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Abstract

By using the telegraph partial differential equation, the Fokker-Planck equation, and
It6’s theorem, we derive a collection of expectation identities covering various univariate
and multivariate distributions, and obtain various applications in statistics, probabilty, and
mathematics. A particular expectation identity is shown to be almost equivalent to Stein’s
identity and is also shown to be characteristic of the normal distribution, in a suitable
sense. Applications include exact and approximate expressions and bounds for moments,
improvement and reversal of Jensen’s inequality, characterizing unbiased estimability to
solutions of PDEs, applications to decision theory and Bayesian statistics, deriving some
new and some known properties of harmonic, polyharmonic and subharmonic functions,
and obtaining a method of counting matchings in graphs by use of Stein’s identity and the

heat equation. Illustrative examples are given.
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1. INTRODUCTION

In 1981, Charles Stein published a simple but greatly useful identity that has now
come to be known as Stein’s identity. The simplest version of the identity says that if
X ~ N(p,1), then for sufficiently smooth functions g(z), E((X — u)g(X)) = E(¢'(X)); see
Stein(1981). The identity may be called an expectation identity. In this article, we present
a series of such expectation identities covering various probability distributions, both uni-
variate and multivariate, and show various mutual connections between the identities,
and outline a rather large collection of applications of these identities in a range of areas
in statistics, probability, and mathematics. It seems there are potentials for additional

applications and refinements also.

The article starts with deriving the various identities; most of the identities are pre-
sented in Section 2. The identities come from one of three sources : the telegraph equation
of electromagnetic transmission, the Fokker-Planck equation of homogeneous diffusions,
and Itd’s theorem in stochastic calculus. Some of the identities can be derived from more
than one source, indicating a connection between the approaches. The number of identities
presented in all is somewhat large. But in some sense, identities (3), (4), (15) and (27)
are special. The various applications in the later sections generally stem from one of these
four identities. As we just remarked, there are some technical connections between some
of these identities. Actually, something more is true. The identity (3), which we have
called the heat equation identity, is almost equivalent to the Stein identity. And the heat
equation identity is characteristic of the normal distribution, in a suitable sense. These

results are available in Section 4.

The applications are grouped according to area in the remaining sections. The ap-
plications that are presented by us in the present draft can be broadly classified into the

following areas :
a) deriving exact moment formulas and analytical lower and upper bounds;

b) approximate but apparently practically useful computation of expectations of complex
statistics, by simultaneous use of our identities and Bahadur representations and Hajekl

projections of these statistics;



c) connecting unbiased estimation to elliptic partial differential equations;

d) applications to decision theory, specifically, establishing inadmissibilty results and a
Stein inequality (as opposed to a Stein identity) for spherically symmetric t distribu-

tions;

e) applications to Bayesian statistics, specifically, establishing lower bounds on Bayes
risks in the spirit of Brown-Gajek-Borovkov-Sakhanienko, and establishing a connec-

tion between oscillations of a Bayes estimate and its Bayes risk;

f) applications to deriving mathematical and statistical properties of harmonic, sub-
harmonic and polyharmonic functions, and specifically, some general zero correlation

results;

g) applications in graph theory, and specifically, establishing a connection between count-

ing perfect matchings in graphs and the heat equation identity.

These and other applications and illustrative examples are presented according to the

area of application in Section 3 and Sections 5 through 10.

The results we have outlined in this manuscript developed over a period of several
years. Perhaps the most interesting aspect is that there appears to be a broad range of
applications, and it seems likely that there should be other applications. We are thankful
to Persi Diaconis and Joe Eaton for their suggestions, questions, and advice.

2. NOTATION AND IDENTITIES

As stated in the introduction, the article presents a series of expectation identities
and one of the goals is to show the mutual connections and the commonalities between
the identities and the various methods to derive them. Of course, application has to
be a goal and with practical applications in mind, some other identities covering other
practically important problems will be presented in later sections. However, most of our
family of identities are presented together in this section to clarify the connections. First
the notation is explained. We recommend that the reader refers back to the notation as a
particular result is stated.

2.1. Notation

a. p(z, g, t): will generally mean a probability density function on RP,p>1:u,tareto
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be understood as parameters, with g in R? and ¢ > 0.
. g(z, u,t): will generally denote a nonstochastic k dimensional function, k£ > 1;

For any scalar function g(z, u,t), g: will denote %g, gs+ will denote aa—:zg,Amg will
denote the gradient vector with respect to z,V, - g will denote divergence, and A,
will denote the Laplacian. Similar meanings will apply to Vg, VL -g,and A,g. Also,
Hy will denote the Hessian matrix of g, with respect to z. If z is scalar, (™ (z) will

as usual mean the nt? derivative of g.

. B(a,r): will denote a sphere in p dimensions with radius r and center at a; 3B(a,r)

will denote the boundary of B(g,r) and [ udo will denote the surface integral of a
8B
given function u on 8B(a, ).

. |lyl| will denote Euclidean norm and y'z will denote inner product. I = I, will denote

the p x p identity matrix and e; the 7*" unit vector.
. W will denote k-dimensional Wiener process.

. Ey+ will denote expectation and often will be written as just E; similarly, var(-) will

stand for variance and cov for covariance.

. h(u,t): will generally denote a parametric function and 6(-) an estimate of a para-

metric function.

