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MONOTONE EMPIRICAL BAYES TESTS WITH OPTIMAL RATE OF CON-
VERGENCE FOR A TRUNCATION PARAMETER.!

Shanti S. Gupta and Jianjun Li

Abstract: Monotone empirical Bayes tests for a truncation parameter are considered under
a linear loss. We use a new approach to construct a monotone empirical Bayes test d,, based
on the kernel estimate and establish an upper bound for its regret Bayes risk. Also an
asymptotic minimax lower bound of the monotone empirical Bayes rules is obtained. Then
we find the optimal rate of convergence of the monotone empirical Bayes tests. From the
results established here, we conclude that the rule 4, is optimal in the sense that (1) it has
good performance for a small sample size since it possesses weak admissibility and (2) it has

good performance for a large sample size since it possesses the optimal convergence rate.

1. Introduction. Let X denote a random variable having density function
f(z]0) = a(z)/A(9), 0<z<8, (1.1)

where a(z) is a positive, continuous function on (0, 00), A(f) = Jea(z)dz < oo for every
§ > 0, 0 is the parameter, which is distributed according to an unknown prior distribution
G on (0,00). The special case of (1.1) is the Uniform (0, ), which corresponds to a(z) = 1.

We consider the prob}em of testing the hypotheses Hy : § < 6y verses H, : 6 > 6, where
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8y is a known positive constant. The loss function is [(#,0) = max{f — 6y, 0} for accepting
Hy and {(,1) = max{6p — 6,0} for accepting H;. A test 6(z) is defined to be a measurable
mapping from (0, c0) into [0, 1] so that d(z) = P{ accepting H;|X = z}, i.e., 6(z) is the
probability of accepting H; when X = z is observed. Let R(G,d) denote the Bayes risk of
the test ¢ when G is the prior distribution. Given that E[f] < co, a Bayes test d¢ is found

as
o(z) = 1 ?f E[6|1X = z] > 6y, (1.2)
0 if E[0|X = z] < b,.

Because E[f|X = z] involves G, the above solution works only if the prior G is given. If G
is unknown, this testing problem is formed as a compound decision problem and the empirical
Bayes approach is used. Let Xj, Xs,---, X, be the observations from n independent past
experiences and let X be the present observation. Based on X, = (X1, X2, -+, X,) and X,
an empirical Bayes rule 6, (X, Xvn) can be constructed. The performance of §,, is measured by
R(G,6,) — R(G,5c), where R(G, 6,) = E[R(G,6,|X,)]. The quantity R(G,d,) — R(G, éc)
is referred as the regret Bayes risk (or regret) in the literature.

This approach was introduced by Robbins (1956, 1964). Since then, it has been widely
used in statistics. For the distribution family having density (1.1), Gupta and Hsiao (1983)
considered the empirical Bayes rule in the selection problem formulation. Later Datta (1991)
studied the empirical Bayes rule in the estimation problem formulation.

The case of X ~Uniform (0,8) was studied by many authors; see Fox (1978), Van
Houwelingen (1987), Nogami (1988), Liang (1990) and Karunamuni(1999). Van Houwelin-
gen (1987) constructed the monotone empirical Bayes test using Grenander’s estimator and
investigated the rate of convergence of its regret and the limiting distribution of its con-
ditional regret. Liang (1990) also considered another monotone empirical Bayes test and
got a better rate. Karunamuni (1999) studied the empirical Bayes test under more general
assumptions and obtained more general results. He also tried to find a minimax lower bound
of monotone empirical Bayes tests. Unfortunately, a few errors cast doubt on the validity of
his result.

In this paper, we study the empirical Bayes test for the problem described above. We use
a new approach to construct a monotone empirical Bayes test d, based on kernel estimate
and establish an upper bound for its regret Bayes risk. We demonstrate that the convergence
rate is determined by the order of smoothness of a(z) and G(6). The choice of the kernel

function does not help much in improving the rate of convergence. This is totally different



from the case of the empirical Bayes rules for the exponential family (See Gupta and Li
(1999)). Also, an asymptotic minimax lower bound of the monotone empirical Bayes rules
is obtained by borrowing an idea from Donoho and Liu (1991a, b). It is proved that &,
achieves the optimal rate of convergence among all monotone empirical Bayes tests. So the
rule 0, is optimal in the sense that (1) it has good performance for a small sample size since
it has weak admissibility and (2) it has good performance for a large sample size since it
achieves the optimal rate of convergence.

