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Abstract: Empirical Bayes inference problems involve the estimation of unknown functions
(a density and its derivative). It is well known that this can be done through the kernel
methbd, i.e. using a fixed index kernel and varied window bandwidth. In this paper, we
introduce the kernel sequence method which considers using a sequence of kernel functions
and allows the kernel index and window bandwidth to vary simultaneously in the estimates.
This method usually produces better estimates since varied kernels give us more flexibility
to do so.

We apply the above method to the construction of the monotone empirical Bayes test for
the general continuous one-parameter exponential family. The rule we construct is shown to
have a rate of convergence of (Inn)3t¢/n for any ¢ > 0. This rate is a substantial improvement
over the previous results. Note that this rate is much closer to 1/n, which is proved here to
be a lower bound for the monotone empirical Bayes tests. So the rule has good large sample

behavior. Since the rule is monotone, it also has good performance for small samples.
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1. Introduction. Assume that X is an observation from the distribution with density
f(z]0) = c(6) exp{0z}h(z), -0 <a<z<b< +oo, (1.1)

where h(z) is continuous, positive for z € (a,b), 0 is the parameter, which is distributed
according to an unknown prior G on the parameter space 2, a subset of the natural parameter
space {6 : ¢(8) > 0}.

We consider the problem of testing the hypotheses Hy : 6 < 6y versus Hy : 8 > 6,
where 0y is known. The loss function is 1(6,0) = max{6 — 6,0} for accepting Hy and
1(6,1) = max{6, — 0,0} for accepting Hy. A test §(z) is defined to be a measurable mapping
from (a, b) into [0,1] so that 6(z) = P{ accepting H,|X = z}, i.e., 6(z) is the probability of
accepting H; when X = z is observed. Let R(G,d) denote the Bayes risk of a test § when
G is a prior distribution. Let ¢g(z) = E[f|X = z]. Given that E[|f]] < oo, a Bayes test g

is found as

1 > s,
folry= | | = (12)

Because ¢g(z) involves G, the above solution works only if the prior G is given. If G is
unknown, this testing problem is formed as a compound decision problem and the empirical
Bayes approach is used. Let Xj, X5, -, X, be the observations from n independent past
experiences and let X be the present ébservation. Based on X, = (X1, X5,-++,X,) and X,
an empirical Bayes rule 6, (X, Xvn) can be constructed. The performance of ¢, is measured by
R(G,6,) — R(G, 5), where R(G, 6,) = E[R(G, 6,/ X.)]. The quantity R(G,3,) — R(G, 65)
is referred as the regret Bayes risk (or regret) in the literature.

Denote ag(z) = [c(f0)exp(0z)dG(6), Ya(z) = [0c(f)exp(6z)dG(H). It is clear that
pa(z) = Ya(z)/ac(z) and da(z) > 0y <= w(z) = bhag(z) — Ye(z) < 0. So the construc-
tion of d, involves the estimation of ag(z) and ¢g(z). This is usually done using the kernel

method. In this paper, we introduce the kernel sequence method and apply it to obtain the




estimates of ag(x) and ¢g(x). The kernel sequence method considers using a sequence of
kernel functions, and the kernel index and window bandwidth are allowed to vary simultane-
ously in the estimate(s). This method usually produces better estimates since varied kernels
give us more flexibility to do so.

Based on the estimates of ag () and ¢¢(z), we construct an empirical Bayes rule &, for
the testing problem mentioned above. Then we show that &, has a rate of convergence of
(Inn)**¢/n for any € > 0 with the assumption E[|]] < oo, which is a substantial improvement
over the previous results. Note that this rate is much closer to 1 /n, which is proved here to
be a lower bound for the monotone empirical Bayes tests. So the rule has good large sample
behaviour. Since the rule is monotone, it also has good performance for small samples.

The readers interested in empirical Bayes approach may refer to two introductory papers
of Robbins (1956, 1964). For the above empirical Bayes testing problem, Johns and Van
Ryzin (1972) made an early contribution. Van Houwelingen (1976) used the monotonicity
of the problem and constructed the monotone empirical Bayes tests, which achieve the rate
of O(n~?/Crl)(Inn)?) if E[|6]"+] < co. Van Houwelingen also showed that his rules have
a good performance for small samples since they are monotone. Karunamuni and Yang
(1995) studied monotone rules and their asymptotic behavior. With one more assumption
cg € [—A, A], they obtained the rate of O(n~2/@+1)). Karunamuni (1996) tried to find
the optimal rate of convergence of the monotone empirical Bayes rule. But he failed; see
Liang (2000a) and Liang (2000b), Gupta and Li(2000). Another related work is from Stijnen
(1985). He studied the asymptotic behaviour of both the monotone empirical Bayes rules
and non-monotone rules. |