. R(p,t,6): will generally denote the risk function of an estimate under squared error
loss; also, m(y) will denote a prior density for g and r(¢,7) = r(t, 7, ) the Bayes risk

of an estimate 4.

i. ¢(-) will denote, as usual, the standard normal density and ®(-) the standard normal
CDF; also, H, will denote the n!* Hermite polynomial.

x y
j. T(a,y) will denote [ e “u*"'du and y(a,y) will denote [ e “u*"du.
y 0

. Np(u,t¥o) will denote a p-dimensional normal distribution with mean vector p and
covariance matrix t ) ; Cp(u, t Y ,) will denote a p-dimensional elliptically symmetric
Cauchy distribution with location parameter p and scale matrix t>y; x%(m) will

denote a central chisquare distribution with m degrees of freedom; ¢, (m) will denote



the p-dimensional ¢ distribution with m degrees of freedom defined as the distribution

of \/\71_’2 if Z ~ Np(0,I),Y ~ x*(m) and Y, Z are independent; the distribution of

vmZ

o+

VG4

2.2. Identities From the Telegraph Equation

will be denoted as t,(m, p).

2.2.1. The Telegraph Equation. The telegraph equation in R? is a partial differential

equation of the form

Azp = apy + Bp: + b, (1)

where o, 8 are constants and + is a function of £. Our motivation for considering the tele-
graph equation is that many important probability density functions satisfy the telegraph
equation for suitable choices of «, 8, and v. We will see many such examples. What does
that give us? It turns out that if a particular probability density function p(z,t) satisfies
the telegraph equation (1), then for a statistic g(z), by simply multiplying both sides of
(1) by g(z) and integrating, one formally gets an expectation identity:

B(8ag) = a D (g) + B Elg) + vE(). @)

To make the formalism of (2) rigorous, it will be necessary to impose conditions on the
function g. Once one finds an expectation identity (2), one then attempts to find appli-
cations. In brief, this is the agenda. We may note here that the origin of the telegraph
equation (1) is in the area of electromagnetic transmission of signals, «, 8, having to do

with resistance, capacitance, inductance, and leakage of the cable. See Folland (1992).

2.2.2. Densities Satisfying the Telegraph Equation

As stated above, many common density functions satisfy the telegraph equation. Some

particular cases are given below.
Proposition 1.

a. Let £ ~ N,(u,tI). Then the density of z satisfies the heat equation, i.e., the telegraph
equation with « =~y =0 and 8 = 2;



b. Let p(z, y,t) denote the density of any Gaussian convolution, i.e., let p(z,u,t) =
J =t e~ 2t(Z~£-2)"(Z~L~2) f(2)dz. Then p(z, u,t) also satisfies the heat equation,;

(27t)2
c. Let £ ~ Cp(u,tI). Then the density of z satisfies the wave equation, i.e., the telegraph

equation with 8 = =0 and a = —1;

d. Let p(z,u,t) denote the density of any Cauchy convolution, ie., p(z,u,t) =

=7 f(2)dz. Then p(z, p,t) also satisfies the wave equation;
(1Z—p—2l>+pt2) *

e. Let f(z) be a twice differentiable one dimensional density. Then the mixture density
p(z,t) =wf(zx —t) + (1 — w)f(z +t) satisfies the telegraph equation with 8 = =0
and o = 1;

f. Let p(x, i1, t) denote the one dimensional Exponential density, i.e., p(z, u, t) = te *(==H)
z > p. Then p(z, u, t) satisfies the telegraph equation with o = 8 = 0 and (t) = t2.

Proof: The proof of Proposition 1 involves straightforward calculations and is omitted.

2.2.3. Resulting Identities

Proposition 1 leads to expectation identities for the corresponding densities. The

formal identities are presented below.
Theorem 1.

a. Let £ ~ Np(u,tI). Let g(z,u) be a twice continuously differentiable function and
suppose g(z, u) and ||Vg(z, u)|| are O(e!ZID for some 0 < ¢ < co. Then

0

£ B(g(z,1) = 55(Aag(z, 1) O

Identity (3) will be referred to as the Heat Equation Identity.

b Let z be a Gaussian convolution in the sense of Proposition 1. Let g(z, ) be as in

part a. Then identity (3) holds.

c. Let  ~ Cp(pu,tI). Let g(z,p) be twice continuously differentiable and suppose
g(z, 1) = O(||z||*~¢) for some € > 0. Then

%E(g(:g, u) = —EA(g(z, 1)) (4)
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Identity (4) will be referred to as the Wave Equation Identity.

d. Let z be a Cauchy convolution in the sense of Proposition 1. Let g(z, ) be as in part

c. Then identity (4) holds.
e. Let = have the mixture density wf(z — t) + (1 — w)f(z + t) and suppose f is twice

differentiable and suppose | l|im g(z)f'(z) = lim ¢'(z)f(z) =0. Then
T|—00

lz|—o00

s ble(e) = E(g"(x)). (5)

Identity (5) will be referred to as the Mixture Identity.

f. Let z have the Exponential density in the sense of Proposition 1. Let g(z, ) be twice
continuously differentiable and suppose g(z, 1) = O(z*) for some 0 < k < co. Then

B(g(e, 1) = 0m ) + 1 021, 1) + 25 B(gea(, ). ©

Identity (6) will be referred to as the Exponential Identity.

