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Abstract

An outstanding issue in robust parameter design is the choice of experimental plans. Sin-
gle arrays were proposed as an alternative to the inner-outer arrays advocated by Taguchi.
Because factorial effects in parameter design experiments have properties distinctly dif-
ferent from those in traditional fractional factorial experiments, new principles on the
relative importance of effects need to be considered. Based on them a new criterion is
developed to discriminate among different single arrays. Search algorithms are developed
and used to construct “optimal” single arrays with run size 8, 16, 32 and 64.

KEY WORDS: fractional factorial design, effect ordering principle, minimum J-aberration

criterion

1 INTRODUCTION

Robust parameter design (or briefly parameter design) is an important method for variation
reduction in industrial processes and products. The quality of a system (a product or a process)
is mainly affected by two types of factors which are control factors and noise factors. Control
factors are the variables whose values can be adjusted but remain fixed once they are chosen.
Noise factors are the variables which are hard to control in a system’s normal production and
use environments. When a parameter design experiment is conducted, both the control factors
and noise factors are varied systematically. The basic idea of parameter design is to explore the
effects of control factors, noise factors and their interactions on the performance of a system,
and to exploit these effects, by choosing optimal control factor settings, to bring the system

mean response on target and reduce the performance variation due to noise factors. For a



comprehensive review, see Chapters 10 and 11 of Wu and Hamada (2000).

1.1 Cross Arrays, Single Arrays and Modeling Techniques

Taguchi (1986) proposed to use cross arrays (or inner-outer arrays in his terminology) for
parameter design experiments. Two separate arrays are generated for control factors and noise
factors. They are called the control array (denoted by CA) and the noise array (denoted by NA)
respectively. A cross array consists of all the combinations of the settings of CA and the settings
of NA. Suppose CA and NA have run size m; and my correspondingly. Then the run size of the
cross array is myms. Let y; ; be the response for the combination of the ** control setting and
the 5 noise setting. At any fixed control setting i, there are my responses, {yi,j}lstmz across
NA. The sample mean and sample variance, g; = m% Yy and 7 = ﬁ Y2 (v — U)?
are the summary statistics for the 5™ control setting. Row-summary modeling approach is to
model these summary statistics or some functions based on them in terms of the control factors.
"Two examples are signal-to-noise ratio modeling and location-dispersion modeling (Myers and
Montgomery, 1995; Wu and Hamada, 2000).

When the number of factors is large, cross arrays become costly. Single arrays proposed by
Welch et al. (1990) and Shoemaker et al. (1991), are an economical alternative to cross arrays.
Instead of using two arrays, a single array is employed with some of its columns assigned to
control factors and others to noise factors. With the crossing structure ignored, a cross array
can be viewed as a special case of a single array.

In the row-summary modeling approach, the responses across the noise array for any fixed
control setting are considered as the noise replicates. The response y, in fact, can be modeled as
a function of control and noise factors (Vining and Myers, 1990; Welch et al., 1990; Shoemaker
et al., 1991). This approach is called the response modeling approach and the fitted model §
the response model. Based on ¢, the mean and variance of the response can also be estimated,
so that a two-step procedure can be employed for parameter design optimization. Unlike the
row-summary modeling, it is especially suitable for single arrays. It provides flexibility to
accommodate effects with different degrees of importance.

The problem of selecting optimal single arrays has not been properly addressed in the liter-
ature. Our idea, primarily motivated by Shoemaker et al. (1991) and Wu and Hamada (2000),

is to consider all possible general single arrays, investigate their estimation capacity for the

purpose of parameter design and select optimal arrays according to some overall criteria.



1.2 Other Experimental Plans for Parameter Design

An interesting extension of cross array is the compound orthogonal array proposed by Rosen-
baum (1994, 1996). Let OA(N, k, 2,t) denote a 2-level orthogonal array with N rows, k columns
and strength ¢ (Rao, 1947). A compound orthogonal array with parameters Ny, Na, kq, ko, t;
and ts is an Ny N, ® (k1 + k2) orthogonal array with the following structure: the first k; columns
form N, identical copies of an OA(Ny, k1, 2, t1), and for each fixed setting of the first k; columns,
the corresponding settings for the remaining &k, columns form an OA(Ny, k2, 2,5). If the first
k1 columns are assigned to control factors and the remaining ks columns to noise factors, it is
said that the strength among the control factors is ¢; and the strength for the noise factors is
ts. The strength of the whole compound array is denoted by #3. The values of ¢;, t; and 3
should be as large as possible for given Ny, N, k; and k;. Based on fractional factorial plans,
Hedayat and Stufken (1999) constructed optimal compound orthogonal arrays in terms of #;,
t2, and t3. In general, an orthogonal array with strength ¢ > 1 is a compound orthogonal array
for some set of parameters, so is any fractional factorial design.

In order to estimate all main effects, control-by-control interactions and control-by-noise
interactions, Borkowski and Lucas (1997) and Box and Jones (1993) suggested using designs
with mixed-resolutions. A mixed-resolution design is a second-order design for control effects
and control-by-noise interactions.

1.3 Basics of Two-Level Fractional Factorial Designs

Suppose there are [ factors in an experiment. The factors are denoted by 1, 2,..., I, which are
called letters in design theory. The generalized interaction among factors 4;, is,...., and % is
denoted by %1%s...7%, which is called a word. The generalized interactions are also called factorial
effects. A 2!~P fractional factorial design, which has 2" runs with » = [ — p, is determined
by r independent factors and p independent defining words. The defining contrast subgroup
G consists of all possible combinations of the independent defining words. For two fractional
factorial designs dy and dy, if d; can be derived from d; by relabeling letters and/or changing
signs, d; and dy are said to be isomorphic. The number of letters in a word is the wordlength,
and the vector W = (A;, Ay, ---, A)) is called the wordlength pattern, where A; denotes the
number of words of length 7 in G. Resolution is defined as the smallest 7 such that A, > 1. For
two designs d; and d,, d; is said to have less aberration than dy if A; (d;) < A;,(ds), where 4 is

the smallest value such that A; (d;) # A;,(d2). If there is no design with less aberration than



dy, then d; is said to have minimum aberration (Fries and Hunter, 1980).

Clear effects and eligible effects (Wu and Chen, 1992) are another two important concepts.
A main effect or a two-factor interaction (henceforth abbreviated as 2f1) is clear if it is not
aliased with any other main effects or 2f%’s, and is eligible if it is not clear but only aliased
with some other 2fi. The number of clear effects can be used as a supplementary criterion to
minimum aberration

The paper is organized as follows. In Section 2, single arrays are formally defined, their basic
structure and property discussed, and several examples given. In Section 3, a new principle
about factorial effects in parameter design is proposed. In Section 4, several criteria for selecting
optimal single arrays are proposed. A construction method of single arrays is presented in
Section 5. In Section 6, various single arrays with small run size are discussed in details. Good
single arrays with run size 8, 16, 32 and 64 are included in Appendices D.1-D.4.

2 GENERAL SINGLE ARRAYS: CONSTRUCTION AND PROPERTIES

For consistency, control factors are denoted by capital letters A, B, C, etc.; noise factors by
lower case letters a, b, ¢, etc. The letters C' and n are used generically to represent a control
factor and a noise factor respectively.

