OPTIMAL RATE OF EMPIRICAL BAYES TESTS FOR
LOWER TRUNCATION PARAMETERS

by
Shanti S. Gupta and Jianjun Li
Purdue University Purdue University

Technical Report # 00-07

Department of Statistics
Purdue University
West Lafayette, IN USA

October 2000



OPTIMAL RATE OF EMPIRICAL BAYES TESTS FOR LOWER

TRUNCATION PARAMETERS !

Shanti S. Gupta Jianjun Li
Department of Statistics Department of Statistics

Purdue University Purdue University

W. Lafayette, IN 47907 W. Lafayette, IN 47907

Abstract: The distributions with lower truncation parameters are important models in
statistics and have been studied in recent years. In this paper, we consider the one-sided
testing problem for lower truncation parameters through the empirical Bayes approach. The
optimal rate of the monotone empirical Bayes tests is obtained and a monotone empirical
Bayes test 6, achieving the optimal rate is constructed. It is shown that &, has good

performance for both small samples and large samples.

MS Classification: 62C12.

Keywords: Empirical Bayes, regret Bayes risk, optimal rate of convergence, minimax.

1This research was supported in part by US Army Research Office, Grant DAAD19-00-1-0502 at Purdue University.

1



1. Introduction. Let X denote a random variable having density function
f(z|0) = a(z)/A(0), §<z<b< oo, (1.1)

where a(z) is a positive, continuous function on (0,5), A(8) = fa(z)dz < oo for every
8 > 0, 0 is the parameter, which is distributed according to an unknown prior distribution G
on (0,b). Two typical examples of (1.1) are: (I) the exponential distribution with a location
parameter: f(z|0) = e~ =9, z > 0, and (II) the Pareto distribution: f(z|6) = af>/z>+1,
z > 0.

We consider the problem of testing the hypotheses Hy : 0 < 6y versus H; : 6 > 6y, where
6o is known and 0 < 8y < b. The loss function is [(0,0) = max{6 — 6,0} for accepting Hp
and [(0,1) = max{f, — 0,0} for accepting H;. A test 6(z) is defined to be a measurable
mapping from (0, 00) into [0,1] so that 6(z) = P{ accepting H;|X = z}, i.e., §(z) is the
probability of accepting H; when X = z is observed. Let R(G,d) denote the Bayes risk of
the test § when G is the prior distribution. Given that [;°8dG(8) < oo, a Bayes test d¢ is

found as
dc(z)=1 if EPX=2z]>6y; dc(z)=0 if E[f|X =z]< by (1.2)

Because E[§|X = z] involves G, the above solution works only if the prior G is given. If G is
unknown, this testing problem is formed as a compound decision problem and the empirical
Bayes approach is used. Let Xy, Xs, -+, X, be the observations from n independent past
experiences. Based on X, = (X1, Xo,-++,X,) and X, an empirical Bayes rule §,(X, Yn)
can be constructed. The performance of 6, is measured by R(G,d,) — R(G,dc), where
R(G,6,) = E[R(G,6,]X,)]. The quantity R(G,6,) — R(G,dg) is referred as the regret
Bayes risk (or regret) in the literature.

This empirical Bayes approach was introduced by Robbins (1956, 1964). Since then,

it has been widely used in statistics. For the family (1.1), some problems of statistical
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inference based on the empirical Bayes method have been considered by Prasad and Singh
(1990), Liang (1993), Datta (1994), Huang (1995), Balakrishnan and Ma (1997), Huang and
Liang (1997), Ma and Balakrishnan (2000), among others. In this paper, we consider the
testing problem and study the empirical Bayés tests for the family (1.1). The optimal rate
of convergence of monotone empirical Bayes tests is obtained and a test with the optimal
rate is constructed.

The paper is organized as follows. In Section 2 we provide a few preliminary results. In
Section 3 we construct a monotone empirical Bayes test §,, and obtain an upper bound of its
regret. In Section 4, a minimax lower bound of the regrets of monotone empirical Bayes tests
is obtained. Since the rates in the upper bound of Section 3 and lower bound of Section 4
coincide, the optimal rate is identified. As a byproduct, we see that J,, achieves the optimal

rate of convergence. The proofs of main results in Section 3 and 4 are given in Section 5.