2.2.4. The Proofs

The proofs of the various parts of Theorem 1 are similar. We will only present the
proof of part a.

Proof of Theorem 1:
a. The N,(u,tI) density will be denoted as p(z, g, ) in this proof.

Step 1. By an interchange of the order of differentiation and integration and by use of

the heat equation (part a. of Proposition 1),

0

2 Blo(e,)) = 5 [ (o2 ) Aaple, ,)ds, g

Step 2. By Green’s second identity, for any sphere B(0,r),

/ (980p — pAsg)dz = / (6Vp - pVg)'ndo, (®)
B(0,r) aB(0Q,r)

where 1 denotes the unit outer normal.



Step 3. By Schwartz’s inequality and the fact that ||n|| =1,

(9gVp — pVg)'ndo
8B(0,r)

< [ lolveldo+ [ plIvaldo

8B(o.r) 8B(or)

<Aee / Vplldo + Bee" / pdo,
oB(0,r) oB(0,r)

for some constants 0 < A, B, ¢ < 0o, by the assumptions made on g.

Step 4. From (7), write 2 E(g(z, u)) as

%E(g(g, ) = —;—/(pAzg)dg} + %/(QAzP — pAzg)dz.

Step 5. Finally,
/(gAa:p - pAa:g)d'Z"

= lim (gAzp — pAgg)dz

r—o00
B(0,r)

=0 by (8) and (9).
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2.3. Identities From the Fokker-Planck Equation
2.3.1. The Fokker-Planck Equation.

Consider a homogeneous Markov process {X;,t > 0} with state space equal to the
real line and the transition probability P(u,t, B) = P(Xs4t € B|Xs = p), where B is a

Borel set in the real line. Suppose that the process {X;} satisfies the three conditions

}in% 1P, (| X, — z| > 6) =0 for any 6 > 0,
e
lim 3 B, (X, — z) = b(z), (11)

lim 1E.(Xy — 2)? = 0% (x),

for suitable finite functions b(-) and ¢2(-). That is, the Markov process {X;} is actually
a homogeneous diffusion with drift b(-) and diffusion coefficient o?(-). If the transition
probability measure P(u,t,-) has a density, say p(u,t,z), then it satisfies the Fokker-
Planck equation

% = —a%(b(x)p) + %%(02(03)19)- (12)

In fact, all derivatives in (12) are assumed to exist and be continuous in (¢, z). (12) is also
known as the Kolmogorov forward differential equation. And so the question is what would
(12) give us. It turns out that for appropriate choices of the drift b(-) and the diffusion
coefficient o2(-), the corresponding transition density p is often a statistically important
density; we will see a number of examples. Therefore, for such a density p, and a statistic,

g(z), one formally gets the expectation identity

0

2 Bul9(@) = Bulg/(2)b(2)) + 5 Bulg" (@0 (z). (13)

In a statistical context, p and ¢ in the identity (13) will play the role of parameters. The

multivariate analog of (12) for vector diffusion processes is

P _ _ph-pV +EZZ o (o2 (z)p) (14)
o~ PVET RT3 L Lt Gy TP

for appropriate bpx1 and X,xp = ((055)). The interest of (14) in the context of this article
is on two grounds; first, (14) will result in interesting expectation identities for interesting
statistical models, and second, many of these identities will be seen to also follow from the

telegraph equation identity (2), thus showing the mutual connections.
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For existence and methods of solutions of the Kolmogorov differential equation for

given b and X, one may see Feller (1936) and Risken (1984), among many sources.

2.3.2. Densities Satisfying the Fokker-Planck Equation

We now present some common density functions satisfying the Fokker-planck equation
(14).

Proposition 2.

a. Let £ ~ Np(u,tI). Then the density of z satisfies the Fokker-Planck equation with
b=0and ¥ =1,
b. Let £ ~ Np(u,tE0). Then the density of ¢ satisfies the Fokker-Planck equation with

b =0 and 3 = X;

c. Let £ have a density in the Pearson family of distributions with parameters. Then
the density of X satisfies the Fokker-Planck equation with b = b(z) = a + Sz and

0% = 0%(z) = a + bz + cz?;

d. Let z > 0 have the density ””2 t(e—%(w—ﬂ)z - e—z%(m+u)2),
uyV27

where p > 0. The density of x satisfies the Fokker-Planck equation with b = 1 and

0% =o%(z) ==z.

e. Let x ~ N(u+ Mt,03t). Then the density of z satisfies the Fokker-Planck equation

with b = X and 02 = o3.

Proof: Again, the proof of Proposition 2 involves straightforward calculations and is
omitted.

2.3.3. Resulting Identities

The formal expectation identities resulting from Proposition 2 are presented below.

Theorem 2.

a. Let £ ~ Np(y,tI) and let g(z, u) be as in part a. of Theorem 1. Then identity (3)
holds.

b. Let £ ~ Np(u,tXo) and let g(z, u, Xo) be as in part a. above. Then

0 1
Z’?EEQ(@’ Ly Xo) = iEtT(ngo)- (15)
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Identity (15) will be referred to as the Generalized Heat Equation Identity.
c. Let  have a density in the Pearson family of distributions with parameters.