Suppose there are k¢ control factors and k, noise factors, each at two levels. A general
single array is a 2'? fractional factorial design with ko columns assigned to the control factors
and k, columns assigned to the noise factors, where | = k¢ + k,, and p is the fraction index.
Single arrays do not require any a priori structures such as “crossing” in cross arrays. For a
given run size, cross arrays and compound orthogonal arrays may not exist for certain number
of control factors and of noise factors.
Lemma 1 The smallest cross array for k¢ control factors and &, noise factors requires
2/10g, (ko +1)1+108; (ka+1)] ryns where [z] denotes the smallest integer greater than or equal to
x.
Proof: Suppose the run size of CA is m; = 2™. A necessary and sufficient condition that the CA
can accommodate k¢ control factors is 2" —1 > k¢, i.e., ny > logy(kc+1), or ny > [log(kc+1)].
Therefore, the smallest CA has run size 2M108z(kc+1)1, Similarly, the smallest NA has run size
21108, (kn+1)1  The lemma, follows by taking the product of these two numbers.

For convenience, S(kc, kn,p) is used to denote a single array with ko control factors, k,

noise factors and 2(kc+*a)=? yyns. Suppose S; and S, are two single arrays. If 57 can be derived



from S, by the relabeling of control factors, of noise factors, or by change of signs, S; and 9,
are said to be isomorphic. If the control and noise factors are not distinguished, a single array
becomes an ordinary fractional factorial plan. This fractional factorial plan is called the basic
frame of the single array. Since control and noise factors play different roles in parameter design,
different ways to assign the columns of a basic frame to control and noise factors can generate
non-isomorphic single arrays. The distinction between control and noise factors also induces a
partition of the columns of the basic frame into two subgroups. The columns assigned to the
control factors are called the control columns and those to the noise factors the noise columns.
Hence a single array is determined by its basic frame and the column partition. Obviously, if
two single arrays have non-isomorphic basic frames, they are non-isomorphic.

In the following, the single array S(3, 3,2) is used to illustrate the structure and properties
of single arrays. The three control factors are denoted by A, B and C, and the three noise
factors by a, b and c. There are altogether four nontrivial and non-isomorphic 26~2 basic frames

given by the following defining relations (Chen, Sun and Wu, 1993):

I =123 = 1456 = 23456, (1)
I =123 = 456 = 123456, (2)
I =1234 = 1256 = 3456, (3)
and
I =123 = 156 = 2356. (4)

According to the minimum aberration criterion, (3) with the wordlength pattern W=(0, 0, 0,
3,0, 0) is the best and (4) is the worst with the wordlength pattern W=(0,0, 2, 1, 0, 0). Based
on (1), there are six different ways to assign the columns to the control factors and the noise
factors. For example, assigning columns 1, 2 and 3 to A, B and C, and columns 4, 5 and 6 to

a, b, and c produces a single array with the defining relation
Sy I = ABC = Aabc = BCabc. (5)

Assigning 1, 2 and 3 to a, b and c and 4, 5 and 6 to A, B and C leads to a different (and

non-isomorphic) single array with the defining relation

S I = abc = ABCa = ABCbc. (6)



The other single arrays based on (1) are given as follows,

Ss:  I=Aab= BCac= ABChc, (7)
S¢: I=ABa= AChc = BCakc, (8)
Ss: I = Aab= ABCc = BCabc, (9)
Se: I = ABa = Cabc= ABChbc. (10)

Based on the basic frame (2), there are eight non-isomorphic single arrays. Among them, one
is given by

Sy I=abc= ABC = ABCabc. (11)

It is easy to see that S7 is a 237! x 237! cross array. The basic frame (3) is the 26~2 minimum

aberration design and generates the following two non-isomorphic single arrays,
Ss : I = ABab = ACac = BClbc, (12)

and

Sy : I = ABCa = Aabc = BCbe. (13)

Notice that Sy, S4, S5, and Sy all have one defining word which consists of some control factors
and only one noise factor. This implies that when the setting of the control factors is fixed,
the level of the noise factor that appears in the defining word is also fixed. For instance, in S5,
the defining word ABCa implies the aliasing of a with ABC. If the levels of A, B and C are
chosen, so is a’s. This implies that the corresponding noise array has strength 0, because the
level of the noise factor a does not vary. Hence, S, Sy, S5, and Sy are not compound orthogonal
arrays according to the definition.

Let N¢ denote the number of clear control main effects, IV, the number of clear noise
main effects, Ncc the number of clear control-by-control interactions, N¢,, the number of clear
control-by-noise interactions (henceforth abbreviated as Cn effects), and N,, the number of
clear noise-by-noise interactions. The estimation capacity of single arrays S; to Sy in terms of

the numbers of eligible effects and clear effects is summarized in Table 1. Define

a = (NC’Nn)NCCaNCnaNnn) (14)



Table 1: Comparison of Estimation Capacities for S; to Sy

Design Eligible effects Clear Effects Ne N, Ngcc Ng,

St A, B, C, Aa, Ab, a,b, c, Ba, Bb, Bc, 0 3 0 6
Ac, ab, ac, be Ca, Cb, Cc

S a, b, ¢, AB, AC, A, B, C, Ab, Ac, 3 0 0 6
BC, Aa, Ba, Ca Bb, Be, Cb, Cc

Ss A,a,b, Ba, Be,Ca, B, C, ¢, AB, AC, 2 1 2 3
Cc, BC, ac Ac, Bb, Cb, be

Sy A, B, a, AC, Ab, C, b, ¢, BC, Bb, 1 2 1 3
Ac, Cb, Cc, b, ¢ Be, Ca, ac, bec

Ss A, a, b, AB, AC, B, C, ¢, Ba, Bb, 2 1 0 4
BC, Ac, Be, Cc Ca, Cb, ac, bc

Se A, B, a, Ca, Cb, C, b, ¢, AC, BC, 1 2 2 4
Cec, ab, ac, bc Ab, Ac, Bb, Bc

Sy A B, C,a, b ¢ Aa, Ab, Ac, Ba, Bb, 0 0 0 9

Be, Ca, Cb, Cc
Sg all 2fi’s A B, C,a, b c 3 3 0 0
So all 2fi’s A B, C,a,b c 3 3 0 0




for a single array and call it the clear estimation index vector. For single arrays with a given
basic frame, the total numbers of clear main effects and of clear 2fi’s are fixed, i.e., No + NN,
and Nee + Nep + N, are constants. But the distribution across Ng, N,, Ngc, N, and
N,,, varies. This is transparent by comparing the single arrays S; to Sg which share the basic
frame (1). In parameter design, C and Cn are most important, because they can be used to
adjust the responses on target and to reduce response variation. (More discussion on this is
deferred to the next section.) From Table 1, S, appears to be the best among S; to Sg . If
the experimenters can assume that C'C’s are negligible, then the eligible Cn effects, Aa, Ab
and Ac, are also estimable. Sy is a cross array. An important property for cross arrays is that
all the Cn effects can be clearly estimated (see Theorem 10.1 of Wu and Hamada, 2000). So
S7 has all C'n effects clear, but its main effects are only eligible. If response adjustment is not
important, S; may be preferred. For Sz and Sy, all the main effects are clear, but none of the
2fi’s are clear. Note that S and Sy are based on the basic frame (3), which has minimum
aberration. Hence minimum aberration designs do not necessarily provide good basic frames
for single arrays.