This paper is organized as follows: In Section 2 we introduce a few preliminary results.
In Section 3 we introduce the idea of kernel sequence method. In Section 4, we construct

the monotone empirical Bayes test 6, and obtain its rate of convergence. Section 5 gives a




lower bound of monotone empirical Bayes tests, which is n~!. Section 6 contains the proofs
of the main results in Section 4 and Section 5. In the appendix, we provide the proofs of a

few lemmas used in Section 6.

2. Preliminary. We assume [ |0]dG(6) < oo throughout this paper. Note that ag(z) and
¢¢(z) exist for all z € (a,b) under the assumption [ |0|dG(#) < oo. Therefore they are
infinitely differentiable for z € (a,b). Furthermore, ¢z(z) > 0 and ¢e(z) is an increasing
function. If limg), pa(z) > 6o, then ¢g(z) > Oy and dg(z) = 1 for all z € (a,b); If
limgyp ¢(z) < 6o, then ¢g(z) < Oy and 6g(z) = 0 for all z € (a,b). In both cases, we
call that dg(z) is degenerate. We assume that ég(z) is non-degenerate in the following, i.e.,
we assume that limg, ¢e(z) < 8y < limgy, ¢pe(z). Then G is non-degernate and ¢z(z) > 0.
Therefore there exists the unique point c¢cg € (a,b) such that ¢g(x) > by for z > cg,
pa(z) = b for £ = cg and ¢g(z) < b, for z < cg (see Van Houwelingen (1976) and others).
Note that w(z) = fpag(z) — Yg(z). Then cg is the unique root of w(z).

Based on the previous discussion, the Bayes rule stated in Section 1 can be represented

as

1 ifga(z) >0 = w(x) <0<z > cg,
Se(z) = o(@) 2 b (@) ¢ 2.1)
0 ifda(z) <<= w(z) >0z <cg.

Noting that the Bayes rule é¢ is characterized by a single number cg, a monotone empirical
Bayes test (MEBT) can be constructed through estimating cg by c¢,(X1, Xa, -, X»), say,
and defining

1 if z2>cp,

0 if z<e,.

Then the regret of é, is

R(G,5,) — R(G,65) = E /: w(@)h(z)dz. (2.3)




Remark 2.1. The assumption that () is non-degenerate is not crucial in this empirical
Bayes testing problem. It can be reduced for the particular case of (1.1); see Gupta and Li

(2000).

3. Kernel Sequence method. The kernel method has been used by many authors over
the years. Here we introduce the kernel sequence method which uses a sequence of kernel
functions instead of the single one. As the number of observations n increases, the kernel
function and the kernel window bandwidth are set to vary simultaneously.

For each i = 0,1 and m = 1,2, -, let K;n,(y) be a Borel-measurable function such that

Kim(y) vanishes outside the interval [A;y, Bim), and for Ko, (y)

{

=1 if j=0,

/yjKOm(y)dW =0 if §=1,2---,m—1, -+, kom — 1, (3.1)

7& 0 if J = kO‘mv
and for Ky, (y)

=0 if j=012;3)';')m7"'ak1m”1;

/ YEKim(y)dyy =1 if j=1. (3.2)

Let u = u, be a sequence of positive numbers and v = v,, be a sequence of positive integer

numbers. For any = € (a,b), define

X;—

=)/h(X;),

=_zan0,,( zm —=)/h(X;).

nu2
For u and v being properly chosen, a,(z) and ¥n(z) are the estimates of ag(z) and ¥g(z)
respectively. In tﬁese kernel estimates, u is called the kernel (window) bandwidth and v is
called the kernel index.

Note that the kernel indices of functions Ko, and K3, will change as n increases. The

method here is a little different from the traditional fixed index kernel method. Here both




the kernel indices and window bandwidths vary in the construction.

4. MEBT For General Exponential Family. We use the idea of the kernel sequence

method to find the estimators of ag(z) and vg(x). Then we construct ¢, based on these

estimators.

We present the two sequences of kernel functions used in this paper. Define Ky, as follows:

For odd v, Koy(y) = Kow+1)(y); for even v,

Py’ + Doy g, i —1<y<1,
Ko(y) = (4.1)

0, otherwise,

where

0, if ¢ is odd,
e (=120l (v4i)lw(v—i)
~1)* 2yl (v+D)v(v—i e s
TR R I ¢ I8 even.

