s ™
i,J
1 1
(2 (L4942 P2+ S (L 2) (L) (L4 2)", (29)
In the following, we will obtain an exact relation between general N; ; x and {Ng ; 1} by expand-

ing f. First we define

0 if K < 0 or k is not an integer
n
(k): : k=0 (30)
ﬂ%—un;—kﬂ-lz otherwise

Now consider the following identity

VB ik SN iy [ B =k ) kit it
(- y)*(1 - zy) I . R i Tias) (31)

i=0 §=0 ¢ J

Applying the transformation T': (i,5) — (s,t) :k—i+j =s,1+ 7 =t, (31) becomes

(z—y)*(1—azy)" = > (-1 ( : ’ ) ( -k )xsyt. (32)
)

(5,£)ET([0,k] X [0,n—k] t—s+k)/2 (t+s—k)/2

Because of the definition in (30), for (s,t) € [0, +00) x [0, +00) — T([0, k] X [0,n — k]),

k n—=k _0
(t—s+k)/2 (s+t—k)/2 |
We have

' k n—k
(2 — )" (1 — ay)"* = (—1>f( )( )
oY i (g,t)G[o,g.%x[o,+m] t—s+hy2 )\ @rs—ry2 ) "
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Let

: k n—k
Onil,8) = (=1) ( (t—s+k)/2 ) ( (s+t—Fk)/2 ) ' (33)

It is clear that Qp x(s,t) = 0 for max(s,t) > n. Hence (31) can be rewritten as

£ =30 Quils, 'y (34)

s=01=0

(z — y)*(1 - zy)"

Now consider another expression (1 + )1 "/2(1 — g)l=7/2+1 = (1 — g2)1~7/2(1 — z). Because

(1 —a:)(l —z )ll -r/2 _ 1 = [1+Z ( I —k’r/2 )xzk]

=1—-z+ Jio(—l)lc ( h _kk/Z ) 2 4 —g:o(—l)kﬂ ( h _]:/2 ) o2+

k=1
we have

n=0 %]
where I(n) = 0 for even n is an even integer and I(n) = 1 for odd n. With the help of (34) and

(35), the first term of (27) can be expanded as follows,

(L+a) 21— 2) 27878 3" Nojuly — 2) (1 — yz) 27 (2 — 2)*(1 — 22)1 7

Jik
=(1 +x)l1—r/2(1 _ .’E)ll_r/2+1 ZNO,j,k( Z le’] $2, ) yszxtz Z Qla i 53,t3) 53 ,t3
' ik §2,t2=0 53,3
lhh Iz I3 o
=33 e iuntyi A,
=0 j=0 k=0

where
1)lta/20+1(t2) h=r/2 _1)et N j k
Ci gk Z Z Z ( ) O,u,Ule,u(SZ,J)Ql3,v(33a )
t1+t2=1 s2+s3=%t1 UV [t2/2]

It is easy to expand the other two terms. Collecting all the terms from the expansion of equation

(27) and comparing coefficients with the definition of f, we have

G
T\ i g k T i1 fig=i i1 19 j k
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+ oy Y Yo (-pke/AE) ( hori2 ) (=1)"*" NouwQus,u(52, ) Qus 0 (53,k). (36)

ta+ta=i sa+s3=t1 U [t2/2]

In particular, we have

¢ J 11+i2=% 11 19 j

li—1/2
+ Z Z Z [t2/2]+1(t2 ( ' / )(—1)U+S3N0,u,ssle,u(82aj)a (37)

t1+te=isotsz=t1 u [t2/2]

! I ls 1 s li —r/2 r/2 I3

+ Z Z Z [t2/2]+1(t2 ( ll - r/2 ) (_1)52+UN0,52,1)QZ3,'U(337k). (38)

t1+ta=isa+s3=t1 v [t2/2]

and

<

4. Alternative Approaches. It is well known that fractional factorial designs are equivalent
to linear codes [Bose (1961)]. Most concepts in fractional factorial designs, such as wordlength
pattern, resolution and defining relation ect., have their counterparts in the context of linear codes
[Sue et al. (1998) and Chen and Cheng (1998)]. General theory of linear codes can be found
in MacWilliams and Sloane (1978). Fractional factorial designs with two groups of factors are
equivalent to 2-way split linear codes. Theoretical results for 2-way split linear codes can also be
used to study the structure indices IV; ; ; defined in Section 3. A brief account of 2-way split linear
codes is given as follows. Let C and C be a 2-way split linear [I,] — n] code and its dual code
respectively. Each code word of C is divided into two subwords, ¢ = (c1, ¢2), where ¢; consists of
l; components and ¢y consists of lo components (I =1y +l2). The split weight of ¢ is defined to be
w(c) = (w(cr),w(cz)), where w(c;) is the number of 1’s in ¢; for ¢ = 1,2. Define the split weight
enumerator of C as follows,