In general, for any fixed k¢, k, and run size N, there are many non-isomorphic single
arrays. The choice of optimal single arrays is a challenging problem. Standard criteria like
maximum resolution and minimum aberration are not suitable for parameter design, because
they do not recognize the different roles played by the control and noise factors. Although
compound orthogonal array makes a distinction between control and noise factors, its orthogo-
nality requirement rules out some interesting designs such as Ss, S4, S5 and Sy in the previous
example. The strengths ¢,, t; and t3 are a rough description of the structure and properties
of a compound orthogonal array. For example, for both S; and S7, t; = 2, t, = 2 and ¢3 = 2,
but S; and S; are still different in terms of aliasing and estimation capacity. Mixed-resolution
is another attempt to address this question, but a mixed resolution array requires the length
of any defining words involving control factors to be at least 5, and the length of any defining
words not involving control factors to be at least 3. This is a strong condition, even stronger
than the crossing structure. As a result, the required run size is large. For example, for kc=3,
k, = 3 and N = 16, no single arrays satisfy the mixed resolution criterion. The smallest mixed
resolution array for the case is'a 32-run 2°~! plan with I=ABCabc (Borkowski and Lucas,

1997).



Next, a systematic approach is developed to address this problem. First, a new effect or-
dering principle is proposed. Based on this principle, optimality criteria will be derived.
3 EFFECT ORDERING PRINCIPLE FOR PARAMETER DESIGN
The minimum aberration criterion is based on the hierarchical ordering principle (in abbrevia-
tion, HOP): (i) lower order effects are more important than higher order effects, (ii) effects of
the same order are equally important. The factorial effects in parameter design have more com-
plicated interpretations than those in ordinary fractional factorial design, because parameter
design -has two objectives, response mean optimization and variation reduc_:tion. If a factorial

! J

effect consists of ¢ control factors and j noise factors, it is of type ei,jzmm. Since con-
trol factors are not further distinguished among each other, the hierarchical ordering principle
can be applied to control effects, that is, lower-order control effects are more important than
higher-order control effects; control effects of the same order are equally important. The same
can be said about noise effects. Notice that {e;o};>0 is the collection of all types of control
effects and {eg;};>0 the collection of all types of noise effects. According to the HOP, control
effects and noise effects can be rank-ordered as €0,0 > €01 > €p2 >+t > €05 > €041 > tc e,
and ey > e19 > g9 > -+ > €0 > €410 > ---. It is not appropriate to directly apply the
HOP to Cn effects, because HOP would find the four most important groups of effects to be
{C,n}, {CC,Cn,nn}, {CCC,CCn, Cnn,nnn} and {CCCC, CCCn, CCnn, Cnnn, nunn}. In
parameter design, the C'n effects are more likely to be present because engineering knowledge
and experience may suggest that the selected noise factors are expected to interact with some
control factors. Since Cn can often be used to achieve robustness without incurring more cost,
priority should be given to these interactions so as not to miss any opportunities. Hence, C, n
and Cn should be considered to be equally important, Whereiﬁ C is crucial for mean response
adjustment, and n and Cn are useful for variation reduction. Then the second set consists of
CC and nn, wherein CC affects the response mean, and nn affects the response variation (but
1ts contribution cannot be controlled or changed). Further opportunities for variation reduction
appear in the third group which contains CCn and Cnn. Because Cnn involves more noise
factors than CCn, C'Cn is considered to be more important than Cnn. Following a similar
argument, all the factorial effects in parameter design can be rank-ordered. A numerical rule

can be used to help define the ranking. In general, if an effect is of type € j, its weight is defined



to be

1 if max(¢,j) = 1,

j+3 ifi<jandj>2
For any w in {1,2,2.5,3,3.5,....}, &, is the set of effects with weight w. Sometimes, £, can
also be viewed as the set of effect types with weight w. The first seven &,’s are listed in Table
2. The previous discussion can be summarized by the following Effect Ordering Principle (in
abbreviation, EOP):

(i). Effects with smaller weight are more important than effects with larger weight.

(ii). Effects with same weight are equally important.

High order factorial effects are usually insignificant. In practice, the experimenters are seldom

Table 2: Factorial Effects in Parameter Designs Rank-Ordered by EOP

Weight Factorial Effect

1 C,Cn,n

2 CC,CCn

2.5 CCnn, Cnn, nn

3 ccc, cCCn, CCCnn

3.5 CCCnnn, CCnnn, Cnnn, nnn

4 ccceco, cccCn, CCCCnn, CCCCnnn

4.5 CCCCnnnn, CCCnnnn, CCnnnn, Cnnnn, nnnn

interested in effects of order higher than 5. Additional assumptions can be considered:
(A.1) All effects with order higher than or equal to 4 are negligible.
(A.2) All effects with order higher than or equal to 3 are negligible.
Applying (A.1) and the EOP leads to five groups of effects in the descending order of importance:

& ={C,Cn,n} > & = {CC,CCn} > &5 = {Cnn,nn}

> 83 = {CCC} > 53_5 = {’I’I,’I’L’I’L} ) (15)

Based on a different argument and weight assignment, Bingham and Sitter (2000) rank-ordered

10



the factorial effects with order less than 4 as follows:

& ={C,n} > & ;={Cn} > & ={CC,nn}

> &5 ={CCn,Cnn} > & = {CCC,nnn}. (16)
The major difference concerns the control-by-noise interactions, Cn, CCn and Cnn, which are
ranked higher in our approach and is justified in the previous discussion. The work in the
remaining part of the paper is completely different from theirs.
4 CRITERIA FOR SELECTING SINGLE ARRAYS
4.1 Optimality Criteria for Fractional Factorial Design Revisited
For a given run size and fraction index, fractional factorial designs with less severe effect aliasing
are considered to be better. A formal measure of the aliasing severity is thus needed. Suppose
the number of factors is I. The aliasing type ¢ ~ j refers to the aliasing between an effect of
order ¢ and another effect of order j, where 1 < i < j <I. The type I ~ [ is not possible. The
types 1 ~ 1,/ -1 ~1,I-1~1—-1and!~2 ~ [ do not appear in designs with resolution
II or higher, because these types will lead to defining words of length one or two. If 4, ~ 7; is
considered to be more severe than i, ~ jo, it is written as 4; ~ j; > ip ~ jo. It is helpful to
rank all the aliasing types in the order of severity. Clearly 1 ~ 2 is the most severe type, which
is followed by 2 ~ 2 and 1 ~ 3. Arguably, 2 ~ 2 is more severe than 1 ~ 3. Two ordering
schemes are considered below.
Scheme 1:

(i) 31 ~ J1 > dg ~ Ja, if 4y + J1 < ip + Jo;
(i) 41 ~ g1 >t ~ Jo, if 41 + J1 = 42+ Jo and J; — 41 < o — 4s.