Identity (16) will be referred to as the Pearson Family Identity.

d. Let z > 0 have the density “’2 t(e_zlt(“”—ﬂ)2 — e~ % (@+1)?) where p > 0.
uV2w

Let g(z, u) and g, (z, u) be O(e®*) for some 0 < ¢ < co. Then

0 1

EZE(g(x, ) = E(gz(z, p) + §$gm($a 1))- (17)

e. Let z ~ N(u+ \t,o3t) and let g(z, u, A, 09) = O(e®) for some 0 < ¢ < oo.

Then
2

0
&E(Q(CIJ, Ky /\, 00)) = )‘E(gm(xa K, A, 00)) + %E(Qmw(fv) K, A) UO))' (18)

More generally, if z ~ N(u(t),o2(t)), then for g as above,

0

5;29(2)) = W () E(J (z)) + o0(t)on(t) E(g" (z)) (19)

Identity (19) will be referred to as the Heteroscedastic Normal Identity.

Proof:: The proofs of all parts of Theorem 2 follow from the corresponding parts of

Proposition 2 and are omitted.

2.4. Identities From It6’s Theorem
2.4.1. Itd’s Formula.

Given the drift function and the diffusion coefficient, the Kolmogorov differential
equation determines the transition density of a homogeneous diffusion under certain con-
ditions. However, solving the equation is simply very hard. A more direct approach,
initiated by Paul Levy, was given in It6 (1951). 1t6 showed that a diffusion is driven by a
stochastic differential equation and a smooth function of a diffusion is driven by another

stochastic differential equation.

Proposition 3 (Itd’s Theorem). Let m, k, p be fixed positive integers. Let W; denote

an m-dimensional Wiener process and let b(¢,w) : (0,00) x @ — RP be a nonanticipating
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stochastic process. Let G(t, w) = ((G;;))p X m be another matrix valued nonanticipating
t

process such that for every t, fGij(s,w)ds < oo a.s. for all pairs 1, 3.
0

Suppose z; is a p-dimensional stochastic process satisfying the stochastic differential
equation dx; = b(t)dt + G(t)dW;. If g(t, ) : (0,00) x RP — R* has two continuous partial

derivatives, then Y; = g(¢, z;) satisfies the following differential equation:

4Y, = 2 (1, 2)GOAW, +{94(t, 20) + 9a 6, 2)0(1) + 5.3 3 Gasa; (6, 26) (G}t (20)

4,j=1

In the above,
gr = % g is a k-dimensional vector;

9z = ((% g:)) is a k x p dimensional matrix;
J

2

Gziz; = 8:1:882: g is also a k-dimensional vector.

2.4.2. Resulting Identities
We can now give the following general expectation identity.

Theorem 3. With the notation of Proposition 3,

d
(EEg(t,a:t)) = E|g:(t, z¢) + gz (t, z¢)b ZZgac z; (6, 2) ((GG'))s5 |- (21)
1,5=1

In particular, if k = 1 (i.e. if g is a scalar function), then

d
dt

Proof: From (20),

9 B g(t, 20)) = Blgu(t, 71) + (Vag)'b + %tr(HgGG’)]. (22)

g(t, z¢) — 9(0, o)

t

- /gm(_s,xs)G(s)dWs +/[gs(8 Ts) + 9a(5, Tsz)b(s) + ZZ

0 7.7 1

gziz;i(s, z5) ((GG'))i;]ds (23)

¢
Note that, in (23), [ gs(s,zs)G(s)dW, has expectation zero by virtue of independent
0

increments of the paths of a Wiener process and so (21) follows from (23).
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Theorem 3 is a general result which is now applied to interesting special cases to cover

some statistically interesting models.

Theorem 4.

a. Let z ~ Np(u,tI) and let g(t, z, ) be twice continuously differentiable. Then subject

to the existence of each integral,

d

SE((t,0) = Bt 2,00 + 5800(4,3, 1), (20

Identity (24) will be referred to as the Wiener Process Identity.

b. Let z ~ tx?(p) and let g(z) be twice continuously differentiable. Then, subject to the

existence of each integral,

%E (9(x)) = pE(¢'(z)) + 2E(zg" (z)). (25)

Identity (25) will be referred to as the Chi-square Identity.

c. Let £ ~ Np(u,t>¥o) and let g(t, z, u, Xo) be twice continuously differentiable. Then

subject to the existence of each integral,

%E(g(t, Ly Ky ZJ0)) = E(gt(ta Z, i, Z)0) + %tT(HgZO))' (26)

Identity (26) will be referred to as the Scaled Wiener Process Identity.
Proof:
a. In Theorem 3, take k = 1,b =0, and G = I,.

b. Part b. follows from part a. on taking g = 0 and g(¢, z, u) to be g(>_ z2).
=1

¢. In Theorem 3, take, k. =1,b=0, and G = 2(%.