2. Preliminary. We assume that P(6 > 6y) - P(8 < 6y) > 0 in this paper. If P(¢ >
fo) = 0 or P(6 < 6p) = 0, we know which action we should take regardless of the value of z.
For example, if P( < 6y) = 0, we accept H; always. So both two cases are excluded in the
testing problem. We also assume ug = [5° 0dG(8) < oo so that the Bayes analysis can be
carried out.

Let fo(x) = [ f(z|0)dG(6) be the marginal pdf of X, and ¢g(z) = E[§|X = z] be the
posterior mean of 6 given X = z. Note that ¢g(z) is increasing and ¢g(6o) < fo. Then the

Bayes rule stated in Section 1 can be represented as
Se(z) =1 if ¢a(z) >0 <=z >cg; da(z) =0 if ¢e(x) < by => 1 <cq.

where cg = inf{z € (6o, b) : pc(z) > bo}. ¢ is called the critical point corresponding to G.
Since the Bayes rule dg is characterized by a single number c¢g, a monotone empirical
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Bayes test (MEBT) can be constructed through estimating cg¢ by ¢,(X1, Xa, -+, Xx), say,

and defining

1 if z2>e¢,,

0 if z<ec,

Then the regret of 4, is

R(G,$,) — R(G,b6c) = E / " w(x)a(z)dz, (2.2)

Cn
where w(z) = ag(z)[0o — ¢a(z)] and ac(z) = [ dG(0)/A(6).
To consider the rate of convergence of R(G,6,) — R(G,ds), we assume that for some

r > 1, ag(z) is r-times continuously differentiable and for ¢ =0,1,---,r,

sup |a(z)| < B, < 0. (2.3)
6o/2<z<b

Furthermore, we assume that
g(ce) = G'(ca) # 0. (2.4)

From (2.3), we know that ¢g(z) is continuous. Then cg > 6 since ¢pa(6o) < 6. Also, from

(2.3) and (2.4), 6y < b since A(b—) = lim,, A(z) = 0.

3. An upper bound. We shall construct a MEBT and find an upper bound of its
regret. The kernel method is used in the construction. Let Koy(y) be a Borel-measurable,

bounded function vanishing outside the interval [0, 1] such that

1 1 if j=0,
/Oy’Ko(y)dy= (3.1)
0 if j=1,2,--,m

Suppose |Ko(y)| < B. Denote K1(y) = f¥ Ko(s)ds and u,, = n~¥@+1), For any z € (0,b),

define
0o —z & Ko(—“—X') 1& Kl(—“_x.)
Wn(m — Un _ _____u"__ (3.2)
) N, JZ;I a(X;) ni a(X;)



It is shown later that W, (z) is a consistent estimator of w(z). Since P(8 < 6y) > 0,

ag(z) > 0 for £ > 6. Thus cg = febo Ttw(z)>0dT + 6o. Let
dn
Cp = , I[Wn(a:)>0]d-'17 + 6o, (33)
(4]

where

i (Bo+1nn) Ab if  a(b—) >0,
inf{z >0 :a(z) <u,3}A (@ +Inn)Ab if a(b—)=0.

Then we propose a monotone empirical Bayes test §,(z) by

1 if z>c,,
On = (3.4)
0 if z<ec,.

Note that d, — b. As d,, > cg,
ce dn,
Chn —Cqg = — /0 I[Wn(z)go]dﬂ? + / I[Wn(m)>0]d$- (3.5)
o ca

Note that d,, is a monotone rule. It has good performance for small samples (See Van
Houwelingen (1976)). Next we show that §, is a good procedure not only for small samples
but also for large samples.

From (2.3), w'(z) is continuous and w'(z) = g(z)(6o — z)/A(z). Since g(cg) # 0 and
cg > b, w(cg) < 0. Then w'(z) < 0 in a neighbourhood of ¢g. For € > 0, define
A = min{—w'(z) : x € [ecg—¢, ca+¢€]}. Suppose e¢ > 0such that y < cg—ec < cg+eg < b

and A, > 0. Then for 0 <€ < eg, Ac > A, > 0.