The rest of the paper is organized as follows: In Section 2 we introduce a few preliminary
results. In Section 3 we show the construction of the monotone empirical Bayes test d,. The
asymptotic upper bound of the regret Bayes risk of 4, is presented in Section 4. In Section 5,
we obtain a minimax lower bound for the regret and then show that d,, achieves the optimal
rate of convergence. The proofs of main results in Section 4 and 5 are given in Section 6. In

the appendix, we provide the proofs of a few lemmas used in the previous sections.

2. Preliminary. We assume P(6 < 6;) < 1 and P(f > 6) < 1 so that the testing
problem is meaningful. This will not be mentioned further in this paper. Also to ensure that
the Bayes analysis can be carried out, we assume [;° 0dG() < oo without further mention.
Let fo(z) = a(z) [§° dG(0)/A(8) be the marginal density of X and é¢(z) = E[f|X = ]
be the posterior mean of 6 given X = z. Denote ag(z) = [;°dG(0)/A(H) and w(z) =
ac(z)[0o — ¢c(x)]. The existence of ¢¢(z) and ag(z) is justified by [°0dG(#) < co. Note
that ag(z) > 0 and ¢¢(z) is increasing for z > 0, the Bayes rule, stated in Section 1, can

be represented as

1 if pg(z) > 0y <= w(z) <0 <=z > cg,
de(z) = , (2.1)

0 ifpe(z) < by <= w(z) >0z <cg,
where ¢ = inf{z > 0 : ¢g(z) = 6p}. c¢ is called the critical point corresponding to G.
Noting that the Bayes rule ¢ is characterized by a single number cg, a monotone empirical
Bayes test (MEBT) can be constructed through estimating cg by ¢,(X1, X, -+, Xy), say,

and defining
1 if x>e¢,,
Op = (2.2)
0 if z<e,

Then the regret of §, is

R(G,6,) — R(G,65) = E / :G w(z)a(z)dz. (2.3)



To consider the rate of convergence of R(G,d,) — R(G, ég), we assume that for some r > 1,

ac(z) is r-times continuously differentiable and for 2 = 0,1, - -, 7,
sup lag)(a:)l < B, < 0. (2.4)
0<z<bp+1

Furthermore, we assume that

9(cc) = G'(cq) # 0. (2.5)

3. Construction of Monotone Empirical Bayes Test. The kernel method is used
to construct the empirical Bayes test. Let Ky(y) be a Borel-measurable, bounded function

vanishing outside the interval [0, 1] such that
1 1 if j5=0,
/ y' Ko(y)dy = L (3.1)
0 0 if 5=12,---,r—1,

with By = L [ 47| Ko(y)|dy < oo and By = fy [Ko(y)]?dy < co. Let By > 0 be a number
such that [Ko(y)| < By for y € [0,1]. This type of kernel function has been used by many
authors. Denote K;(y) = [ Ko(s)ds and u, = n~Y®+_ For any = € (0,00), define

Oy — T K, E&“_x n K )_{IJL—_:”
Wale) = N 122:1 a((X;) ) - %ng a((X;) ) (32)

It is shown later that W, (z) is an asymptotically unbiased and consistent estimator of w(z).
Note that cg = f(f" Ttw()>0dz. Let

6o
Cp = p I[Wn(a:)>0]dx + dn, (33)

where d,, = 0 if a(0+) > 0 and d,, = max{z < 6 : a(z) < \/u,} if a(0+) = 0. Note that
d, — 0. Naturally, we propose a monotone empirical Bayes test d,(z) by

1 if z2>c,,
On = (3.4)
0 if z<e,.

