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Summary

The embedding of coin-tossing random walk in continuous unbounded martingales

is used to give a new proof that they may be time changed to Brownian motion.

We give a proof of the result of Dambis and Dubins-Schwartz (see [3]) that continuous
martingales with unbounded paths can be time changed to standard Brownian motion.
We first consider the case that the paths of M are not constant on any open interval, and

then discuss the general case.

Theorem. Let My, t >0, be a continuous martingale satisfying Mo = 0, sup, |[M;| = oo,
and P(Ms = My,a < s <b) =0 for all 0 < a < b. Then there are stopping times 1,
t > 0, which strictly and continuously increase from 0 to infinity, such that M,,, t > 0, is
Brownian motion.

Proof: Let u}’ = 0, and w)? | = inf{t > uy, : |My—M,,| = 1}, k > 0, and let v =u" M,
if n,j > 0. We drop the superscript M for the rest of this paragraph. Then My;, 3 2>0,is
a fair random walk, and M,,, ,, j > 0, has the distribution of a fair random walk divided
by 2". Of course the distribution of the v, ; is different for different martingales, but the
distribution of the ordering of these times is not. To be precise, the probability of any event
in the algebra of events generated by the events {v; ; < vy} has the same probability for
all martingales M. To see this, it helps to first check that P(v1 3 < v 1) = 1/2, since the
random walk M,, ., j > 0, is embedded in the random walk M., ;, j > 0 by the discrete
analog of the times vg x, and the probability of the analogous event for these walks is 1/2.

Now since the walks M,, ., j > 0, can for 0 < k < n all be embedded in the walk M,

n,j?

AMS 1991 Subject Classifications. Primary 60G44, 60J65
Key words and phrases. Continuous martingale, Brownian motion.

1



J = 0, which is of course the same walk for any M, the probability of an event in the

algebra is the probability of an event for discrete random walk.

Lemma. For0<n < oo, let tn,j,0 < J <00, be a sequence, and suppose
i) 0=ton, n>0,

i) tnj <tnjt1,§ >0,

i) for all j and n, t, ; is one of the numbers tpi1 %, k > 0,

iv) the set of all the t,, ; is dense in [0, 00).

Then a sequence an, n > 0, of nonnegative numbers converges if and only if given m there
18 a j such that ty, j; < ax < tm jt+2 for all large enough k. Furthermore if K is a positive
integer, an increasing nonnegative function f on [0, K| is continuous if and only if given
n > 0 there is m such that for eachi, 0 < i < Km, there is j = j(i) such thatt, ; < f(i/m)
and f((i +1)/m) <ty ji2. '

This lemma is obvious. Now let 1)711"122,1 play the role of a, and v%j have the role

of ¢, ; in this lemma. The conditions i)-iv) are easy to check, using the absence of flat
spots for iv). The lemma implies that whether or not v%zzn converges (a.s.) depends
only on the distribution of the order of the v% Since this latter distribution does not
depend on M, we have either convergence for all M or no M. But if M is a Brownian

, V2,3, has the

motion B, we do have convergence, to 1. For following Skorohod (see[l]), v;:

distribution of the average of 22" iid random variables each having the distribution of
uP := u. Since Fu = 1 and since the variance of u is finite, easily shown upon noting
that P(u > k+ 1|lu > k) < P(|Z] < 2), k > 0, where Z is standard normal, Chebyshev’s
inequality gives this convergence to 1. Similarly lim,_,o vfl":’[tzzn] = nM exists, where
[ ] denotes the greatest integer function. Now the distribution of Myu is the limit of
the distributions of M,UMzzn, since M has continuous paths, and thus is the same for all
martingales M, and thig limit can be identified, by taking M = B, as standard normal.
All the joint distributions can be similarly treated, and so Mngvl is Brownian motion. This
implies that n is strictly increasing. To see that it is continuous, use the last sentence of

the lemma. An argument like that just given shows that continuity on [0, K] for any K,

and thus continuity on [0, 00), either holds for all or no M. And n? = t. Finally, since
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n,{(1—1)22n8]> and so is a

771{"" is continuous and strictly increasing, n{” = SUPg>o liMp 00 ¥

stopping time. (]

In case the paths of M have flat spots, remove them. Let A stand for the union of the
open intervals on which M is constant. Let h(t) = inf{y : |(0,y) () A°| = t},0 < t < oo,
where || is Lebesgue measure and the c denotes complement, so that if we define Ny = My, y,
N is continuous with no flat spots. Whether or not N is a martingale, random walks can
be embedded in it, since they can be embedded M. Thus just as above, Nn{\’ is Brownian
motion. Put u; = h(nY). Then p is left continuous and strictly increasing, and M,, is

oM

n,[(1—L)22ng)? SO Kt is a stopping time.

Brownian motion. And p; = supyqlimsup,,_, .,

The times vﬁ’{j were used in [2], differently than here, to show the existence of quadratic

variation for continuous martingales. We remark that the Dambis and Dubins-Schwartz

theorem could be used as the starting point of an exposition of continuous martingales.
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