Lemma 3.1. Let @ and @ be the supermum values of a(z) and —w'(z) on [ca—eq, ca+€g]

respectively. Then

R(G,6,) — R(G, d¢) < (0o + pg)ez*Elcn — cg)* + 1/2awE (¢, — cg)*. (3.6)



Lemma 3.2. Let M = B?c%{3 + 16B,[a(cg)]’}. Then

(3.7.1) lim n%E(cn —cg)? € M/[a(ce)w'(ce)]?;  (3.7.2) lim niﬁ%E(cn —cg)t=0.

n—oo n—oo

The proofs of Lemma 3.1 and Lemma 3.2 are given in Section 5. Note that, as eg — 0,

aw — a(cg)|w'(cg)|- Therefore the previous two lemmas give the following theorem.

Theorem 3.1. Let M be the number defined in Lemma 3.2. Then

lim n?¥[R(G,5,) — R(G,6c)] < M/[2a(cc)|w' (ca)] (3.8)

n—oo

To consider the uniform convergence rate of §,, we define a class of prior distributions.

Denote

G = {G : G satisfies ug < po, (2.3),¢0 < cg < po, min |w'(z)| > L}, (3.9)

z€[o,50]
where pp < 00, 6 < co < po < b, o = (co + 60)/2, po = (2p0) A ((po + b)/2) and L > 0.

Assume that G is not empty in the following.

Theorem 3.2. For somel > 0,

sup[R(G, 6,) — R(G,6c)] < 1-n~%4 (3.10)
Geg

4. A lower bound. We shall obtain a minimax lower bound for the regrets of all
monotone empirical Bayes tests first. In the following parts of this paper, [y, lo, --- stand
for the positive constants, which may have different values on different occasions.

Let C be the set of all estimators ¢ with ¢, > 0 and let D be the set of all empirical
Bayes rules of type (2.1) with ¢, = ¢ € C. Let F = {fe(z) = [ f(z|0)dG(0) : G € G} and
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cs be the critical points corresponding to f € F.

Lemma 4.1.

inf sup[R(G,6;) — R(G, d¢)]

é3€D Geg

> tisup (e~ ¢)*: [I/A(@) — Rl@)Pds < bofn, fi 1> € F).

Suppose that G; € G with density g1(0) and ¢f, € (co, po). Let ga(0) = (14ul pr) g1 (0) +
u;_lA(Q)H(%&)]I[9>O], where u, = [1, A(cy, +tu,)H(t)dt and H(t) is a function such that
(1) it has support [—1,1], (2) f1, H(t)dt = 0 and [°, H(t)dt # 0, and (3) it has bounded

derivatives upto order r. Let fi(z) = a(z) [ %i(g)zde fori=1,2.

Lemma 4.2. Asn is large, fo € F,

JWA@ - Ra@Pde < afn and (cs, ~ er) = lan~7.

Theorem 4.1. For somel > 0,

inf sup[R(G,8%) — R(G,65)] > 1-n~ 7.
Geg '

$%ED

Theorem 4.1 says that n~TH is the best possible rate of convergence. With the result in
(3.10), we conclude that n~ is the optimal rate of monotone empirical Bayes tests and 9,
defined by (3.4) achieves this rate. So §, has good performance not only for small samples

but also for large samples.

5. Proofs.



5.1. Proof of Lemma 3.1. From (2.2),

ca

R(G,8:) = R(C,86) < Ellics-coivec) | w(@)ale)da] + 8Bl cclses) | w(w)ala)da]

< (0o + pe)eg Elen — ca)* + 1/2a0E(c, — ca)’,
where [7¢ w(z)a(z)dz < (6o + pe) and by Taylor expansion

cG
Tjer—cal<ca] /cn w(z)ds = —1/2 % W' () (en ~ c6)jer—coi<es] < 1/20(ca — cg)2.

5.2. Proof of Lemma 3.2. Recall A. > 0 for € < €¢. For € < €@, Let 1 = cg — € and

Ny = cg + €. Rewrite W (z) = L 7, Vo(Xj, z), where

_ Ka(*=%i K, (2=%i
V(X ) = bo—z Ko(=2) Ki(=H)

X
Un a(X;) a(X;)
Note that V,(Xj;,z) are i.i.d. with for fixed z and n. Let w,(z) = E[V,(X}, )], Z;
| Vo(Xj,z) —wn(z), 02 = EZ2, and v, = E[|Z;n|*]. Denote p, = min{a(z) : T € [11 —Un, n2]}-

Then we have the following lemma. Its proof is given in the subsection 5.5.