Then as d, < cg,

c@ 6o
Cp, — Cqg = _/d I[Wn(a:)SO]d-'I; + I[Wn(z)>0]dx (35)
n cG

Remark 3.1. The construction of ¢, is the key to improve the rate of convergence of
the empirical Bayes rule. Van Houwelingen (1987) constructed ¢,(z), an estimator of ¢¢(z),

and then let ¢, = sup{z : z > 0,¢,(z) < 6o}. It is interesting that he proved that either



¢cn = 09 or ¢, = the smallest minimizer of [1 — F,,(z)]/[6o — z], where F,,(z) is the empirical
c.d.f. of Xy, -+, Xp. Liang (1990) used a similar method to construct ¢, in an elegant way.
Karunamuni (1999) defined ¢, = inf{z € (0,6,),1 — Fy.(z) + f(z)(z — )}, where f(z) and
F(z) are the kernel estimators of fo(z) and its c.d.f. Fg(z). In this paper, we use ¢, as
defined by (3.3). The existence of ¢, is obvious. Moreover, the quantity ¢, — cg can be
expressed clearly by W, (z) through (3.5) as d, < cg. So the rate of convergence of ¢, — cg
is easy to be investigated through the property of W,(z). This idea was used by Brown,
Cohen and Strawderman (1976) to prove the completeness of the monotone rules. Van
Houwelingen(1976) and Stijnen (1985) used a similar idea to study the monotone empirical

Bayes rules for the continuous exponential family.

Remark 3.2. From (3.5), we see that, for fixed n, we only need to consider the property
of Wy(z) and w(z) on [d,, 6] by introducing d,. If a(0+) = 0, the use of d,, allows us to
efficiently control the quantity a(z). Here “efficiently” means that we control a(z) through
uy, 8o that the values of a(z) are in a tolerable range. This localization technique helps us

to get a better bound of the regret Bayes risk. It will be much clearer after Remark 6.3.

4. Rate of convergence of ¢,. In this section, we will investigate the performance
of 4, by finding the convergence rate of the regret Bayes risk of d, and obtaining a rate of
uniform convergence over some class of prior distributions.

From P(§ > 6p) > 1, we know cg < 6p(See Van Honwelingen (1987)). Also, from
(2.4) and (2.5), we know cg > 0. Therefore 0 < cg < 6,. Suppose that eg > 0 satisfies

0<cg—e€g<cg+eq < By From (2.3),
ca e
R(G,6,) — R(G,05) < Elljer—co|>ea] / w(z)a(z)dz] + Elje,—co|<eq] / w(z)a(z)dz].

It is easy to see that E[l|c,_cg|>eq) oo w(z)a(z)dz] < (6 + E[0])ez*E(c, — cg)?* since
JeX wma(z)dz < (0o + E[f]) and I, —cgi<ee] Jo€ w(x)a(z)dr < @lje,—co|<eq] o2 w(z)de,

where @ = max{a(z) : z € [cg — €, cc + €¢|}- (2.4) indicates that w(z) is differentiable and

therefore w'(z) = g(z)(z — 6p)/A(x). Using Tayler expansion of [*° w(z)dz at cg,

1

(e
I[|Cn'—CG|§€G]/C w(x)dx = —5 X w'(cn)(cn — CG)ZI[Icn—cGISEG]’ (4.1)

where ¢, is an intermediate value between ¢, and cg. Let w = max{—1w'(z) : z € [ce —



€G, e + €g|}. Then
R(G, 6n) - R(G, (Sg) < (90 + E[e])654E(Cn - Cg)4 + L_I’II)E(Cn - Cc;)z. (42)

The upper bound of the regret Bayes risk is controlled by E(c, — c¢g)? and E(c, — cg)?. We

investigate them and have the following results.

Proposition 4.1. Let M, ; = [4B,Bya(ce))? + 3(Bar/Bix)?. Then

lim n=5 E(c, — ca)? < My82[a(ce)w'(cs)] > and lim n=FE(c, — cg) = 0. (4.3)

"The proof of Proposition 4.1 is given in Section 6. From (4.2) and (4.3),
Jim 0¥ (R(G,6,) ~ R(G, 86)] < &M, .b3alce)’(ce)] .