I Iy
Welz,y,s,t) = Z xw(c1)yl1—w(01)Sw(cz)tlz—w(cz — Z ZB :EZ li~ ’sztlz—J (39)
ceC =0 j=0
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similarly for C with the same split, its split weight enumerator is defined as

i 12
Ws(z,y, 8,t) Z (e —w(er) gw(@) yha—w(@) — ZZB iyl —igifla=i, (40)
ceC i=0 j=0
where (B;,j)o<i<i; 0<j<l, and (Ei,j)ogigll,OSjSlz are called the split weight distributions for C' and

C respectively. The following MacWilliams identity holds for W¢ and Ws.

LEMMA 2. For any 2-way split linear code C and its dual code C with the 2-way split weight

enumerators as in (39) and (40), the following identities hold,

Welz,y,s,t) = |C] Wely — 2,y +2,t —s,t+ ) (41)
. 1 h I2
Bi,j ICl Z Z Bkl,kz-Ph Z(klall)ljlz ](k27l2) (42)
k1=0ko=0

where | C | denotes the number of code words in C' and

k ma mo —m
Pk<m1,mz>=2<"”k3( )( 2 )

k3= k3 k - k3

are the Krawtchouk polynomials.

Recall that Dy 3 is a fractional factorial design with [; group I factors, I3 group II factors and 2™
runs. So D13 is a 2-way split linear code. Its dual code, denoted by 31,2, is also a 2-way split code.
D, > is equivalent to the defining contrast subgroup and the split weight distribution of Dy is
equivalent to the wordtype pattern of D; 5. As discussed previously, D; 2 induces a 3-way partition
of Hn,(2) and generates another two associated designs, which are D; 3 and Dy 3. Clearly Do 3 and
D13 are two-way split linear codes and Hy,(2) is a 3-way split code. Define {n;;x}, {n;3}, {ni}
and {nff‘k} as the split weight distributions of Hy(2), D12, D13 and Dy3. Let Hp(2), D1g, D13
and D3 3 be their dual codes respectively. It is not difficult to see that {Nijxh {Nijo}, {Niox} and
{No,jx} are the corresponding split weight distributions of H.,(2), D12, D13 and Da 3. Applying
MacWilliams identity to {NV; ;x} and {n;;,}, we have

1 2 3
Nijk = _Zzznstupll —i(8, 1) Fly—j(¢,12) P —k (u, I3). (43)

§=0t=0u=0
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Applying MacWilliams identity to {No;x} and {ni?;c}, we have

I I3

No,jx = ZZ” 2Py (s,12) Piyx(,13), (44)
$=0£t=0

where P, (m1, m2) are the Krawtchouk polynomials defined in LEMMA 2. Note that n;;; = 0 when
itj+k#251—landn; = ”?,319 when i + j + k = 2%, Using the relations between n; ; » and
f%c, we can get equations that are analogous to (36), (37) and (38), if not more complicated.
The results in this paper provide an approach to look at the interconnections among the three
portions of Hg(2) induced by any design involving two different groups of factors in a more intuitive
and explicit way. It also shows that the approach of Tang and Wu (1996) and the approach of Suen,
Chen and Wu (1997) are indeed equivalent. Both can be applied according to different situations
and needs.
Another important approach to studying factorial designs is to use finite Abelian group theory.
A generalframework developed by Bailey and her associates can accommodate symmetric and
asymmetric factorial designs with flexible factor levels [Bailey (1982, 1985, 1989)]. The case of
multiple groups of factors can be easily treated in this framework. A full factorial design for !
factors is identified with an Abelian group D of order 2!, where each element of D represents a
factorial run. D can be represented as D =< g1 > ® < g2 > ---® < g; >, where g1, g2, ..., O
are the generators with order 2. Naturally the generators correspond to the factors. Suppose the
factors, or the generators correspondingly, are divided into two groups, e.g., 1 group I factors and