Lemma 5.1. The following statements hold for large n.
(i) For x € [6o,m1) U (m2,b), |w(z)| > €Ae as € < eg;
For x € [0y,d,)], lw(z)| < (200 + lnn)B,.
(ii) For all x € [Bg,dy), |wn(z) — w(z)| < B.Buhz = 1/26(x).
(iii) For x € [n1,m2], 02 < m(patin)™t, m = (n2 — 0o + un)?B%B,;
For z € [0y, dy], 02 < ly(Inn)?u, =43,
(iv) For z € [m,m], Y < la(pntin) 2 For z € [0o,dn], Ya < la(lnn)®u;8/3,
(v) For z € [0y, dy], w(z) > B(z) = wn(z) > 1/2w(z).

(vi) For z € [0o,dn), w(z) < —f(z) = wn(z) < 1/2w(a:).

Since cg < b, assume that cg < d, for all n without loss of generality. Based on (3.5), we
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decompose ¢, — cg as follows:
en—Cco=—I —I3— Is+ Iy + 14 + I, (51)

where

= JZb Iw@)<0)d, - L= Iw.wsade,
= [ I, (2)<0,w(@)<p@)) 9T, 1= [7 TW, (@)>0,w(z)>—B(n:) 42

= [3C W (@)<00(@)>8m) 9T, L6 = [z IWo(2)>0u(z)<—B(n2)] 4T-
Note that E(c, — cg)? < 2{E[d. [y + I? + I2 + d, I, + I} + IZ]}. To prove (3.7.1), we want

to show that

M
5.2.1 hm lim E[d I + 12 + I ,
621l BldDi+ I+ L] < oo e
and
(5.2.2) lim lim E[d,I, + I? + IZ] < M .
e—0n—00 4= dla(ce)w!(ce))?

We only prove (5.2.2). The proof for (5.2.1) is similar. For w(z) < —pB(z), w,(z) <

1/2w(z) < 0 from (vi) of Lemma 5.1. Then we have

\/_T;T_szn ‘/;L:"( )y < B izjn> %@).

Applying Theorem 5.16 on page 168 in Petrov (1995) to the left-hand-side of the above

P(W,(z) > 0) =

?l 3
§qNJ

J=1

inequality, P(W,(z) > 0) < [1 — (‘/_lw(m)l)] + \/—[2an+\/—|w(z)|]3 = S.(z) + Tn(z), where
A is a constant and ®(-) is the cdf of N(0,1). For z € [mq,d,], w(z) < —eA.. Then
w(z) < —PB(z) as n is large since ul,d,, — 0. Then P(W,(z) > 0) < S,(z) + Tr(z). Note
that 02 < ly(Inn)?u;%? and v, < l4(Inn)3u;®3. Then S,(z) < 1—®(n'/*) and T,(z) < n7!

as n is large. Thus

E[L)] = d, / - P(W,(z) > 0)dz < d2[1 — ®(n/*) + n71] = o(n =2/ +1)), (5.3)

2

For z € [cg, ], [w'(z)| > Ae. Then IZ < AZ?[[™ Iu(my>—pmy ' (x)dz]® < AZ2[B(n2)]* by
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letting y = w(x)/B(n2). Therefore

lim lim n2r+ll < [2B,Bcg/w'(ce)]* (5.4)

e—0n—o0

By Holder inequality,

72 _
B3] < [ PWala) > 0)u@) st <-pimnde [ fw@] ™ ltey<-pomd

Similar to I£, Jo |w(%)| ™ fjw()>-pemydz < 1/{24[B(n2)]*}. Since w(z) < —pB(n;) < —f(z)

for all z € [cg, m2], P(Wn(z) > 0) < S,(z) + T,.(z) and
Bl < V{2ALBm)} - | Su@lw@fde + [ L@)w@ldd.  (55)

For z € [cg,na], 02 < M(Dntin) ™Y, Yo < I3(Prtn) 2. Therefore

ce A Jeg 2+/m Ac(nunpr)
and
/ " T (2) lw(z) Pdz < 8Alse/ (nu2p?). (5.7)
ca

Combining (5.5), (5.6) and (5.7), we have

lim lim nEH E[I3] < 3B?%c/[2a(ce)w'(ce)]?, (5.8)