Define K1,(y) as follows: For even v, Ky, (y) = Kiw41)(y); for odd v,

@Y’ + Gy’ g, f —1<y<1,

0, otherwise.
where

0, if 4 is even,
&=
(=112 (p 4 D (v44) (v=1) (v—1) e
AR Sy it ¢ is odd

Then Ko,(y) defined by (4.1) satisfies (3.1) with A, = —1, Bo, = 1, ko, = v if v is even

and ko, = v + 1 if v is odd; Ky,(y) defined by (4.2) satisfies (3.2) with Ay, = —1, By, =1,
ki, = v if v is odd and ky, = v+ 1 if v is even; see Gasser, Muller and Mammitzsch ( 1985).
Let ¢, be a sequence of positive numbers with €, — 0. Denote u = Uy, = e}/ 5. Letv=u,

be a sequence of integer numbers such that u? ~ n~1. For any z € (a,b), define

V), (@) = 3 Koy (FL22

2
nu® ;3

1 & X;i—z

=1

)/R(X;). (43)

u
It is shown later that an(z) and ¢n(x) are consistent estimators of ag(z) and ¢¢(z) respec-

tively. Therefore Wy, (z) = foan(z) — ¢ (x) is a consistent estimator of w(z).




Since c¢ is the unique root of w(z), we are going to use Wy (z) to construct c,. Before
doing this, let us examine dg. Note that §c is a monotone rule. If z is larger than cg, we
accept Hy; If z is smaller than cg, we accept Hy. Since G is unknown, we do not know at
which point we should accept Hp or reject it. But, one will be more likely to accept H; if
the present observation « is quite large and accept Hy if it is quite small. By knowing this,
we want to find two numbers ¢;,, and ¢y, such that we accept H; if we observe z > ¢y, and
accept Hy if we observe z < c¢1,,. Here both cutoff points ¢;,, and ¢, depend on n. This could
be understood as follows. As n increases, we have more information from the accumulated
data, and we should adapt new c;,, and cg,, so that our decision can be made more precisely.
Once proper ¢, and ¢y, are found, we can concentrate our effort on z € [C1n, Con) in our

construction.

The idea of splitting (a,b) into (a,cin), [C1n,C2n] and (con,b) is called the localization

technique. To implement the localization technique, the following lemma is necessary.

Lemma 4.1. Four sequences of numbers {ay, n, by, En} can be found such that a, | a,

b, T b, and as n is large
(i) ~[(Inlnn) Au < an < by, < [(Inlnn) Au~Y);
(ii) ming, <z<p, M(z) > u;

(iif) f2= h(t)dt > 2u, & h(t)dt > 2u.

Let cin = an + u + u*/? and ¢y, = b, — u — u'/®. From Lemma 4.1, we know that ¢, | @
and con T b. So cg will fall in [e1p, ¢o,] for large values of n. Then we define c, as in the

following;:

C2n

Cp = I, (+)>0/dZ + Cin- (4.4)

Cin




A monotone empirical Bayes test d,(z) is now proposed as follows:

1 if z>e,
8 = (4.5)

0 if z<ec,
It is obvious that ¢, € [c1n, Con). So if T > con, we will accept Hy, and if z < ¢y, We will

accept Hy. If 2 € [c1p, con), We will calculate ¢, and compare z with ¢, to make the decision.

The use of the localization technique helps us avoid the boundary effect of kernel estimates.
It gives us nice bounds on the moments of W,(z) for = € [c1, C2n)(see Lemma 6.3 below).
Also it results in a nice lower bound of |w(z)| for = € [c14, ce — €g]Uce +€g, C2n] and g > 0
(see Lemma 6.2 below), which is crucial to get the desired rate of convergence in Section 6.
For more uses of this technique, please see Gupta and Li (1999a), Gupta and Li (1999b),

Gupta and Li (2000) and Li and Gupta (2000).

Note that since W,(z) is an estimate of w(z), a natural construction of the empirical
Bayes rule should be 6, = 1 if W,(z) < 0 and 6, = 0 if W,,(z) > 0. Unfortunately this
construction will lead to a non-monotone rule. So we use the integration of I [;;Vn(w)>0] in
(4.4) instead. This technique is borrowed from Brown, Cohen, and Strawderman (1976),

Van Houwelingen (1976) and Stijnen (1985).