la group 1I factors, D becomes
D=<g>® - ®<g,>0<g{ >® Q< g >,

where g} belongs to Group I for 1 < ¢ < 3, and g ! belongs to Group II for 1 < j < ls. The
dual group D* of D is composed of the irreducible characters of D, i.e., the homomorphisms
x:D — {1,-1}. D and D* are in fact isomorphic. For 1 <37 <!; and 1 < j < g, define x; and
- n; as follows: for any g € {91, ", 9,,, 91, "> 9, }» xi(9) = —1 if g = g;, =1 otherwise; n;(g) = —1,
if g = g;, =1 otherwise. Then {Xx1,"**,X1,M, "M, } becomes a set of generators for D*. For
any given § € D* it can be uniquely represented as a product of some of the generators. The
split weight of € is defined by w(8) = (wi1(0), w2(8)), where w1(8) is the number of x; in § and

wo (@) is the number of n; in §. The generators are identified with the main effects of the group
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I factors and of the group II factors. In general, 0 € D* with w(@) = (i,7) represents a factorial
effect involving ¢ group I factors and j group II factors. Now any 2'~" fractional factorial design
with two groups of factors, denoted by D; 2 as before, is a subgroup of D with order 2", Let
Dy, ={r € D*: 7(a) = 1,for any o € D1} It is clear that Df, is a subgroup of D*, and it
is the defining contrast subgroup G of D; 3. Define A;; to be the number of 7 € Dy, such that
w(t) = (4,7), where 0 < i < Iy and 0 < j < lo. Then (4; ;) is the wordtype pattern of the 2(1tk2)—n
design defined previously. Therefore, all the results regarding wordlength pattern or wordtype pat-
tern can be developed and applied in the framework based on the finite Abelian group approach.
Though a complete development of the results is interesting, it is not straitforward and beyond the

scope of the current paper.

5. Application and Example. In this section, the theoretical results derived in the previous
sections will be applied to the selection of “optimal” single arrays for parameter design experiments.
As defined in Section 1, single arrays are typical examples of fractional factorial designs with two
groups of factors, which are control factors and noise factors. A single array of /1 control factors,
I noise factors and 2112~ runs induces a partition of PG(m —1,2) (m = Iy + Iz — n), that is,
PG(m—1,2) = L1 L2 L3, where L£; includes the points corresponding to the control factors, Lo
includes the points corresponding to the noise factors and L3 the points to the remaining columns.
Wu and Zhu (2001) proposed an index vector J = (Ji,Js, J3, J4, J5, Jg) to describe the aliasing
severity of a single array, where J; = 4(N21,0 + N12,0 + Nop2g), J2 = 3N30,0 + 3N310 + Na1,
J3 = Ni20+3N130+ 3Np30, Ja =3N300+3N310+ No1o, Js = 6Ngp0 and Jg = Nogp. And

they use the following minimum J-aberration criterion to select optimal single arrays.

DEFINITION. For any two single arrays D! and D?, if there exists ig such that J} = J? for
i <ip—1land J. < Jfo, D! is said to have less J-aberration than D?. If there is no other designs

with less J-aberration than D!, D! is said to have minimum J- aberration.

When [; and [> are large, {Ni,j,o} become very complicated. Since all N; ; are intricately related
as indicated by the results in Section 3, it is easier to consider D 3 and Dy 3 generated by £; and

L3 and by Lo and L3, whichever is simpler. Applying (37), we have the following corollary.
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COROLLARY 1.

N30 = Constant — Z No,j (45)
j+k=3
Ny 10 = Constant + Z INo.j ks (46)
j+k=3
Ni,20 = Constant — (Ng 21 + 3Ng 3,0), (47)
N30 = Constant — No 30 — (No31 + 4No40), (48)
N3 20 = Constant + (Np,21 + 3Ng3,0) + (No2,2 + 3Nos1 + 6No4ap), (49)
N3’1,0 = Constant — Z jNO,j,k - Z jNo’ch, (50)
j+hk=3 j+h=4
N470,0 = Constant + Z N()J',k; + Z NO,j,k- (51)
j+k=3 j+h=4

Based on Corollary 1, The expression of J in terms of {Np;x} can be derived as follows,
J1 = Constant + 37,1 1345 No jx + (4No2,2 + 12No 31 + 24Ny 4p), J2 = Constant — > itk=3(3 +
27)Noj k=2 j+k=4 35 No,j k, J3 = Constant — (No,2.1+3No3,0) — (3No31+12Ng 40), Ja = Constant+
6> j+k=3No,jk + 6> ;1k=4 Nojx, J5s = Constant + (No 2,1 +3No3,0) + (No,2,2 + 3No 31 + 6N 40),
Jg = Constant + 6Ng 4,0. Similar to the approaches in Tang and Wu (1996) and Chen and Cheng
(1998), based on the equations above, we can establish some general rules to identify minimum

J-aberration single arrays.