Then (5.2.2) follows (5.3), (5.4) and (5.8). Thus (3.7.1) is proved. (3.7.2) can be proved
similarly. The details are omitted here. Now we complete the proof of Lemma 3.2.
5.3. Proof of Lemma 4.1. Denote C = {¢, = ¢t Ve Apo : ¢ € C}. For ¢} € C,

n = VoA py €C. Define g = {a(z) : = € [co, po]}- Then a > 0 and

/C* z)dr > / z)dz > a/CG w(z)dr = -—%w (6n)(Cn ~ ca)?,

n Cn
where ¢, is an intermediate value between ¢, and cg. Clearly, ¢, € [co,p0]. Therefore

|w'(¢,)| > L. Then [ w(z)a(z)dz > 1 (¢, — c¢)? and

inf sup E[/ w(z)a(z)dr] > Iy inf_sup E(¢, — cg)*.
€Cgeg e en€C Geg
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Note that C C C. Using (2.2),

mf sup[R(G o) — R(G,éc)] > 14 1nf sup E(¢, — cg)® > 11 inf sup E(c], — ca)?.
6%€D geg Zn€C Geg cn€Cgeg

From the results in Donoho and Liu (1991) (Theorem 3.1 and the remark after Lemma 3.3),

inf sup B(c} ~ ca)’ > hsup {(e5, = 1)’ / VFi@) = /fa@)Pdz < b/, 1, f2 € F}.

Then Lemma 4.1 is proved.

5.4. Proof of Lemma 4.2. Clearly, as n is large, co < ¢f, — un < ¢ + Up < po,
g2(0) > 0 and ¢y, € (co, p0). Then fo € F. Note that f§ H((6 — cs,)/uz*)dd =0 for z < ¢o
or £ > po, and fi(z) = 0 = z < 6y => fo(z) = 0. Also for G € G, [;°dG(0)/A(6) > 0.

Then

[V fu(z) =/ fol2)]?

IA

I[fl(w)>01[f1($) ( )12/ f1(z)

@[ HEZL)d0P +u2 2 fy(2)).

'n

IA

Note that u, = [*; A(cy, + tu,)H(t)dt = O(uy,) and

/ 2)| / cfl Vdo)2de < Iyl / 11 alcs, + yun)| / (t)di]2dy = O(d).

Then we have

/Ooo{\/fl(x) - \/f-z(iv)]2d93 < L[O@E ) + O *?)] < ly/n.

On the other hand, we have [wa(cy, )]2 = [walcs,) — wa(cy, )]* = [wh(és )*(cs, — ¢f,)?, Where
&5, is an intermediate value between c;, and cj,. It is easy to see that [wy(és)]? < 1/kL.
Then (¢, — cf,)? > li[wa(cy, )]?. Note that

— 0
D=t )agp > 12 [ (B0 ey + tun) H ()]
-1

n

[wales)]? > luZ ([ (60 — O)H(

and [°, H(t)dt # 0. Therefore (¢, — c,)? > lsn~ 7+, The proof of Lemma 4.2 is complete
now.

11



5.5. Proof of Lemma 5.1. Noting that w(z) is decreasing on (6o, b) and w(cg) = 0,
lw(z)| = |wlcg — €)| Aw(ce + €)| for z € (6o,m) U (12, ). Since w'(z) > A, for = € (11, 72),
lw(ce — €)| > Ace and |w(ce + €)| > Aee. Then |w(z)| > Ae. On the other hand, since
pe(z) < z and ag(z) < B, lw(z)| < (200 +1nn)B, for z € [0y, dn]. Then (i) is obtained.

With loss of generality, assume that u, < 6p/2 for all n. It is easy to verify that w(z) =
(6o — 2)ag(z) + JT ag(s)ds. A straight forward computation shows that for z € [fo, dn],
|E[Va(X;, )] — w(z)| < ul(z — 0o + uyn) B, B. Then (ii) is proved. Note that

1

1
2 < . 2 = Y2
g, < E[V(XJ) T, n)] /0 una(a; — unt)

[(60 — ) Ko(t) — un K1(t)Pac(z — unt)dt.
Therefore 02 < m(ppu,)~! for € [m, ] and o2 < lo(Inn)?u;4® for € [0o,d,]. The
results for 7, can be proved similarly. This completes the proofs of (iii) and (iv).

For z € [0y, d,], if w(z) > B(z),

wa(z) _ w(z) + [wn(z) —w(z)]  wlz) - Bz) +1/20(z)

w(zx) w(z) = w(z) — B(z) + B(z)

v

1
5

Then (v) is proved. (vi) can be proved in a similar way.
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