For I = 6, the aliasing types can be rank-ordered as follows:

1~2>2~2>1~3>2~3>1~4>3~3>2~4>1~5>3~4
>2~5>1~6>4~4>3~5>2~6>4~5>3~6. (17)
Scheme 2:
(i) 11 ~ J1 > dg ~ Jo, if J1 < Jo;
(ii) %1 ~ J1 > %2 ~ Jo, if 1 = jo and 4; < 4s.
For | = 6, the aliasing types can be rank-ordered as follows:

I1~2>2~2>1~3>2~3>3~3>1~4>2~4>3~4>4~4

11



>1~5>2~5>3~5>4~5>1~6>2~6>3~6. (18)

Let N;.; denote the number of pairs of aliased effects of the type i ~ j. Noting that a pair

of aliased effects of a given type can be derived from various defining words in the defining
contrast subgroup, NV;.; are related to the wordlength pattern in the following equation,

Nes= X% L=+ - 2R ) dli =k, = B) s+ G ) Ases, (19)

k>0

where d(s,j) = (“;7 ) for i # j, = %( it ) for i = j # 0, and d(0,0) = 0. (Its
derivation is given in Appendix A). Imposing an aliasing severity order by either scheme will
result in a numerical summary of the aliasing severity of the corresponding design. To identify
designs with least aliasing severity is equivalent to sequentially minimizing N;.;. Equation (19)
shows that N;.; are functions of the wordlength pattern W = (A;, Ay, ---, 4;). Hence, the
procedure is to sequentially minimize certain functions of the wordlength patterns. Applying
mathematical induction, it can be easily shown that sequentially minimizing N;.; according
to ordering scheme 1 or 2 is equivalent to sequentially minimizing A;, which leads to the
minimum aberration criterion. For example, if the total number of factors is 6, N;.; can be
calculated from W = (Aj, As, As, Ay, As, Ag) as follows: Nys = 3As, Nog = 344 Niug = 444,
Novz = 9A3 + 1045, N1y = 3A3 + 545 Nius = 6A4 + 1046, Ny = 844 + 1546. Sequentially
minimizing N2, Naog, Nios, Noos, Niua, N33 and Ny4 based on either scheme leads to the
minimum aberration criterion which sequentially minimizes As, Ay, A5 and Ag.

Minimizing the number of aliased pairs does not necessarily result in maximizing the number
of clear effects. These two concepts are very different. Many supporting examples can be found
in Appendix 4A of Wu and Hamada (2000).

4.2 Criteria for Selecting Optimal Single Arrays

The single array S(kc, kn, p) is uniquely determined by its defining contrast subgroup G. In
parameter design, defining words of the same length cannot be treated equally, because they
may belong to different types. In general, for 1 < k < k¢ + k,,, a word of length k can be one
of the typesin {e;; : 1+ 75 =k,0 <i < kg,0 < 7 < k,}. Let A, ; be the number of effects of
the type e;; in G, and A = (4;;) a matrix with entries A;; where 0 < < kc and 0 < j < k,.
A is called the wordtype pattern for S(kc,kn,p). Based on the wordtype pattern A, general
criteria for selecting single arrays will be developed along the lines of the minimum aberration

criterion.

12



For simplicity, we use (7, j) instead of e; ;. If two effects (¢1,71) and (42, jo) are aliased, it is
written as (i1,71) ~ (i2,72). Define N, ji)n(iz ) 10 be the number of pairs of aliased effects of

the type (i1, j1) ~ (42, j2). Straightforward extension of (19) leads to

1132 J1AJ2 . . . .
kc+ 2k — i1 — 1 kn +2ky — 51 —
N(i1,j1)~(z'z,j2) = Z Z c }{; ' 2 2]€ nob
k1=0 ko=0 1 2

d(iy — k1,92 — k15 1 — ko, J2 — k2) Ay g2k 1 +ia—2ke» (20)

m+y>

where ¢ A j=min(s, j) for integers ¢ and j , and d(0,0,0,0) = 0, d(z,y;u,v) = %( M

u+v
U

u—+v
U

> forz =y, u = v, and 22 + y? + u? + v? # 0; otherwise, d(z,y;u,v) = ( x;:l—y )
). The group aliasing type i =~ j is defined to be the aliasing between an effect in
&; and an effect in £; where ¢ and j are from {1,2,2.5,3,---,1} and 4 < 5. Two schemes are
considered for ordering the group aliasing types.

Scheme 1:
R >~ g if iy + 51 <13+ Jg, Or j3 — 11 < jo — i When 11+ J1 = ia + Jo. (21)

Scheme 2:

11 R J1 > 1g = Jg if J1 < je Or 43 < ip When j, = Ja2- (22)

Let Nj~; denote the number of aliased pairs of the type ¢ = j. It can be easily calculated from
Ny ,j1)~(62,52) according to the definition,
Ninj = Z N(il,jl)"’(iz,jz)'
(ZI)JI)EEH(zZJZ)ng

For example, since & = {C,Cn,n} and & = {CC, Cn},
Nz = N,o)~n(2,0) + Niwoymz1) + Na)wz,0) + Noymz0) + No,)~(2,1)-

Based on (20), N;y; can be calculated from the wordtype pattern (A; ;)o<i<kc,0<j<kn- Applying
the ordering scheme in (21) or (22), Nju; can be rank-ordered based on their indices. By
sequentially minimizing N;y;, we can obtain single arrays with minimum aliasing severity in
terms of the number of aliased pairs of effects. Because Njn; are functions of A4; ;, sequentially
minimizing N;x; is equivalent to minimizing a sequence of functions of A; ;. Therefore, general
criteria based on (A;;) can be proposed to distinguish different single arrays. A complete

development would take much effort and is left for future research. Here, a simplified yet

13



practically important case is considered. Under the assumption (A.2) in Section 3, there are

only three groups of effects,
& ={C,Cn,n} > & = {CC} > &5 = {nn}. (23)
According to (21), the group aliasing types involving &, £ and &5 are rank-ordered as
Ix1>1m2>1=x25>2x2>2x25>25~2.5; (24)
and, according to (22), as
Ix1>1%x2>2=x2>1225>2~25>25=~25. (25)

Notice that (24) and (25) are slightly different. The relative positions of 1 &~ 2.5 and 2 & 2 are
switched in (25). In the following, only (25) will be used. Define J = (Jy, Ja, Js, Ja, Js, Jg) as

follows:
J1 = Nig1 = 4451 + 44,2 + 44, ., (26)
Jo = Nipp = 3A30 4+ 34351 + Aoy, (27)
J3 = Ninos = A12 + 3413 + 3403, (28)
Jy = Nopo = 6A4, (29)
Js = Nomas = Az, (30)
Jo = Nasnas = 6404 (31)

J is called the aliasing index vector. If two single arrays have the same J, they are said to be

J-equivalent. Based on J, a minimum J-aberration criterion can be defined.