Now we study the large sample behaviour of §,. The next two lemmas enable us to

express the regret of §, through ¢, — cg.
Lemma 4.2. w'(cg) < 0.

Since w'(z) is continuous in (a, b), we can find N, (cg), a neighborhood of cg, such that
Neg(cg) C (cin,con) C (a,b) ( as n is large), and Ac = mingen, ,(cq)[—w' ()] > 0. Denote

M = cg — €g and 13 = cg + €¢ in the following.




Lemma 4.3. Let h = sup{h(z) : = € [m,72]} and @ = sup{—w'(z) : = € [, m]}. Then

R(G,6,) — R(G,d¢) < 1/2hDE(c, — cg)? + (6o + E[|0])ez*E(cn — ce)*.

Following (4.4) and cg € [cin, Con), We have ¢, —cg = — 1o Iwn(wy<0dz + J2r Tw, (z)>01d2-
So a upper bound of ¢, — c¢ is easy to obtain through the properties of Wy(z) and w(z).

Note that W, (z) can be written as
Wo(z) = 'rZZ (Xj,2), where Va(Xj,0) = 2.~ — T g )

For fixed n and x, V,(Xj,z) are i.i.d. random variables. So W,(z) is the sum of the i.i.d.

random variables. After applying the results in Petrov (1995), we have the following result.

Lemma 4.4. lim, ,o[nen(Inn)2E(cy — cg)%] =0, limyoeo[nen(Inn)E(c, —cg)4 = 0.

The proofs of Lemma 4.1-4.4 are given in Section 6. Lemma 4.3 and Lemma 4.4 lead us

to the following theorem.

Theorem 4.1. Assume that [|0|dG(6) < oo and the Bayes rule dg is nondegenerate.

Then for any € > 0, R(G,6,) — R(G, é¢) = o((lnn)3*+¢/n).

Remark 4.1. In this paper, we get a faster rate of convergence for the general exponential
family. This is mainly due to the use of the kernel sequence in the construction of estimate
of w(z). The previous papers in the literature constructed the empirical Bayes rules based
on the kernel estimation with fixed kernel functions and varied window bandwidths. So
the resulting rates are not fast. Now we let kernel functions and window bandwidths vary

simultaneously. Then a better rate of convergence is obtained.

Remark 4.2. To apply the kernel sequence method, a key question is how to construct
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this sequence of kernel functions. In this paper we use the result obtained by Gasser, Muller
and Mammitzsch (1985). We expect that the rate here will be improved if a “better” kernel

sequence is found.

Remark 4.3. Note that the rule 6, is monotone. It has the weak admissibility ( see Van

Houwelingen (1976)). So it also has good performance for small samples.

Remark 4.4. The result (4.6) is a rate of convergence for the general distribution (1.1).
For some special member of the exponential family, the special property of that family
member may be incorported in the construction. Therefore, a better rate can possibly be

obtained. See Liang (2000a) and Liang (2000b), Gupta and Li (2000).

5. Lower bound. We shall prove that 1/n is a lower bound for any MEBT even if 4 is

bounded.

As presented in Section 2, the problem bf constructing a monotone empirical Bayes rule
is essentially equivalent to finding an estimator ¢, of cg, a functional of the marginal dis-
tribution fg(z) of X, based on the i.i.d. sample Xi,:--, X,. So a lower bound of MEBTs
can be found through obtaining a lower bound of ¢} going to cg. This will be done using
the ideas from Donoho and Liu (1991) or Fan (1991) and then constructing carefully the
hardest two-point subproblem. In the following, I3, I3, - - - stand for the positive constants,

which may have different values on different occasions.

Let G be the set of prior distributions with bounded supports 'inside [6o — 04,60+ 64) C Q2
for some 03 > 0. Let C be the set of estimators ¢}, of cg (a < ¢} < b ) and D be the set
of empirical Bayes rules of type (2.2) with ¢, = ¢}, € C. In order to find a minimax lower

bound of MEBT’s over G, we first define Gy, a subset of G.
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Denote 0y = 0y — 04/2 and gy = 0y + 04/2. Choose any ¢y € (a,b). Let
90(0) = mo exp(—0co)/c(0) I <o<o02),  91(6) = M exp(~0z4)g0(9),
where (i) m; is normalizing constant satisfying [ g;(6)df = 1 for i = 1, 2, (ii) x4 satisfies that
wy(z) < 1/2wp(co) < 0 for all z € [co — 24, Co + 4] C (a,b), wo(z) = w(z) associated with
G ~ go (dG(0) = go(8)dh). Let F = {fa(z) = J f(z|0)dG(9) : G € Go}, where
Go ={G:G ~g=(1+vm) " [Vmgi(6) + go(6)], m = 0,1, -, 00}.