Note that the left-hand-side of the previous inequality is independent of ez and aw —

a(cg)|w'(cg)| as €g — 0. Therefore we have the following theorem.

Theorem 4.2. Let M, be the same as defined in Proposition 4.1. Then

lim n%#+1[R(G, 6,) — R(G,6¢)] < My 162/ [2a(ce)w'(cc)]]. (4.4)

n—oo

Remark 4.3. The rate of §, depends on the regularity of ag(z) or the regularity of
a(z) and G(0) through (2.4). The order 7 of the regularity determines the order of the
convergence rate. The value of 7 may be obtained from the experiment. For the uniform
distribution (which is the case of a(x) = 1 here), Van Houwelingen (1987) and Liang (1990)
constructed the empirical Bayes rule for r = 1. Karunamuni(1999) studied it for » > 1. So
in terms of the convergence rate, (4.4) is a generalization of their results with general a(z)

and r > 1.

Next we consider the uniform convergence rate of &, over a class of prior distributions.

Denote

G = {G : G satisfies /oo 0dG(0) < 00,(2.4),¢0 < cg < 0y, min _|w'(z)| > L}, (4.5)
0

z€[co,00)

where ¢y = 0 if a(0+) > 0 and ¢; > 0 if a(0+) = 0, L > 0. We assume in the following that
L is properly chosen so that G is not empty.



Theorem 4.4. Let M}, = [4B,B1;A(6)]* + 3(Bax/Bik)? and a = min{a(z) : z €
(00,00]}. Then
lim n#+ sup[R(G,6,) — R(G,6q)] < M.,02/[2aL). (4.6)

Remark 4.5. Theorem 4.4 considers the rate of uniform convergence. We require that
the uniform lower bound of cg be a positive number in case of a(0+) = 0. For single G, we
use d, to keep the estimator W, (z) away from blowing up rapidly at z = 0. For G, a set of
G, we have to specify a uniform lower bound for cg. For a(0+) > 0, W, (z) has a relatively
small variance at = 0, and it converges to w(z) in a tolerable manner. It is allowed that
¢o = 0. This will be clearer after Remark 6.3.

Remark 4.6. From (4.6), we see that an upper bound of the monotone empirical Bayes
tests over G is In=2/+1) for some [ > 0. O(n~?"/(2r+1) js the slowest achievable order of
uniform convergence rate. In the following, we will see that this is also the fastest we can

hope.

5. Asymptotic Minimax Property of §,. We shall obtain a minimax lower bound
for the regrets of all monotone empirical Bayes tests first. Then we show that §, achieves
this minimax lower bound within a constant.

As presented in Section 2, the problem of constructing a monotone empirical Bayes rule
is essentially to find an estimator cj, of c¢, a functional of the marginal distribution fg(x) of
X, based on the i.i.d. sample X3, -+, X,,. Donoho and Liu (1991a, b) found that a minimax
lower bound of ¢}, going to cg can be obtained by finding the best possible lower bound of
the hardest two-point subproblem. And they found the lower bounds for many interesting
problems. Fan (1991) found the lower bounds (as well as the optimal rates) for various
deconvolution problems. This approach was tried by Karunamuni (1999) for the empirical
Bayes test problem in the uniform distribution family.

In the following parts of this paper, ly, I3, - - - stand for the positive constants, which may
have different values on different occasions.