Definition 1 (Minimum J-aberration) For two non-equivalent single arrays S; and S
which are not J-equivalent, let ig be the smallest i such that J;(S1) # Ji(Ss). If Jiy(S:) <
Jio(S2), then Sy is said to have less J-aberration than Sy. If there are no other single arrays

with less J-aberration than Si, Sy is said to have minimum J-aberration.

The simplicity of the aliasing index vector J is due to the assumpiton (A.2). First, the defining
words with length 5 or higher are not considered. Second, the induced aliasing patterns from

the defining words with length less than or equal to 4 do not need to be considered either.
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For instance, suppose there is a defining word C;Cyn;, then all possible basic aliasing pairs
are C1 = Cynq, Cy = Ciny and n; = C1Cy. For any other control factor Cs and noise factor
nz, there are 6 induced confounded pairs: C1C5 = CyC3ny, CoC3 = C1C3ny, n1Cs = C1C>Cs,
Cing = Coning, Cang = Cinang, ning = C1Cyns. Each of them involves effects with order at
least 3 which are assumed to be negligible. Therefore, these induced pairs are not counted.
Because of combinatorial complexity, it is not advisable to employ only one criterion, espe-
cially when no model is specified. The clear estimation index « defined in (14) can be used as

an alternative for the evaluation of a single array.

Definition 2 (a-admissibility). A single array Sy is said to be a-inadmissible if there exists
another single array Sa such that o (i) < o2(i) for 1 < i <5 and at least one of the inequalities

18 strict. Otherwise Sy is said to be a-admissible.

J-aberration and a-admissibility will be used to measure the goodness of single arrays.
5 CONSTRUCTION METHOD
Single arrays with 8, 16, 32 and 64 runs are of practical importance. Overall good single
arrays based on the criteria proposed in Section 4.2 need to be selected and tabulated. All
non-isomorphic single arrays need to be constructed and compared so as not to miss any good
candidate. Recall that a necessary condition for two single arrays to be isomorphic is that their
basic frames are isomorphic fractional factorial designs. For a given basic frame, the columns
can be assigned to the control factors and the noise factors in ( klc > different ways, where
I = k¢ + k,. Therefore the classification of S(kc, kn,p) can be divided into two steps:

1). Construct all non-isomorphic 2!~? designs as non-isomorphic basic frames.

2). For each basic frame, construct non-isomorphic single arrays from all possible candidates
generated by different column assignments.
The non-isomorphic 8-, 16- and 32-run fractional factorial designs are available from Chen,
Sun and Wu (1993). Only Step 2 need to be carried out for these cases. For 64-run single
arrays, Chen, Sun and Wu (1993) only keep designs with resolution IV or higher. For single
arrays, designs with resolution III may be good basic frames, so Step 1 need to be carried out.
By definition, single arrays with different wordtype matrices are non-isomorphic, but single
arrays with the same wordtype matrix are not necessarily isomorphic. A counterexample can

be produced by modifying the work in Chen and Lin (1991). Thus a complete isomorphism
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check is required to discriminate arrays with the same wordtype matrix. Let D, denote the
design matrix of a single array, where 7 is the indicator of the control columns and the noise
columns, i.e., 7; = 0 (and resp. 1) if the i* column is assigned to a control factor (resp. a noise
factor). The generator matrix of D, has the form ( Ilém ) . The following theorem can be
7

used for isomorphism check.

Proposition 1 Suppose D,, and D,, are two single arrays with the same basic frame and the
generating matrices ( Ill‘s,m ) and ( Ilém ) . Then Dy, and D,, are isomorphic if and only
m n2

if there exists a permutation m such that m*ny = ny, T * ( Ill‘gm ) = ( g; ) and CoC7' = B

of m is treated as o row permutation operator.

Its proof is given in the Appendix.

6 HIGHLIGHTS ON THE TABLES OF SINGLE ARRAYS

Since noise factors are hard to control, the number of noise factors included in parameter design
experiments is often small. In the paper, we only consider k, < 3. Applying the procedure
discussed in the previous section, complete tables of non-isomorphic single arrays of 8, 16 and
32 runs are obtained, so are 64-run single arrays with k¢ + k, < 15. For fixed k¢ and k,, good
single arrays based on J and « are included in Appendices C.1-C.4. In each case, only a few
single arrays are selected due to space limitation. More extensive tables are available in Zhu
(2000). In each table, the first three columns are k¢, k, and p, which correspond to the number
of control factors, the number of noise factors and the fraction index. The column denoted by
DC gives the p independent defining words in terms of their positions in the basic design matrix
in Appendix B; N indicates the noise columns in the basic frame generated by the independent
defining words. For the 8- and 16-run tables, the aliasing index vector J is included. For most
32- and 64-run single arrays, J becomes too large to be included in the tables. By applying the
formulae in the definition of J, it can be calculated from the wordtype matrix. The column
A lists part of the wordtype pattern matrix, (Aso, A21, A2, Aos, Aap, As1, A2z, A13). The
last column of each table reports the clear estimation index, o = (N¢, Ny, Noc, Non, Nus). For
given k¢, k, and p, the corresponding single arrays are listed in the order of the J-aberration
criterion. The first or the first few arrays are minimum J-aberration single arrays, because
different single arrays may share the same J. According to Lemma 1, for run size 2*, cross

arrays do not exsit for all possible k¢ and k,. For k, = 1, they exist for ko < 281 —1; for k,=2
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or 3, they exist for k, < 282 — 1. These conditions explain why cross arrays are not listed in
some part of the tables. Cross arrays are marked by * in the tables.

We use the following example to illustrate the usage of the tables. Suppose a 32-run single
array is needed to study seven control factors and two noise factors, i.e. k¢ = 7, k, = 2 and
p = 4. There are four corresponding single arrays listed in the table in Appendix C.3. Suppose
the first one is chosen. Since there are nine factors and 32 runs, the basic frame is a 2%~ design.
The nine columns are denoted by the letters: 1, 2, 3, 4, 5, 6, 7, 8, 9. The first five columns
are independent, and the remaining four columns are generated by the four defining words
given in DC, which correspond to the columns 7, 11, 13 and 30 in the basic design matrix in
Appendix B. Since the columns are (1,1,1,0,0)% (1,1,0,1,0)% (1,0,1,1,0)* and (0,1,1,1,1)¢,
the defining words for these four columns are 6=123, 7=124, 8=134, and 9=2345. In the N
column, (5,9) indicates that columns 5 and 9 of the basic frame are assigned to the two noise
factors; 'a = (7,2,0,14,1) reports that all the seven control main effects, the two noise main
effects and the 14 C'n effects are clear, but none of the control-by-control interactions are clear.

The wordtype matrices and clear estimation indices listed in the tables reflect the complexity
in classifying single arrays. For example, for kc = 6, k, = 3 and p = 4 , the following non-
isomorphic single arrays are given in Appendix D.3:

S1: 6=123,7=124,8 = 134,9 = 2345, noise columns: 1, 5, 9,

Sy 6=12,7=13,8 = 23,9 = 12345, noise columns: 4, 5, 9,

S3:  6=12,7=13,8 = 23,9 = 45, noise columns: 4,5,9.
Sy is listed as the first single array according to the aliasing index vector J, which is (0, 12, 0,
18, 0, 0). All its control and noise main effects are clear. Twelve of the 18 Cn effects are clear,
which are {25, 29, 35, 39, 45, 49, 56, 57, 58, 69, 79, 89} and the other Cn effects are eligible.