2.5. Two Other Important Problems

Two statistically important cases not covered by the preceding sections are handled
here. These are: a. the case where x4, ..., z, are iid univariate normal with the mean and
the variance being both treated as unknown parameters, and b. the case of time series
data where z1,...,z, have a common mean yg but are not independent. In fact, a single

general result covers both cases and we present that below.
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2.5.1. The Identity

Theorem 5. Let c,m > 0. Suppose £ ~ N(u,ct),y ~ tx?(m), and suppose z,y are
independernit. Let g(z,y, p) satisfy the following conditions;

i. g is twice continuously differentiable in z and once continuously differentiable in
Y,
ii. g, g, are each 0(e®®ly*) for some 0 < a,k < co. Then

2 B, Y.) = SBlgea X,V ) + (B g (X, V). (20)

Identity (27) will be referred to as the Canonical Normal Identity.
Proof:

Step 1. Let pi(z, p,t) denote the density of z and let p2(y,t) denote the density of y.
Then,

0 c 02
JE— _ —— 2
5t T 2 2PV (28)
9 y m y 0 p2
d = — —_ — = —_ 2
an 8tp2 2t2p2 2tp2 t@ypz P (29)

on some calculations.

Step 2. Since z,y are independent, the joint density is given by

p(z,y, 1, t) = pr(x, p, t)p2(y, t).

Multiplying both sides by g(z,y, u), (27) follows on integration after some algebra.

Remark. If zy,...,z, are iild N(u,t), then (z,y) are to be understood as the jointly
n

sufficient statistic (Z, Y (z; — T)2). On the other hand, if z,,...,z, are jointly normal
=1
each with mean p and the covariance matrix t¥o, then (z,y) are to be understood as
1's;'s -1 I's5tz)?
= = 'y T — ———
(1’2511 A B Fa

), again the jointly sufficient statistic. Note that c is to be

in this case.

1
taken as
~ I'sstl

14



3. FROM PDES TO UNBIASED ESTIMATION

Of the large number of expectation identities presented in Section 2, some particular
ones have some interesting implications in the theory of unbiased estimation. The typical
result we will present will either characterize an unbiasedly estimable parametric function
or characterize parametric functions unbiasedly estimable by statistics of relevant natural
form. We would note here that there is a body of literature on existence of unbiased
estimates in special and general problems. One may see in particular Brown and Liu
(1993) and Doss and Sethuraman (1989).

3.1. Multivariate Normal and Multivariate Cauchy
First we state a convention subsequently assumed in the results of this section.

Convention. For any result specific to a given distribution in this section, by a statistic
g(X) we shall mean a function g(X) which satisfies the smoothness and growth conditions
previously imposed on g in Section 2 for the relevant expectation identity to hold.

3.1.1. Multivariate Normal

Theorem 6. Let £ ~ Np(u,tI). Let h = h(y,t) be a twice continuously differentiable

parametric function.

a. If h(y,t) has an unbiased estimate g(z), then h must satisfy the heat equation %h =
2ALh.

b. Conversely, if h satisfies the heat equation and if tli%1+ h(u,t) = g(u) exists, then g(z)
ﬁ

is an unbiased estimate of h provided E(g(z)) exists.
Proof:

a. If g(z) is an unbiased estimate of h(y,t), then, by the Heat Equation Identity (3),

d 1
—h=5E(bag). (30)

However, due to the location parameter structure, by a change of variable one has
E(dag) = [ (8.0)(@)plz, )i

= / (Azg)(z + p)p(z,0,t)dz

15



= Auh; (31)

substitution into (30) gives part a.

b. Part b. is a restatement of the result that a solution of the problem %h = A, h under

o0
ey ere . — . - 1 __1_(#__1:)2 .
the initial value condition tgr(l)l_!_ h(u,t) = g(p) is h(u,t) _{o e g(z)dzx;

see Folland (1992).

We will now describe some interesting consequences of the above result. Parts b. and

c. can be anticipated, but we give a formal proof.
Corollary 1.

a. Let h = h(u) be a twice continuously differentiable function of y. h is unbiasedly
estimable only if h is harmonic, in which case it is self-estimable, i.e., E(h(z)) = h(y),
provided E(h(z)) exists.

b. Let h = h(u) be a twice continuously differentiable function of y. Suppose h is

unbiasedly estimable. Then,
i. If h is radial, i.e., h = h(}|g||), then h must be a constant;
ii. If h is bounded, then A must be a constant;

iii. If h is integrable, then h = 0;

iv. If |h(g)] < a + b||y|| for some a,b > 0, then A must be linear; similarly, if
|h(p)] < a + b]|p||? for some a,b > 0, then h must be a quadratic.

c. Let h = h(t) be once continuously differentiable. h is unbiasedly estimable only if it

is a constant function.

d. Let p=1 and let h = h(p,t) be a function of the form f(u + cv/t) for some constant
¢ # 0. If f is twice continuously differentiable and f’(0) # 0, then h is not unbiasedly

estimable. In particular, the quantiles of z are not unbiasedly estimable.
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e. Let p = 1 and let h = h(u,t) be a bivariate polynomial in the mean p and the
standard deviation v/ (i.e., h(u,t) = Z cjp? (v/t)¥~7 for some k and constants c;).
=0
Then h(p,t) is unbiasedly estimable if and only if A(y,t) is a multiple of E(z*).

Proof:

a. This follows form part a. of Theorem 6, for Bth = 0, and hence A, h = 0. On the
other hand, thrgl_i_ h(p) = h(p) and so h is self-estimable.
-

b. For i. by part a., it follows that the function h(-) must satisfy the differential equation
W' (2) + (p—1)2E) — 0 at all z > 0 if A(||y||) is unbiasedly estimable.