Let C be the set of all estimators ¢}, with ¢} > 0 and let D be the set of all empirical
Bayes rules of type (2.2) with ¢, = ¢, € C. Denote C = {¢, = ¢,V oAby : ¢ € C}. For
¢ €C,8=ciVecoAby €C. Then

/CCG w(z)a(z)dz > /E:G w(z)a(z)dz > Q/E:G w(z)dz = —=w'(&,)(Cr ~ cg)?, (5.1)

*
n



where g is the same as defined in Theorem 4.4, and ¢, is an intermediate value between &,

and cg. Clearly, ¢, € [co,6p]. Therefore
lw'(¢,)] > L. (5.2)

From (5.1) and (5.2), we obtain [:¢ w(z)a(z)dz > (¢, — cg)®. The previous inequality
leads to

inf sup E[/ r)dz] > I, inf sup E(&, — c¢)*. (5.3)
cheC Geg eneC Geg

Note that C C C. It holds that
inf_sup E(¢, — cg)® > inf sup E(c} — cg)>. (5.4)
en€C Geg cn€C Geg

From the results in Donoho and Liu (1991a) (Theorem 3.1 and the remark after Lemma

3.3),

clnefczlégE(c —cg)? > lysup {(cp—cp,)? / [\/fl \/fz(:c)]zdx < %,Vfl,fz € F}, (5.5)

where F = {fc(z) = a(z) [;°dG(0)/A) : G € G} and cy,, ¢y, are the critical points

corresponding to f; (or G1) and f» (or Gs) respectively. Next we shall prove for large n

sup{(cs, — ¢p)? /Ooo(\/fl(ﬂf) — Fa(2))dz < %Vfl,fz € F} > lyn 75, (5.6)

This can be done by identifying the hardest two-point subproblem. That is, we prove (5.6)
by finding fi, fo € F such that

[TWAE ~ R@Fds <2 and (ch —cn)? > ln T (5.7

Suppose that G; € G with density ¢1(f) and c;, € (co,0), where ¢4, is the critical

point corresponding to G;. Let go(8) = (1 + ulp,) " tg1(0) + ug‘lA(G)H(‘9 —L1)|I 1450}, where
= [, A(cy, + tun)H(t)dt and H(t) is a function such that (1) it has support [-1,1], (2)
L H()dt = 0 and [} H(t)dt # 0, and (3) it has bounded derivatives upto order 7. Let

T

filz) = a(z) [° i{ég;d@ for ¢ = 1,2. It is easy to see that ¢o < ¢y, — u, < ¢, +up < 6 and
g2(8) > 0 as n is large. We assume ¢y < ¢y, — Uy < ¢f, +up, < g and go(#) > 0 for any n > 1
without loss of generality. Let cg, be the critical point corresponding to ¢g2(d). As n — oo,
cs, — Cy, since go(0) — g1(0). We assume cy, € (co,6p) without loss of generality. Then it is

easy to see that f € F. In Section 6 we prove that (5.7) holds for such f; and fs.

Theorem 5.1. For somel > 0,

inf  sup[R(G, 67) — R(G, 6g)] > In" 541, (5.8)
€D Geg



Remark 5.2. Theorem 5.1 says that n~ B is the best possible order of the rate of
convergence. None of the monotone empirical Bayes tests can beat this order. From Theorem

4.4, we see that d,, attains this order of the rate of convergence.

Remark 5.3. From Theorem 4.4 and Theorem 5.1, we conclude that §, has good perfor-
mance for a large sample size. Since it is a monotone rule, it has weak admissibility. Thus

it has a good performance for a small sample size.

6. Proofs of Proposition 4.1 and (5.7). Note that w'(z) = g(z)(z — 6y)/A(z). Then
w'(cg) < 0 since g(cg) > 0 and 0 < ¢g < bp. Let Ac = min{—w'(z) :cc—e <z <cg+¢€}

for € > 0. Then, as ¢ — 0,

g9{cc)
A(CG)

Assume that ¢y is a number such that 0 < cg — € < ¢cg +€ < 6y and A, > 0 for all € < ¢.

A = —w'(cg) =

(6 — cg) > 0. (6.1)

Let 7y = cg — € and 15 = cg + € for € < €.

Lemma 6.1. The following statements hold.
(i) For z € (0,6], |w(z)| < 26y B,.

(i) For z € (0,m) U (12, 805), |w(z)| > €Ac as € < ¢.