The next lemma tells us that finding a lower bound of MEBT’s is equivalent to finding a

lower bound of the hardest two-point subproblem.

Lemma 5.1. Let ¢; be the critical point corresponding to f;, i =1, 2. Then
Jnf, ztég[R(G, &) — R(G,d¢)]

> inf sup[R(G,¢6;) — R(G,dc)]

0H€D  Gegy

> lLisup{(c; —¢)?%: /[\/fl(a:) — \/fz(m)]zdm <ly/m, fi,f2 € F}.

The lemma 5.1 is proved based on a result of Donoho and Liu (1991). From this lemma,

we need to identify f; and f; in F to find the minimax lower bound.

Lemma 5.2. Let g3(0) = (1 + v/n) "' [v/ng1(0) + go(0)]. Let fi(z) = J £(x]6)gs(6)d6 for
i=1,2. Then f; € F and

JWr@ - VR@res 2, (@-arz

S s

As a natural conclusion of Lemma 5.1 and Lemma 5.2, we have the following theorem.

Theorem 5.1. For some l > 0, infs:ep supgeg|R(G, 02) — R(G, 6c)] = I/n.
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Remark 5.1. A natural question for empirical Bayes inference problems is: what is a
lower (or the best lower) bound of monotone empirical Bayes rules for general exponential
family. For empirical estimation problem, Singh (1979) conjectured that n~! is a lower bound
and also it is not obtainable even if 6 is bounded. For the testing problem, we know now

that n~! is a lower bound for the monotone empirical Bayes rules.

Remark 5.2. Since the optimal rate of monotone rules for N(6,1) is (Inn)'%/n ( see
Gupta and Li (2000)), n~! may not be the best lower bound or obtainable lower bound for
general exponential family (1.1). Also we believe that it is not possible to find the obtainable
lower bound for family (1.1) once. It must be done for each distribution individually and

the information stored in that particular distribution must be incoporated.

6. Proofs. We shall prove the results in the previous sections. First we state some

lemmas which will be used in this section. Their proofs are provided in the appendix.
6.1. Some Lemmas. As n is large, we have the following lemmas.
Lemma 6.1. Let an = max{ag(z) : « € [an, by} Then &, < (2u)~.

Lemma 6.2. For z € [cip, Con), |w(z)| < 2/u?;

For x € [cin, ] U [12, con), |w(z)| > M - u(lnn)~5, where M >0, B > 0.

Lemma 6.3. Let wy(z) = E[Vo(X;, 7)), Zjn = Vo(Xj, 2) — wa(z), 02(3) = E[|Zjn|?] and
() = E[|Z;s|?]. Then

(i) For z € [cin, Con), |wn(z) — w(z)| < 1/4/n.

(ii) For z € [cin, Can), on(z) < Lv¥2u™5/2; for z € [m, o), la < on(z) < Is(v/u)3/2,

(iii) For z € [c1n, Con), Va(z) < L401336vu~°.
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Lemma 6.4. Let dp = \/v3/nud. For x € [cin, Con),

w(z) > d, = wy(z) > w(z)/2, w(m) < —dp = wy(z) < w(z)/2.

6.2. Proof of Lemma 4.1. Lemma 4.1 is obvious intuitively. We also give a rigorous

proof here. Let h(a+) = limg), h(z) and h(b—) = limgp k(). Choose any £ € (a,b). Let

. max{a <z < &:h(z) <u} if h(at+)=0,
a if 0 < h(a+) < oo,

" min{§ <z <b:h(z) <u} ifh(d-)=0,
b:

b if 0 < h(b—) < o0,
And

g max{a < z < &: [Sh(t)dt < 2u} if [Eh(t)dt < oo,
o a if [¢h(t)dt = oo,
g — min{é <z <b: fgb h(t)dt < 2u} if fé’ h(t)dt < oo,
b if f{ h(t)dt = oo.
Then we define a,, and b, as follows:
an=ho VS, V(a+1/n)V(—Inlnn) Vv (-1/u),

b =hy ASy A (b—1/n) A (Inlnn) A (1/u).
And let

) a if f¢h(t)dt < oo,
Qn,

z,€{a<z<€:[Pht)dt>2u} if [Sh(t)dt = oo,

b if fQh(t)dt < oo,
b =

Ty € {€ <z <b: L At)dt>2u} if fA(t)dt=oo.