For p = 2, this makes h(z) = alogz+ b for z > 0 and for p > 3, this makes
h(z) = az?P + b for z > 0, and so one cannot have h(||u||) to be in C?(RP) unless h is a

constant.

ii. follows from part a. and the fact that the only bounded harmonic functions are

constants;

iii. note that an integrable harmonic function must be identically zero; see Rudin

(1974) and also Proposition 8.1 in Axler, Bourdon and Ramey (1992).

Finally, for iv., by taking A = max (a, b), we have, respectively, |h(g)| < A(1+||gll*),i =
1,2, and the assertion follows from the fact that a harmonic function with this property is

necessarily a polynomial of degree i (e.g., see Axler, Bourdon and Ramey (1992)).
c. Again, as A, h = 0 now, %h is also 0.

d. Suppose f(u + cv/t) was unbiasedly estimable. By Theorem 6,

2\/— (.U"‘C\/_) h huw = f ”(#‘*'C\/E)

= cof'(p+evt) = 2\/2_51”'(# +evit). (32)
Consider now (p,t) lying on the one-dimensional curve u = —cv/t. Then, from (32),

f'(0) = 24/t£"(0). This forces f”'(0) to be not 0, implying ¢ to be i(ch,’,((%%, a constant,

thus a contradiction.

Since the quantiles of z are of the form u+ ®~1(p)+/t for some p, it follows that they

are not unbiasedly estimable.
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k
e. Let h(u,t) = 3 c;ju/ (Vt)* 7 be unbiasedly estimable and suppose without loss of
=0

‘7_
generality that c; = 1. By Theorem 6,

0 ko x_ k—1 rs —Z e
Ehzicot’; lte tzu—i-Zczu V)k—i2

16
2 Ou?

k

|
N

(i 4+ 1)( + 2)cipap’ (V)2 (33)

N =
|l
=}

3

By comparing coefficients of the powers of i on the two sides of (33), one gets cx—1 =
_ (b=2j+1)(k—2j+2)

Cp—3 = ... = 0 and Ck—2j Ck_2j+2,j Z 1. As Cr = 1, it follows

25
that cx—2; = ety = () 9 = (3) B(E72)% (VA)¥. Hence, h(,t) = B(X*) if
C = 1.

Remark. Theorem 6 is easily generalized to the case £ ~ Np(y,t%o). For instance, h(u)

is unbiasedly estimable if and only if h(Eé 1) is harmonic.

Example 1. By part a. of Corollary 1, smooth harmonic functions of g are unbiasedly self
estimable. Simple nonlinear examples are h(ui, p2) = e (a Sm p2+b Cos pa), 3uip —ud,

or any “quadratic contrast” Z a;p? in p dimensions with Z a; = 0.
i=1 i=1

3.1.2. Multivariate Cauchy

Proposition 4. Let ¢ ~ Cp(y,tI). Let h(y,t) be a twice continuously differentiable

parametric function.

a. If h(y,t) has an unbiased estimate g(z), then h must satisfy the wave equation %h—i—
A, h =0.

b. Conversely, if h satisfies the wave equation and if hm+ h(y,t) = g(u) exists, then g(z)
.%.

is an unbiased estimate of h provided E(g(z)) exists.
Proof: The argument is similar to that of Theorem 6 and is omitted.

Analogous to Corollary 1, one gets the following consequences of Proposition 4.

18



Corollary 2.
a. Parts a., b., and c. of Corollary 1 hold.

b. Let p =1 and let h(y,t) be a bivariate polynomial in u and ¢ (not /%) as defined in
Corollary 1. Then h(y,t) is not unbiasedly estimable.

Remark: It is therefore the case that harmonic functions h(u) of y are unbiasedly
estimable under both models as long as E(h(z)) exists. Theorem 6 and Proposition 4
show that there are also plenty of functions unbiasedly estimable under one model, but
not under the other model.

3.1.3. The Canonical Normal Case

Recall from Section 2.5 that the canonical normal case is when we have z ~ N(u,ct),y ~
tx?(m) and z,y are independent. Some interesting assertions can be made regarding un-

biased estimability in this case also. They are driven by identity (27).

Theorem 7. Let ¢,m > 0 and suppose z ~ N(u,ct),y ~ tx?(m), and z,y are indepen-

dent. Let h(u,t) be twice continuously differentiable in x4 and once in ¢.

a. If h(u,t) = h(p), then it is unbiasedly estimable by a function g(z) of z alone if and

only if A is linear in pu.

b. If h(u,t) = h(u), then it can be unbiasedly estimated by the extended class of functions
g1(z) + g2(y) if and only if h is a quadratic in p. Furthermore, g;(z) has to be a

quadratic in z and g¢»(y) has to be linear in y.

c. If h(u,t) = hi(p) + ha(t), then it can be unbiasedly estimated by a function g;(z) +
g2(y) only if hy is a quadratic in u. Furthermore, g,(z) has to be a quadratic in z,

but there is no further constraint on gs(y).

Proof: For each part, the key step is to rewrite the canonical normal identity (27) as

C 2 4
9 Blola,y) = ¢ %;Em(x,y)w LBy —a% o(z,9)). (34)

a. This is an immediate consequence of the above identity (34).
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b. Again, by (34),

0= gh"(u) + %E(ygé(y))

= S Bygy(y)) = —oh"(u). (35)

The RHS of (35) is a function of u and the LHS a function of ¢t. Consequently, each

side is a constant function, which shows A to be a quadratic.