Note that Wy (x) = & X7, Vo (X, z), where

-z, Ko(7) _ Ku(e®) (6.2)
Un a(X;) a(X;) '

Let wy(7) = E[Va(X;, 7)), Zjn = Va(Xj, ) —wa(z) and o2 = EZ,. Then Zj, are i.i.d. with

Vn(Xﬁx) =

mean 0 for fixed z and n.

Lemma 6.2. Let p, = max{1l/a(z) : z € (m,m2 + u,)}. Denote Cp(z) = (§y — z +
u,) B, Bigul, and Dy(z) = (8y — 2)?>Barag(z) + un[2(00 — T) + un)Biag(z) for x € (0,6,).
Let -y be some positive constant. Then we have the following:

i) For all z € (0,6p), |wn(z) — w(z)| < Cp(z).
it) For z € [m,m], Bl|Zjnl’] < vphcu,? and of <
iii) For z € [dy, 00, E[|Zin|®] < yu,® and 02 < Dy (z)u;%?.

iv) For z € (0,6p), w(z) > 2C,(z) = wn(z) > sw(z).

.
3
~— o~
=
—
N~
3
3
2
IS
3

(
(
(
(



10

(v) For z € (0,6,), w(z) < —2C,(z) = wy(z) < —

N~

w(zx).

Remark 6.3. For the case of a(0+) > 0, a(z) has a lower bound at (0, 6,]. Therefore
E[|Z;n|®] ~ uz?, and 02 ~ u;! for any = € (0,6,]. For the case of a(0+) = 0, if z is near
0, |Z;s| and o2 become infinite even for fixed n in most situations. Therefore, we have to
isolate 0 progressively through a positive sequence dy, so that |Z;,| and 62 go to infinity in
a controlled way. When the uniform convergence rate is considered, we have to specify a

lower uniform bound for cg over G.

Proof of Proposition 4.1. Noting that cg > 0, we assume that d, < cg for all n

without loss of generality. From (3.5), ¢, — ce = — [ Ilw, ()<0)dz + ffc‘;’ Iw,(z)>0)dz and
cG o
E(Cn — CG)2 S E[/d I[Wn(z)SO]d$]2 + E[/ I[Wn(a:)>0]d$]2 = Tip + Topn. (63)
n e

It turns out by Holder inequality and a little algebra that
G

mVdn [
T1in S E[/d I[Wn(z)SO]dx —+ I[Wn(m)go]dili]Z S 2CG.[1 -+ 2[2 + 2]3, (64)

n1Vdn
where 71 = cg — €, € < €, , = [fé'nl\/dn P(Wy(z) < 0)dz, I, = [f,,cla I[w(m)§2Cn(171)]dx]21
Iy = E[f;¢ IIw,(2)<0,0(z)>20. ()42}, For w(z) > 2Ch(z), wy(z) > 1/2w(z) from (iv) of

Lemma 6.2. Then we have

1 - — n 1 n . —
P(Wa(z) < 0) = P( T < Y1nlT)y  p z,, < ),
noz j=1 On. \/no? =1 On

Applying Theorem 14 on page 125 in Petrov (1975) to the left-hand-side of the above in-
equality,

BAB\Z o
Jilont Jaw@p ~ on@) + @), (65)

where A is a constant. For z € [dn,m V dp], w(z) > €A, and certainly w(z) > 2C,(z)
-3/2 and E[|Z;n)?] < yu;®. Tt follows that

n

Sn(z) < ®(—n'/®) and Ty,(z) = 1/(n/u,) as n is large. Thus

P(W,(z) < 0) < a(— Y@y

20,

as n is large. Also note that o2 < D,(z)u

L= /d " P(Wo(2) < 0)da = o(n~2/@r+), (6.6)

For z € [m,cq), |w'(z)| > Ae. Thus I, < AZ?[f;¢ Tw(z)<2c,(m)yw'(z)dz]®. Letting y =
w(z)/[2C,(m)], I < 4A7*Cn(m)]? 52 Iiy<njdy = 4A72[Cy(m)]2. Therefore

2r_ 2B, B —
lim lim n23+1 L <] 1%(00 — cc)
e—0n—o0 ’w,(CG)