Then it is easy to see that a, | a, b, 1 b, (i), (ii) and (iii) in Lemma 4.1 hold.
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6.3. Proof of Lemma 4.2. Note that ag(z) is infinitely differentiable, af(z) = ¥¢(z)
and w'(z) = Opbe(z) — Pe(z). If Yalcg) = 0, then w'(cg) = — [ 6%c(6)e?cdG(0) < 0. If
Ya(cg) > 0, by Jesen Inequality ¥ (ce)/Ye(ce) > Yelce)/aa(cs) = 6. Thus w'(cg) < 0.

Similarly, if 9a(ce) < 0, w'(cg) < 0. The proof of Lemma, 4.2 is complete.

6.4. Proof of Lemma 4.3. ;From (2.3),

R(G,6) = R(G,d6) < Bllicucoisecl | w(@h(@)da] + BUer-coisec [ w(e)dal

< (0o + pe)eg Elcn — cg)* + 1/2h0E (¢, — cg)?,
where [7¢ w(z)h(z)dz < (6 + pe) and by Taylor expansion

Tjes—col<eq) / z)dz = —1/2 X w'(&n)(cn = ¢6)*jon—col<eq) < 1/20(cn — ca)*.

6.5. Proof of Lemma 4.4. ;From (4.4),
2 e 2 oan 2
E(cn —cg)* < E[/ I[Wn(m)go]dw] + E[/ I[Wn(m)>0]d$] = Tin + Ton. (6.1)
Cin cG
It turns out by Holder inequality and a little algebra that
Tin S 2(C2n — cln)Il + 2.[2 -+ 2]3, (62)

where I, = [T P(Wa(z) < 0)dz, Ir = (f3f lw@sand®)?, Is = ElJrC Iiwo(z)<ou(z)>da) ]

For w(z) > dy,, wn(z) > 1/2w(z) from Lemma 6.4. Then we have

P(Wn(iL‘) = 0) = P( = izﬂ < __\/ﬁwn(m)) < P( = 9 Zn:Z]n < —\/—'LU( ))

n — —_—
TLU% j=1 On \/ 2 3= 20,

Applying Theorem 5.16 on page 168 in Petrov (1995) to the LHS of the above inequality,

PW(e) <) < o~V 4 B0 — 51T, 69

where A is a constant and ®(-) is the cdf of N(0,1). For € [cin, m], w(z) > Mu(lnn)=B and

certainly w(z) > d, as n is large. Also note that o, < l;u%20%/2 and v, (z) < 1,v'336vy .




15

It follows that S,(z) < ®(—n'/*) and T,(z) < n~3/2 for large n. Thus

(0on = cin) Ty = (e — 1) [ T B (Wi(a) < 0)dz = o(n-Y). (6.4)

Cin
For z € [m, cg), [w'(z)] 2 Ae. Thus I < A7%[[7€ Tjy(e)<aw'(z)da]?. Letting y = w(z)/d,,

Iy < A72d2 [§° Iiy<ndy = A7%d2. Therefore
I = O(dz) = o((Inn)*/(ney)), (6.5)
By Holder inequality again,

cq cG
I3 < / P(Wa(z) < 0)[w(@)P*y(@)s>adz X / [w (@)™ Iw(ay> 4. d.
m m
Letting y = w(z)/dn, [;¢[w(2)]™/2fjww)>andz < 2/[Acv/dy)]. Using the previous two in-

equalities and (6.3), we have

cG

I < 2/(Adn){ [

m

Sn(@)[w(z)]**dz + /mc To(2)[w(@)]*/*dz}. (6.6)

For x € [m, cgl, la < on < l34/v3/u? and 7, (z) < 1,v*336YuC. Therefore

e 3 1 ca nu3w(as) % (213dn)5/2 ©0 3
[, stz < o [ o w@itdu() < S5 [Za(-yyta,
(6.7)
and
/m T (@)w(@)] e < 500 /0 TP (6.8)

Combining (6.6)-(6.8), we have I3 = o((Inn)3/(ne,)). This together with (6.4) and (6.5)
yields r, = o((Inn)?/(ne,)). Similarly 7o, = o((Inn)®/(ne,)). Then E(c, — cg)? =
o((Inn)?/(ne,)). Similarly, E(c, — cg)* = o((Inn)?/(ne,)). This completes the proof of

Lemma 4.4.