The eligible sets that include at least one Cn effect are
12 = 36 = 47,13 = 26 = 48,14 = 27 = 38,

16 =23 =78,17 =24 = 68,18 = 34 = 67.

In addition, three noise-by-noise interactions {15,19,59} are clear. The aliasing index J of S,
is also (0,12,0,18,0,0). But S, is quite different from S; in terms of a. All its noise main

effects, noise-by-noise and control-by-noise interactions are clear. The six control main effects
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are only eligible. The eligible sets are
1=26=37,16=2=238,17 = 28 = 3,

12=6=78,13=68=7,23 =67 =8.

It is easy to show that S; is a cross array, i.e., S3 = 2972 ® 2371, The crossing structure
guarantees that all the Cn effects are clear. But in Sj, the control and noise main effects are
only eligible. Its vector J is (0,12, 3, 18,0, 0). Compared to S; and Sz, S, though a cross array,
can be viewed as inferior.

Several important issues will be briefly discussed here. As indicated earlier, minimum aber-
ration designs do not necessarily provide the best basic frames for single arrays. This is evident
for single arrays with large fraction index p or a large number of noise factors ( i.e., close values
of k, and k¢). For small p and k,,, minimum aberration designs lead to minimum J-aberration
single arrays. For example, minimum J-aberration 64-run single arrays S(7,1,2), S(6,2,2),
5(5,3,2), S(8,1,3), S(7,2,3), S(6,3,3), S(9,1,4) and S(8,2,4) use the corresponding min-
imum aberration designs as the basic frame. But the J-minimum aberration single arrays
S(7,3,4), S(9,2,5), S(8,3,5), S(11,1,6), S(10,2,6), S(9,3,6), S(12,1,7) and S(12,2,7) are
not based on the corresponding minimum aberration designs.

The inconsistency between minimum aberration and the maximum number of clear effects
carries over to the minimum J-aberration single arrays. There are many cases in which the
minimum J-aberration single arrays are also optimal in terms of the clear estimation index a.
Minimum J-aberration single arrays are a-admissible in most cases. But there are exceptions.
For example, the first and second arrays for k¢ = 7, k, = 3 and p = 5 have a*= (4,0,0,6,0) and
o?=(7,0,0,14,0). Their aliasing index vectors are J* = (0,21, 3,6,0,0) and J?=(0,24,3,42,0,0).
Though the first array has minimum J-aberration, obviously it is a-inadmissible.

Cross arrays are often not good according to the minimum J-aberration criterion and can
even be a-inadmissible. Because cross arrays guarantee that all the Cn effects are clear, they
are usually ranked among the top 10 to 20 based on J, but many better single arrays are
available. Two examples are given for illustration. For k¢ = 6, k, = 2 and p = 3, the
minimum J-aberration single array, denoted by S;, has a = (6,2,0,12,1). The cross array
Ss has a = (0,2,0,12,1). In both arrays, all the Cn effects are clear. All the control and

noise main effects are clear in S;, while they are only eligible in S3. Another example is for
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kc =6, k, = 3 and p = 3. Denote the first and the fourth arrays by S; and S, where S; has
a=(6,3,9,18,3), and Sy has a = (6,0,0,18,0). The former has minimum J-aberration while
the latter is a cross array. From the two « vectors, it is clear that .S; is much better than S,.
There are cases in which cross arrays are winners in terms of the number of clear Cn effects.
When the fraction index p is large, the capacity of a fractional factorial design is limited and
balancing estimation among different effects becomes difficult. The crossing structure puts one
type of effects, namely C'n effects, as the top priority for estimation. For example, for ko = 11,
kn =1, and p =7, the listed arrays are S;, S; and S with & = (0,1,1,0,0), @ = (11,1,0,0,0),
and o = (0,1,0,11,0) respectively. S; is a minimum J-aberration array, S, is based on the
2'2~7 minimum aberration design, and Ss is a cross array. Only the cross array can guarantee
that all the Cn effects are clear. |

7 SUMMARY

Based on the argument that control-by-noise interactions play a pivotal role in parameter design
experiments, a new effect ordering principle is proposed for ranking the relative importance of
factorial effects. This principle together with the concepts of aliasing type and wordtype pattern
leads to the minimum J-aberration criterion, which is an extension of the minimum aberration
criterion for regular fractional factorial designs. Good single arrays can be chosen based on the
J-aberration criterion and the clear estimation index vector a. The collection of useful single
arrays given in the Appendix can aid experimenters in choosing appropriate experimental plans.
For space limitation, only two-level regular fractions are considered. Extensions to more than
two levels and to nonregular fractions will be of interest.
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APPENDIX A: PROOFS

Proof of (19)
Let N;.; denote the number of pairs of aliased effects of type i ~ j. A pair of aliased effects
of type ¢ ~ j can be derived from different defining words in the defining contrast subgroup.
Let (E1, E,) denote a pair of aliased effects of type i ~ j, where F; has order i, E, has order
J and ¢ < j. Define © to be the collection of (Ey, E,) such that E; and E, have exactly k
factors in common, where 0 < k < ¢. For k = 0, suppose (Ey, E-) is an arbitrary pair in ©g. It
is induced from a defining word of length i + j. Every defining word of length i 4+ j can induce
d(i,7) different pairs of aliased effects of type i ~ j which belong to ©g, where
1+ oo g
wa=f L)
5( i ) ifi=73+#0.
In addition, define d(0,0) = 0. If (Ey, E,) and (E7, F}) are induced from two different defining
words of length 7 + j, they must be different. Therefore, | ©g |= d(3, j)Air;. For k > 0, O
contains the pairs of aliased effects which share exactly k factors. Suppose (F1, Ey) € Oy, which
is induced from a defining word of length ¢ + j — 2k. Every defining word of length i + j — 2k
can generate ( U +g - 2R)JT ) d(i — k,j — k) pairs of (E1, E;) € ©. Different defining
words of the same length 4+ j — 2k must generate different pairs of aliased effects belonging to
Og. Therefore,
0= (1= OH =201 a6~ k- kv

Since Oy, - - -, ©; are mutually exclusive, it leads to (19)
Proof of Proposition 1

Suppose there exists a row permutation m, such that 7 * 9, = 0, 7 % ( Ilém ) = ( g; ) and
C,Ci! = B. Since D;, = {( Ilém ) u:ueFym)
72

W*D;n:{ﬂ'*(llém) u:ueFlz_m}:{(g;) u:u € Fom)
72

m
C — —-m I—m —m !
={(C;> Cr'Ciu,u € F }={( lB ) v:v€EF, } =Dy,

m m
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Hence D,, and D, are isomorphic. Suppose D,, and D,, are isomorphic. Then there exists a
- o e () (&) (#)
row permutation m such that @ x 9y, = ny, 7 * ( B =l and the columns of Cs

belong to D; . Hence there exists a matrix M,

(&)=("5r)m

so we have C; = M and c; = By M. Because M must be nonsingular, the theorem is proved.