I (6.7)
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where it is used that n”/@+9C, (n,) = (§p—m)B, By as n — oo and 7y, — cg, Ac = —w'(cg)

as € = 0. By Holder inequality again,

cG cG
I; < / P(Wa(2) < 0)w?(z) ()20, (m)d2 X / W (@) Jjw(a)>200 (n)1 42
n m

1
Letting y = w(z)/[2Ch(m)],
two inequalities and (6.5), we have

1 ¢

L<—— / “ S(2)wd(z)dz + / T, (2)w® () da). (6.8)
~ 8ALCE(m) m mo |
For x € [m1,cgl, 0n < 4/ Dn(m)pneuz, El|Znl?] < 02 cur? and w(z) > 2C, (). Therefore
[« c 2
/ ¢ Sy (z)w?(z)dz < i/ ¢ @(—M—)w?’(l‘)dw(z) < w, (6.9)
n

oG w3 (2) Iw(a)>20m (m )42 < 1/[8A4.C2(m)]. Using the previous

1 (z)dz < -

mn 2\/pn,eDn(771) B Ae(nun)2
and ,
ce 8Ayp
T, r)dr < —2fe. 1
/m ()w’(z)dz < ()’ € (6.10)
Combining (6.8), (6.9) and (6.10), we have
3 BZk: (90 - CGv) 2
lim li v < - A1
el—I}(.)lnLnolon2 +1 I3 4 Blka(cG)w'(cG)] ’ (6 )

where it is used that p,. — p. = max{l/a(z) : m < z < n} and D,(m) — (6 —
m)?Barag(m) as n — oo, and p. — 1/a(cg), m — cc as e — 0. From (6.4), (6.6), (6.7) and
(6.11), we obtain

lim n#iry, < 0. 5M, 103]a(ce)w'(ce)] 2. (6.12)

n=00
By symmetry, we have a similar result for r5,. Therefore
lim 021 B(c, — ¢6)? < My x8la(ce)w’ (ce)] > (6.13)
To prove (4.3), we need to show next that E(c, — cg)* = o(n‘2"/(2r+1)). Note that
E(en—cg)* < Ix {[/" . ) < 0)da] + [ P(Wa(z) > 0)dz]
+ / Ijw(e)i<2camyda]® + / fnw(w I<2Ca(mde]’
+ [/,,1 T (@)<0,u(z)>2Ca m)}d2]" + [/cG Iiw, (2)>0,w(0)<~2Ca (m)14%]* -

Similar to (6.6), [*'*™ P(W,(z) < 0)dz = o((nu,)™Y), [ P(W,(z) > 0)dz = o(nu,)™b).
Similar to (6.7), [/ Ijw(e)<2catmds]* = o((nun) ™), (o Iwi)<ocamydz]* = o((nun)™).

So to prove E(c, — cg)* = o(n_%), it is sufficient to show that

e __2r_
El|  Iw,(@)<om(@)>20.(m)dz]* = o(n™77), (6.14)
m
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and
2 ___2r
E[/c I[Wn(w)>0,w(ac)<—2cn(m)]d$]4 = O(TL 2r+1 ) (6.15)
le]

We only prove (6.14) here. (6.15) can be obtained by symmetry. By Holder inequality,

E[/ I[Wn (2)<0,w(x) >2Cn(771)]dz]

< E[/ I[Wn(z)<0]w dl’/ W™ (2) (s >20nm]d“"]
m

< (ce—m) /n P(Wn(z) < 0)w’(z)dz - . w"3(x)f[w(z)>zcn<m)]dw]2-

1

We already know that
/ (@) (@20, m)de = O(nun),

m

and similar to (6.9) and (6 10), we have

" P(Wa(2) < 0)wb(z)dz = O((nu) ™).

m

Then (6.14) is proved from the previous three inequalities. Thus the proof of (4.3) is com-
plete.