6.6. Proof of Lemma 5.1. Let w:(z) = w(z) with G ~ g;. Then wi(z) = mywo(z—z4)

and ¢; = co + Tq. Since wi(cy) > 0 and wo(c1) < 0, cg € [cp,¢1) for G € Gy. Since
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wy(z) < 1/2wp(co) for x € [co — 4,0 + 4), —w'(x) > —(my A Lwp(ce)/2 = w > 0 for
z € [eg, 1] and G € Go.
Let C = {ct,VeoAcy:ct €C}. Forc €C, denote &, = ¢, V co A c;. Note that h(z) is

bounded on [co, ¢1]. Then for any G € Go, [ w(z)h(z)dz > & ;¢ w(z)dz. (From (2.3)

1nf sup [R(G, ;) — R(G,d¢)] =2 I 1nf sup E[ w(z)dz].
D Gego C cego Cn

By Taylor expansion, f;¢ w(z)dz = —1/2 x w'(&})(é — cg)? > 1/2w(Cn — cg)?. Therefore

inf sup E[/ z)dz] > Iy 1nf sup E[(¢, — cg)?.
cn€C Gego € Gego

Since C C C,

inf sup E[(, — cg)?] = inf_sup E[(¢, — cg)?] > inf sup E[(c} — ce)?.
h€C Gego eneC Gedo h€C Gego

;From the results in Donoho and Liu (1991) (Theorem 3.1 and the remark after Lemma 3.3),

dnf, sup B[(c}, = ca)’} 2 bisup{(e: ~ c)* / Vf1(@) = fol@)Pdz < bo/n, f1, fo € F}.

Then Lemma 5.1 follows.

6.7. Proof of Lemma 5.2. Note that fo(z) — fi(z) = (1 + /n)" Y~ fi(z) + fo(z)],

where fo(z) = [ c(0) exp(6z)h(z)go(0)db. For all z € (a,b)

FUAEN™ = [ exp(0(a — co))dd] - ma [ exp(0(o — o4 — co)dd] <1

01

Then J1y/7:(®) — /F@Pda < [ [(z) - @/ file)dz < (1 +1)/n
Denote wq(z) = w(z) with G ~ go. Then we(z) = (1 + /n) Hv/nmawe(z — z4) + wo(z)].
Note that |wh(z)| < I3 for z € (co, c1) and |wa(c)|? = [we(c2) — w2(c1)]? < 12(ca — ¢1)?, Then

(cz — 1) > lg|wa(cr) |2 = La(1 + \/—) 2[wo(e1)]?. The proof of Lemma 5.2 is complete now.

Appendix.
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Lemma A.1. The following statements hold.

(i) |Kiw(y)] < kv'936°, i =0, 1, k is some constant.
(ii) v [ | Kou(y)|?dy — 7 L.

(1) v [ | Ko () ?dy — (3m) .

Proof. (i) is obtained by simple calculations. It is omitted here. ;From our definition of

Ko, and Ky, and Theorem 1 of Gasser, Muller and Mammitzsch (1985), for an even v

1 v3[(v — 1)N)? ! v? "
/_ . K§,(y)dy = ——[(2[1}”]12)”] : /_ . K} (y)dy = _-——[(g[;;!]lz)”]

Since s[(2s — 1)!]2/[(2s)!1]2 — 7! as s — oo, (ii) and (iii) are obvious. The case of odd v

can be proved similarly.

Proof of Lemma 6.1. Note that of(z) = [ 6%c(0)e?*dG(f) > 0 for z € (a,b). Then
ag(z) is a convex function and @, = ag(an) V ag(b,). We prove ag(a,) < (2u)™! in the
following. The proof of ag(b,) < (2u)™ is similar. Since c(8) = 1/{f h(z)e?*dz} and
agl(a,) = [ c(0)e?dG(6), it follows

1 1
ac(an) < /[ozo] ff: h(z) exp(6(x — an))dde(a) * /[0<0] Jax W(z) exp(0(z — ay))dz

dG().

Note that ff: exp(8(z — an))h(z)dr > 2u as 6 > 0 and [;" exp(6(z — a,))h(z)dr > 2u as

0 < 0 from Lemma 4.1. Then Lemma 6.1 holds.