APPENDIX B

(Design matrices for 16, 32 and 64-run designs. For 16-run designs, it consists of the first 4
rows and 15 columns; for 32-run designs, it consists of the first 5 rows and 31 columns; and for

64-run designs, it is the whole matrix. Independent columns are numbered 1, 2, 4, 8, 16 and

32 and in bold face.)

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28 29 30 31 32 33 3¢ 35 36 37 38 39 40 41 42
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APPENDIX C

(kc=number of control factors, k,=number of noise factors, p=fraction index, DC=defining
columns, J==aliasing index vector, A=part of wordtype matrix, a=clear estimation index; a
cross array is indicated by *.)

1. 8-Run Single Arrays
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ke kn p DC N J A [
3 1 1 3 3 030000 10000000 01030
3 1 1 7 4 030000 00000100 31000
3 1 1 3 4 410000 01000000 10210
2 2 1 7 34 400010 00000010 22000
2 2 1 3 12 401000 00100000 00120
2 2 1 3 34 410000 01000000 00021
4 1 2 35 1 410600 01001000 00000
4 1 2 35 5 440000 11000100 00000
3 2 2 35 12 841000 01100100 00000
3 2 2 35 45 1220010 02000010 00000
5 .1 3 356 1 8140600 22001200 00000
4 2 3 356 12 16111010 12100210 00000
4 2 3 356 34 2440620 04001020 00000
3 3 3 356 134 2055010 02200111 00000
3 3 3 356 124 2433030 03010030 00000
3 3 3 356 123 2433030 10300030 00000
6 1 4 3567 1 122501800 43003400 00000
5 2 4 3567 12 28221620 21101420 00000
4 3 4 3567 123 36156030 13300331 00000
4 3 4 3567 124 4863660 06011060 00000
2. 16-Run Single Arrays
fe Fm »_DC N 7 A o
4 1 1 15 1 000000 00000000 41640
2 1 15 12 000000 00000000 32361
3 2 1 8 34 030000 10000000 02061
2 3 1 15 123 000000 00000000 23163
2 3 1 3 125 003000 00010000 20160
5 1 2 313 3 060000 10000100 21420
5 1 2 35 4 060600 20001000 01050
5 1 2 711 1 060600 00001200 51000
5 1 2 313 2 410600 01001000 30330
4 2 2 313 25 401600 00101000 30060
4 2 2 711 13 460010 00000210 42000
3 3 2 313 125 083000 00010100 30060
3 3 2 312 125 033000 10010000 00090
3 3 2 711 123 433010 00000111 33000
6 1 3 3514 4 0120600 20001200 11110
6 1 3 71113 1 01201800 00003400 61000
%6 1 3 356 4 01201800 40003000 01060
5 2 3 3514 47 860620 20001020 02020
5 2 3 71113 12 8120620 00001420 52000
5 2 3 356 14 8140600 22001200 01051
4 3 3 3514 125 873010 01010210 20020
4 3 3 3510 136 873010 11010110 00040
4 3 3 71113 123 1293030 00000331 43000
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1 4 35914 8 02101800 30003400 01010
7 1 4 7111314 1 02104200 00007700 71000
*T 1 4 3567 4 02104200 70007000 01070
6 2 4 35615 48 1212018 3 0 40003030 02000
6 2 4 7111314 12 122401830 00003830 62000
6 2 4 3567 14 122701800 43003400 01061
5 3 4 351012 125 16143020 12010320 00000
5 3 4 3569 148 16143620 22011220 00020
8 1 5 356914 8 43103000 51005500 00000
7 2 5 35679 49 162114230 70107030 00000
6 3 5 35101215 125 24273030 23010630 00000
9 1 6 35691013 7 84405400 72009700 00000
8 2 6 3567910 49 244114230 72107630 00000
7 3 6 35691415 126 364351830 242031131 00000
10 1 7 3569101314 1 12 60 0 96 0 0 9300161000 00000
9 2 7 356791012 49 326416030 8410101230 00000
8 3 7 3569101314 137 526353050 462051551 00000
11 1 8 356910131415 1 16790 156 0 0 12400261300 00000
10 2 8 356910131415 12 40931 96 3 0 9610162030 00000
9 3 8 35679101112 137 689165470 773092171 00000
12 1 9 3567910111213 2 20 107 0 228 0 0 17500381700 00000
1L 2 9 3567910111213 23 52125115040 13810252640 00000
10 3 9 3567910111213 238 8412969090 10930153091 00000
13 1 10 356791011121314 1 24138033000 22600552200 00000
12 2 10 356791011121314 12 64163122850 171010383450 00000
11 3 10 356791011121314 123 108168 6 150 12 0 1312302539121 00000
14 1 11 35679101112131415 1 28 175 0 462 0 0 28700772800 00000
13 2 11 35679101112131415 12 76 210 1 330 6 0 221210554460 00000
12 3 11 35679101112131415 123 1322196228150 17153038 51 15 1 00000
3. 32-Run Single Arrays

kC__Fn P DC N A o

5 1 1 31 1 00000000 511050

% 1 1 15 5 00000000 511050

4 2 1 31 12 00000000 42681

¥ 2 1 7 45 00001000 42081

3 3 1 3 123 00000000 33393

3 3 1 3 126 00010000 30390

6 1 2 727 4 00001000 61960

% 1 2 711 5 00003000 61060

6 1 2 727 1 00000100 611230

6 1 2 329 3 10000000 311260

6 1 2 329 1 01000000 401440

5 2 2 727 45 00001000 524101

5 2 2 329 34 10000000 227101

5 2 2 35 45 20001000 020101

5 2 2 329 26 00100000 401080
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*4

*7

*9

*7
10

*10

0 0 0 o © ©
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727

329

328

71129
71113
71129
3530
71129
71129

356

31221
71129
3530

313 22
3524
71129
71119 29
71113 30
7111314
711 13 30
35631
71113 30
71113 30
35631
3567
71113 30
35631
35624
71119 29 30
35142225
35917 30
3591431
3591415
313 21 25 28
71119 29 30
312 21 26 31
31321 25 28
356724
3514222431
71113141921
35691415
359141518
3514 2226 28
3514222431
3514 22 26 29
35691431
35691425

457
126
126

58
15
45
26
158
458
126
458
123

59
15
45
45
159
459
459

10
10

26
13
126
126
4510
11

511
16
126
126
5911
5911
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00001000
00010000
00011000
00003000
00007000
00001200
20001000
00003000
00001200
40003000
10101000
00001200
20001000
00010200
20011000
00000111
00006000
00007000
000014000
00003400
40003000
00007000
00003400
40003000
70007000
00003400
40003000
40013000
00006400
20006200
40006000
30007100
400014000
001014000
00003610
10011600
00017700
70017000
40006400
000018800
800018000
401014010
011014400
21011810
010151010
51005511
51015510

430123
406120
400120
71670
71070
711120
211170
620121
62571
020121
206100
530103
030153
50490
000150
53760
81080
81780
81080
811320
211380
720141
72681
126141
020141
630123
030183
000180
91000
41040
01090
21660
01090
700140
82000
40060
700140
000210
01100
101000
010100
000120
60060
10010
60060
020100
000120