Proof of (5.7). Note that § > 6y = H((0 — ¢s,)u,;') =0 and fi(z) = 0 = fy(z) = 0.
Then [\/fl(a:) — \/fz(x)]2 < Iip@ysqlfi(z) — fo (x)]z/fl (z). After a few calculations, we have

* 2r—2 91 -1 © 0—cn\ o 2r 2
/0 [\/fl(iv)_\/fz( )Pdz < Iy {u? [/ 9] / [/z H(T)dﬁ] dz + u* 2},
(6.16)
Let 0 = c¢f, + tu, and = = c¢s + yu,. And note that H(¢) has the support {—1,1] and
JY, H(t)dt = 0. Then

/000 [ H(ﬁi)de]zdx <u / [T HE@d < 1 Y /y * Ht)ddy

n (z— Cfl)/un -1

Also
&:/1 A—(MH(t)dt——)a(c )/1 tH(t)dt
1 f1 1 :

Un Un

From previous two results, (6.16) yields

[ Wh@ - yR(e)de < hfo@E ) + 0wl <

On the other hand, we have [wa(cy,)]* = [walcys,) — walcs,)]? = [wh(és)]*(cs, — cf,)?, where

Sy

i. (6.17)

¢r, is an intermediate value between cy, and cp,. It is easy to see that [w)(és)]* < 1/
Then (cg, — ¢p,)? > l1fwa(cy,)]?. Note that

0 —cy o [t
—B)a > ul| /O (G0 — ¢, + tup) H(t)dt]?

n

o) > by ([~ (00— 6)H(
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and f; H(t)dt # 0. Therefore
(crs — cp,)? > Ign 277 (6.18)

This result together with (6.17) leads to (5.7). The proof is complete now.
Appendix. We prove Lemma 6.1 and Lemma 6.2 in this appendix.

Proof of Lemma 6.1. From (2.4), ag(0+) < B,. Since ¢g > 0, ¢pc(0+) < ¢c(cc) = 9.
Note that both ag(r) and ag(z)de(z) are decreasing. Then for z € (0, f]

lw(z)| < bpag(z) + ag(z)de(z) < 2600 B,.

That is (i). To prove (ii), noting that w(z) is decreasing on (0,6y) and w(cg) = 0, |w(z)| >
lw(cg — €)| A lw(cg + €)|- Since |w(cg — €)| = |w(cg — €) — w(cg)| = |w'(ck)|e > Ace, where

g € (ca — €,¢6), and |w(cg + €)| > Ace similarly , (ii) is obtained.

Proof of Lemma 6.2. It is easy to verify the following equation
[o.0]

w(z) = (6o — z)ag(z) — / ag(s)ds.

z

Using Taylor expansion and (3.1), a straight forward computation shows that

E[KO(X;Z)] = ag(z) + ul, x -l—/lK )t al) (z + unt?)dt
una(X;) ' G\T) Tl 2 0o 0 Ye meLED

where 0 <7 < 1. Also

Ky (522 oo u 1
Un — r n tt’l‘+1 (7') nt*
By / aG(s)ds+un><—(T+1)!/0 Ko(t)t™ o) (@ + uats)dt,

for some 0 < t3 < 1. Thus, |E[Vo(X;,2)] — w(z)| < ul(6p — = + up)B,Bix. Then (i) is
proved. Note that ag(z) is a decreasing function for z > 0. Then

1
7 < BV (XganP= [ —

0 m[(% — 1)Ko (t) — un K1 (t)Pag(z + unt)dt.

Therefore 02 < Dy(c1)pneuy! for € [c1,c] and 02 < Dp(c)u;®? for x € [d,,8]. The

results for E[|Z;,|*] can be proved similarly. This completes the proofs of (ii) and (iii).
If w(z) > 2C,(z),

wn(z) = w(z) + [wa(z) — w(z)] > 2C,(2) — Cp(z) = Cp(z) >0

and
w(z) w(z) w(z) — 2C,(z) + 2C,(z)
wn(@) @)+ [wn(@) — w@)] = we) = 2C.() + Cu(z) >
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Then (iv) is proved. (v) can be proved in a similar way.
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