Proof of Lemma 6.2. Since 9¢(z) = [ 0c(0) exp(6z)dG(6) and u|f| < exp(ulf]),

[Yo(z)] < u™| /[020] c(0) exp(0(x +u))dG(0) + [ ¢(6) exp(8(z — u))dG(6)]

[6<0]
iFrom Lemma 6.1, for £ € [c1a, Con], aa(z) < 1/(2u). Then |[¢a(z)| < 1/u? and Jw(z)| <
2/u? as n is large. Assume that B > 0 such that Ji61<5 4G(6) > 0. Denote Q5 = Q[|6] < B].
Since 1/c(6) is a convex function of 6 on §2 and therefore ¢(f) is bounded on 5. Thus

Jo, c(0)dG(6) is finite.
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Recall that w(z) = ag(z)[0o — pc(z)]. Since ¢e(z) is increasing and de(ce) = 0, then for
2 € [cin,m); B0 — ¢a(z) = 0o — da(m) > 0; for z € [n3, can), da(z) — 60 > da(nz) — 6o > 0.
For z € [cin, Can], |z| < Inlnn and
) > / 6) exp(—6] InInn|)dG(8) > (Inn)~B / c(6)dG(8).
Qg

Let M = {[6o — ¢c(m)] A [dc(nz) — o]} - fo, c(6)dG(F). Then Lemma 6.2 is proved.

Proof of Lemma 6.3. We prove (i) for even v only. It is similar for odd v. Using Taylor

expansion of €%, simple calculations show that

)_(j:ﬁ 1 v ,Gut*
E[———KZZ(( %5 )| [ e(6)e*=dG(6) +w [ee®)e| / 1 M%’;i_?"_dt]dgw),

and

Kv(—’fi—’” . ) . K t'v+1 Hut**
E[“‘u—lz'h(_' /Gc edG()‘i"U, /9+1 0[/ 1 ’U+1 ]dG(H),

where |t*], [t**| < 1. Then E[V,(X;,z)] = w(z) + u*/?d,(z) and
A 1 .
— v/2 | YV oz v _But
dn(z) = 6ou /v! c(f)e [/_1 Ko (t)te™ dt]dG(9)
00+1 1 2t
/2 oz v+1 fut
u / ot 1)!c(ﬁ)e [/_1 K, ()t e™ dt]dG(6).

Since (u!/39)" /v! < exp(|f]u!/?) and (u!/36)*+1/(v + 1)! < exp(|6|u/3), for T € [c1n, Can]

|dn(2)]

IA

v/6—1 Oz+|0ju+|8jul/3 . ! !
uo1 [ e(o)e dG(6) - o] | [Kon(®)ldt+ [ |Ko(t)le]
61 ! 27 11/2 ! 2 7.11/2
< W ia {0l [ Kol P+ 2 [ 1K)},
(From Lemma A.1 and Lemma 6.1, |dn(z)| — O uniformly for z € [cip, con). Then (i) is

proved. Next we prove (ii). For 2 € [c1p, Con], A(Z +u) > u from Lemma 4.1 and

(X"'IC) _ Kl'll()—(ju;ai)]2
Wh(Xy) T wEh(K)

= “_3//_1[90UK0v(t) — K1,(t)]%c(0)e? e [h(z + ut)] " dtdG(6)

oi(z) < Elbo

IN

2y~48 / c(0)e?eludG(6)

< BumbA.
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Especially, for = € [n1, 9], letting A = min{h(z + ut) : z € [n1, 9}, |¢| < 1},
o2(z) < lsu™3h 8 / ()% dG(0) < 12u303.

It is easy to see that o2(z) > 2. We prove (iii) next. ;From Lemma A.1, for i = 0 or 1,

| Kin(t)] < kv'°36°. Also note that |Ky,(t)| = 0 if [¢| > 1. Then
|Kin((y — 2)/u)/ M) [crngogeam) < kU1036v/h(y)I[n:1nSySCzn+u] < kv'936%u.

For 2 € [Cin,; Can], E|Zjn ()] < 2k0'°36Yu~'E[Z2,(2)] < 140"*36"u5. The proof of Lemma

6.3 is completed.

Proof of Lemma 6.4. From lemma 6.3, we have that |w,(z) — w(z)| < 1/4/n for all
T € [cip, Con). If w(z) > d,, and n is large,

W (x)

w(z) = dn + dn — |wn(2) — w(z)|  dn — [wa(z) — w(z)|
w(x)

>
- w(z) — dnp +dp - d,,

>z
-2

Similarly, we can prove that w(z) < —d, = wyp(z) < w(z)/2.
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