11
11
*11
10
10

12
12
%12
11
11
11
10
13
13
*13
12
11
14
14

*14

13

12

15

15

%15

14

13
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10

10

10

11

11

11

11

11

3510121921 30
711131419 21 25
3569101314
3569141518
35914222628
3510121921 30
3569222629
351012192125 30
711131419212225
3566910131415
3569101314 31
356910131417
35914172226 28
35101219 212530
35914182023 24 27
71113141921 2225 26
3667910111213
356910131415 17
3591418202629 31
3591418202324 2729
7111314 19 21 22 25 26
28
3567910111213 14
3567910111213 30
3569141823 2529 30
3591418202324 2729
31

711131419 21 22 25 26
28 31
3567910111213 14
15
3567910111213 14
31
356910121718 21 30
31

12

512
16
248
149
13
13

513
513
16
126
9

14

514
126

515
149

516

11516

600010600
0000261200
1200026000
801018020
021018800
320131120
320151120
800015800
0000391600
1600039000
1200026040
1201026030
0310261200
430151530
10000231200

00005522000

2200055000
1601039040
5401102040
12000331600
0000772800

2800077000

2200055060

8501142650

15000452000

00001053500

35000105000

2800077070

11601223360

01100
111000
010110
000100
50050
10010
20040
01000
121000
010120
02060
00080
40040
10000
01000
13,1,0,0,0
010130
00060
00000
01000
141000

010140
02020
00000
01000
151000
010150

02000

00000
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4. 64-Run Single Arrays

kc_ Fkmn_p_ DC N A o
6 1 1 63 1 00000000 611560
6 1 1 31 6 00000000 611560
5 2 1 63 12 00000000 5210101
5 2 1 15 56 00000000 5210101
4 3 1 63 123 00000000 436123
4 3 1 7 456 00001000 430123
x4 3 1 3 127 00010000 406120
7 1 2 1551 1 00000000 712170
1 1 2 727 6 00001000 711570
6 2 2 1551 12 00000000 6215121
6 2 2 711 56 00003000 620121
5 3 2 1551 123 00000000 5310153
x5 3 2 360 127 00010000 5010150
8 1 3 72745 4 00001000 812280
8 1 3 71129 6 00003000 811380
1 3 32048 3 10000000 512580
7 2 3 72745 45 00001000 721514 1
7 2 3 71113 56 00007000 720141
7 2 3 320486 34 10000000 4218141
7 2 3 72745 14 00000100 7218111
6 3 3 72745 456 00001000 639183
6 3 3 32046 127 00010000 6015180
6 3 3 72745 123 00000001 6315150
6 3 3 32844 127 00013000 600180
6 3 3 72745 145 00000100 6312153
9 1 4 7274353 4 00002000 912490
9 1 4 7111330 6 00007000 911590
9 1 4 7274353 1 00001100 912760
9 1 4 3204652 3 10000100 613060
8 2 4 7274353 410 00002000 8216161
8 2 4 7111314 56 000014000 820161
2 4 3294652 34 10000100 5222131
7 3 4 7112946 569 00003000 736213
3 4 3294652 127 00011000 7015210
*7 3 4 3284452 127 00017000 700210
7 3 4 7274353 1410 00001100 7312183
7 3 4 3204652 356 10000001 4318180
10 1 5 711294551 11 00004000 10124100
¥x10 1 5 711192930 6 000010000 1010100
10 1 5 711294551 5 00003100 1012770
10 1 5 329465259 3 10001100 713370
9 2 5 711192962 6 10 00006000 928181
2 5 329465256 89 10003000 6218181
2 5 711294551 511 00003100 9218151
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*11
11
11
10
10

*10

*9
12
12
%12
11
*11
10
10
10
10
10
*10
13
13
*13
12
12
*12
11
11
11
11
11
*11
14

14
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35 30 47 54
3 29 46 52 59
3591415

71119 29 62

71129 45 51

3 28 44 52 56
329 46 52 59

711 29 45 51

71119 29 62 37
71113 19 46 49
711131419 21

35 30 47 54 56

711 29 45 51 62
711 21 25 31 45
711 29 45 51 62
35691415
3514 22 25 63
71113 14 19 53
313 21 38 57 62

7 11 21 45 51 62
359141548
71119 29 62 37 59
71113 19 21 25 46
71113141921 25
71113 19 21 25 46
35691013 14
3514 22 25 63 42
35691415 55
71113 14 19 21 54
35624 41 54 63

3 13 21 25 38 58 60
3560914 15 48
71119 29 62 37 41 55
711131419 21 25 54
711131419 212225
711131419 21 25 54
359 22 26 46 50 61
3569101314 15
3510 12 23 57 30 47
356 15 23 25 42 52
711 19 29 62 37 41 47
356091013 14 55
711131419 21 25 54
35691013 14 48
71119 29 62 37 41 47
49
711131419 21 22 25
58

510
34
56
610 11
569
127
356
1511
10
11

10

612

61112
5613
5613
4510
127
5613
10

6

6

614
612
56
5612
1213 14
5610
5614
5614
5615
10

20002000
10000200
400014000
00006000
00003001
000114000
10001001
00001300
000010000
000012000
000026000
20004000
00004200
000015000
00002400
800018000
20006200
000014400
00013400
00002600
400114000
000015000
000025000
000038000
000025000
1200026000
20006600
800018000
000018800
40014400
00014800
800118000
000023000
000038000
000055000
000038000
30009600
1600039000
40008800
400010800
0000121200
1200026000
0000261200
1200126000
000033000

000055000
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4220181
6227121
020181
830243
8313210
800240
5319210
8315163
1119110
11112110
1110110
6130110
1113060
1020201
10225101
020201
430223
930183
9011160
9312123
000270
1210120
12111120
1210120
1120221
020221
531153
030303
1030203
4016200
10016140
000300
1310130
13112130
1310130
1220241
5212101
020221

332153

532173
1130133
030333
1130223
000330
1410140

14113140



*14
13
13

*13
12
12
12

*12
15
15

*15
14

*14
13
13

*13
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71113 1419 21 22 25 26
71113 14 19 21 22 25 58
71113 14 19 21 35 41 63
3567910111213

356 1523 25 39 42 52
356691013 141555

71113 14 19 21 22 25 58
35691013 14 15 48

7 11 19 29 62 37 41 47 49 55
71113 14 19 21 22 25 26 60
71113 14 19 21 22 25 26 28
71113 14 19 21 22 25 26 60
3567910111213 14
3569142326 394354
3567910111213 62
3567910111213 48

6

615
12 15
56
12 14 15
5615
61415
5615
10

6

6

616
56
1315 16
5616
5616

000077000
000055000
000031800
2200055000
4000151200
1600039000
0000391600
1600139000
000045000
000077000
0000105000
000077000
2800077000
6000191600
2200055000
2200155000

1410140
1320261
1322161
020261
630183
030363
123024 3
000360
1510150
15114150
1510150
1420281
020281
430153
030393
000390
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