Hence, from (35) again, E(y g5(y)) = at for some constant ‘a’, which by standard

completeness arguments forces g5(y) to be a constant.
Now, therefore, for constants «, 3,7, 7, 9§,
h(p) = au® + Bu+v = E(g1(z)) + E(6y +n), (36)
and hence g1(z) is a quadratic in z by another completeness argument.

c. The proof of this is quite similar to that of b. and we shall omit it.

4. Analysis of the Heat Equation Identity

The heat equation identity (3) of Section 2 showed that under certain conditions on a

function g(z), 2 E(9(z, 1)) = 1E(Azg(z, 1)) if £ ~ Np(u,tI). Stein (1973, 1981) showed

that for a vector-valued function h(z, u)) satisfying certain conditions, E((z—u) h(z, u)) =
tE(V - h(z,u)) if £ ~ Np(u,tI); this is known as Stein’s identity. It is known that Stein’s
identity characterizes the normal distribution in an appropriately precise sense; one may see

and Diaconis and Zabell (1991). The following two questions, therefore, emerge naturally:

Question 1. Does the heat equation identity characterize the normal distribution in any

precise sense?
Question 2. Isthere a connection between Stein’s identity and the heat equation identity?

We shall now address these two questions.

4.1. Characterization of the Normal Distribution

The characterization results below are for the one dimensional case. For part a.,
extension to the multivariate spherically symmetric case is apparent. For part b., however,

we do not presently have a multivariate analog.
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Theorem 8. Let C™(R) be the class of m times continuously differentiable functions and

C&° (R) be the class of infinitely differentiable functions with compact support.

a. Suppose z has a location scale parameter density %p(“’—\;—z’i) and p(-) is in C?(R).

Suppose the heat equation identity £ E(g(z)) = 2E(g”(z)) holds for all g in C$°(R).
Then p(z) = \/%—ﬂe"mz_z.

b. Let z ~ p(z|t) = e~ € B(t)h(z), where h(z) > 0,T(z) > 0,¢ > 0, 8 belongs to C* (R, ),

and the functions T, h belong to C?(R). Suppose % E(g(z)) = 1E(g"(z)) for all g in
C§°(R). Then p(z|t) is the density of N(u,t) for some constant u.

Proof:
Step 1. We shall take u to be 0.

a. Let ¢ be an element of Cs°(R). By hypothesis,

it =2 [ o0 garae () + i ()
= Bg"(z)

)da: (on integration by parts) V¢ > 0. (37)

I
\
Q
&
o | =
’ﬁ:
N
e

Hence, by using ¢t = 1,

[ 9@ (@) +ap!(2) + (@)} = 0 for all g in C(R)

= p(z) + zp'(z) + p(z) = a.e. (and hence everywhere) (38)

Step 3. One solution of (38) is p;(z) = ¢(z) = 71—276_%2—

of Abel’s identity (see,e.g., pp. 1132 in Gradsheyn and Ryzhik (1980)) one sees that

. By a direct application
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T 'u2
a second linearly independent solution is pg(z z) [ e’z du. Hence the general
0

T
solution of (38) is of the form ¢(z)(a+b [ eru ), of which only the casea =1, b=0

0
corresponds to a probability density. This completes part a.

b. Step 1. Following the first few lines of part a., one gets after some algebra,
h(z)(T'(z))? — tT" (z)h(z) — 2tT'(z)h' (z) + t2h" ()

)h
= 2h(z)T(z) + 2t° b I(( )) h(z)  Vt,Vn. (39)

Step 2. On letting t — 0, one therefore gets:

(T'(z))? — 2T(x) = 0, (40)

and hence T'(z) = (E_—zﬂ_)i for some constant p

Step 3. Substituting T'(z) = (—w—T“ﬁ in (39) and setting z = u, one now gets:

—th(p) + t2h" (u) = 2¢2 'IBBI((;))h(u) Vit >0
Lol W s (41)

B(t)  h(w
Step 4. From (41), it follows on separation of variables that it must be the case that
h"(u) = 0 and consequently, %((:)) = —a, ie., B(t) = 7 for some constant k.

Step 5. Since we already have T'(z) = @;L), this now forces h(z) to be a constant and
p(z|t) to be the N(u,t) density. This completes b.
2. Relation to the Stein Identity

We show that the heat equation identity (3) is equivalent to Stein’s identity in one
dimension and in more than one dimension, they are equivalent if Stein’s h(z, u) function

is the gradient Vg of some function g.
Theorem 9.
a. For every p > 1, Stein’s identity = Identity (3).
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b. For p =1, Identity (3) = Stein’s identity.

c. For p > 1, Identity (3) = Stein’s identity if Stein’s h(z, ) = Vzg(z, u) for some g

satisfying the growth conditions in part a. of Theorem 1.
Proof:

a. The proof given here is for p = 1, but with just a notational change, the same proof

works for p > 1.

Step 1. Given g as in identity (3), define h(z, ) = g, (x, ). Then by Stein’s identity,

tE(9oa(2, 1) = tE(he(x, n)) = E((z — p)h(z, p)). (42)

Step 2. However,
E((z — p)h(z, 1))

1
N / (z ~ p) e~ 31 g (2, p)dx

™

= \/E/ \/12_7Tze‘%z2gw(u+zx/i, p)dz, (43)

[N
o~

by a change of variable.