Rule 1. A single array D7, has minimum J-aberration if
1) > iik=343No ik + (4No2,2+12Np 31+ 24Np 40) of D3 5 is the minimum among all possible D 3,
_7+k? 3 2'Jy 1<y (g} 15y 2,3 y

(ii) D5 5 is the unique single array satisfying (i).

Rule 2. A single array Df 5 has minimum J-aberration if
(i) > j+k=347Nojk + (4No2,2 +12Ng 31+ 24Ng 4.0) of D3 5 is the minimum among all possible Dy 3,
(i) 32, 4=3(3 + 25)Nojk + 2 j1k=437Nojx of D33 is the maximum among all possible Dy 3 with

J1 the same as of D3 5
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Design Defining relation Nonzero Nj ;

D%’?, I= ale = acCrg = bCT‘lT‘z NO’()’() = N(),z,z = ]., NO,2,1 =2
D%3 I =abc= arire = bC'r‘lT‘g NO,O,O = N0,172 = No,z’z = N0’3’0 =1

3

Dg73 I= abr1 = Crirqg = abC’f‘z N()’0,0 = N0’172 = N0,271 = N0’3’1 =1

Dg’?, I =abe No’o’o = N0,3,0 =1
D3, I = abr, Nooo=No21=1
D§ 4 I =ariry Nooo=No12=1
Dg73 I = abcrl N0,0,0 = N0’3,1 =1
D§ 4 I =abriry Noo,o = Nypo2 =1
Dg,3 I = abCT‘lT‘z NO,O,O = N073,2 =1

Table 1: All possible D 3’s with [;=10, l,=3 and r=16

iii) D7 9 is the unique single array satisfying (i) and (ii).
1,2 g g

Rule 1 only involves J; and Rule 2 only involves J; and J. Similarly we can develop Rule i
(3 <4 < 6) that involves the first 7 J indices based on the idea of sequentially minimizing Ji, Jo,
Jg, J4, J5 and J6.

EXAMPLE 1. Suppose we want to obtain a 16-run single arrays with minimum J-aberration
for 10 control factors and 3 noise factors. So Iy = 10, I = 3 and I3 = 2. It is clear that
No1,3 = Nogo = Noo,e = 0. Sequentially minimizing Jy, J2, J3, Jg, J5 and Jg is equivalent to se-
quentially minimizing 3, ;_5 7 No j,x + No,2,2, maximizing > jtk=3(3+27)No jx +6No22+9No 31,
maximizing No2,1 +3No,3,0 +3No 3,1, minimizing 37; -5 No jx + No,2,2 + Noz1 and Js = (No 21 +
3No3,0)) + (No2,2 + 3Np31). Notice that Js = 0. Now, we only need to consider the wordtype
patterns of the complementary designs Dy 3 with 3 noise factors, 2 remaining factors and 16 runs.
Note that the complementary designs could either be two folds of a 2°=2 design or a 25~1 design.
Denote the three noise factors by a, b and ¢, and the two remaining factors by r; and r5. There are 9
non-equivalent designs as shown in Table 1. > j+k=3JNojk +No,2,2 is minimized to be zero by D§,3

and D3 5. Since D] 5 has a bigger value of 3, ;_5(342§)No i +6No 2,2+ 9Ny 3.1, applying Rule 2,
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we conclude that the corresponding design DI’Z is the only single array with minimum J-aberration.
Based on Df 3, D, can be constructed in the following way: let Hy(2) be the Hadamard matrix
consisting of 15 columns with the first four columns independent and the remaining columns being
all possible linear combinations (modulus 2) of the first four columns. Select any other four inde-
pendent columns, such as 12, 23, 34 and 234, assign 12, 23 and 34 to a, b and c respectively, delete
234 and 14 and assign the left columns to the 10 control factors randomly. Thus we have derived

the design matrix of D{z. It is easy to write down the corresponding defining contrast subgroup.

Generally, any properties of a design that are determined by (N ;0)i>0,5>0 can be studied by
its complementary designs. The indices N; ;5 with ¢ > 0, j > 0 and k£ > 0, which can be accom-
modated easily in our approach, can provide further insights about the design and its structure.
In some applications such as split-plot design and blocked design, the induced partitions of the
Hadamard matrix or PG(m — 1,2) are not arbitrary. And (IV; ;o) needs to satisfy certain con-
straints. How to consider these constraints in the complementary design approach and how they
can be used to develop efficient search algorithms for optimal designs are two interesting questions

that need further investigation.
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