Step 3. Write (43) as

2t/\/—12_;‘27% (,u—l—z\f,udz—2t—l——/\/_ g(p+ 2Vt p)dz (44)

Step 4. Now, make the change the change of variable back to z = u + zv/t, yielding
(44)= 2t 2 E(g(z, p1)), hence establishing identity (3).

b. Step 1. Given h as in Stein’s identity, define g(z, u) = [ h(u, u)du.

O~

Step 2. Thus, E(g(z))

oo = 0
1 (z—p)?
= 2t h(u)dudz —
0/0/\/271'756 (u) * /

oo 00 1 0

:// e 53 e h(u)dzdu — /
27t

0 foe]

u —




ol o [

Step 3. By the heat equation identity,

& B(9(2)) = 3 B(0ua(z)
= S B(ha(a)) (46)

Step 4. Therefore, by (45),

(NN
=
Py
-
8
I
|
| —— |
0\8
—
H
|
LS
N
I~
S
=
—
——
=
&
j=
e
| |
g ~—~—o
WA
N
I
!
=
N~
=
=
QL
I
| F—

. u—p , [u—
_ / e ¢< v )h(u)du, (47)
on differentiation.

But (47) = 3 E((z — p)h(z)), yielding Stein’s identity.

c. The same argument as in part b. applies on using the multivariate analog of the
fundamental theorem of calculus, i.e., if z € RP, if h = Vg for some g in C}(RP), and if
o :[0,1] — RP is a C! path joining Q and z, then the line integral of h along o satisfies
[h-dS =g(c(1) — o(0)) (see, e.g., Marsden and Tromba (1996)).

5. FIRST APPLICATIONS OF THE HEAT EQUATION IDENTITY

We now start to provide various applications of identity (3) and its generalization
(15), the generalized heat equation identity. First we shall present a moment formula.
This formula is simple to derive but an important one, in the sense that a very large
number of the applications in this section and the subsequent sections will all flow from

this moment formula.
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5.1. A General Moment Formula

The moment formula given immediately below is for a function g¢(z,y) when
& ~ Np(u,tI),p > 1. Since the moment formula is derived from the heat equation identity,
g has to meet the assumptions of that identity. g has to satisfy one additional technical

assumption that will almost always hold in applications.

Proposition 5. Let £ ~ Np(y,tI),p > 1. Let g(z, u) satisfy the assumptions of identity
(3) and in addition assume that E(]Azg(z, #)|) < co. Then

E(g(z, 1) = 9(&, 1) + e(ps, 1),

2
where (1) = ey ca)lle - P -, By, )

2t

Proof:

Step 1. By identity (3), for s > 0, ZEy s(g9(z, 4)) = 3 Ep,s(Azg) and it follows that for
every fixed p, %Eg,s (g9(z, 1)) is continuous in s. Therefore it can be integrated to yield,

by the Fundamental Theorem of calculus:

Ey(9(z, p) — 9y, p)

0
%Eg,s(g(%’, u))ds

[\3|p—l O\“
o\ﬂ_
~
1
L

Step 2. Now,

/ ! ez 14l (Amg)d:cds

1 LAl
= g /(Amg)/ —Sp—/Z—deq‘; (50)
0



It is for this application of Fubini’s theorem that the additional assumption F|A,g| < co

is needed.

Step 3. Now if one transforms s to say u = % in the inner integral, then formula (48)

follows after a few lines of algebra.
The generalization to £ ~ Np(u,tX0) is the following.

Proposition 6. Let z ~ Np(u,t3),p > 1. Let g(z, g, Xo) satisfy the assumptions of
identity (15) and in addition assume that E(|tr(HyX¢)|) < co. Then

E(Q(CE, i, Z)0)) = g(/:.l'v K, 20) + 6(207H” t))

1 _
where e(Zo, g, t) = eg(Zo, 4, t) = —5——1 /tT(ngo)((@ )l R ) s R
4713 |EO|2 2
— Ve —
1“(3 o (2 g)>d@' (51)
2 2t

5.2. Reduction to Useful Forms

We will now show that the general moment formula (48) reduces to more useful forms.

The reduction presented below is as follows:

a. for p =1,2, and 3, formula (48) will be used to establish a lower as well as an upper
bound on E(g(z, u)) for general g as in Proposition 5. Among the immediate appli-
cations of these bounds are an improvement as well as reversal of Jensen’s inequality

for convex functions;

b. for p > 4, formula (48) will in fact be reduced to a considerably more useful exact
form if p is even. This latter exact formula (formula (61) below) for E(g(z, u)) is a
surprising reduction and leads to lower and upper bounds again. We will see in Section
6.1 the application of these to construction of simple to use but fully analytical bounds
on the risks of formal Bayes estimates of . The case of odd p > 5 will not be reported

here, but the bounds (slightly complex) can be obtained similarly.

5.2.1. A Technical Lemma

Lemma 1. Let z > 0.

a. For p< 3,1"(% - 1,z> > : (52)
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vz

b. For pzl,F(%—l,z) <

For p = 2,I‘<§ - 1,2) < e #(1+ |log 2|);

—Zz

For p:3,I‘<%—1,z> < E ;

z

Il
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|
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|

©
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I !
© N

sy

c. If p>4 andis even, F(% — 1,z)
Proof:

a. Use the representation that for a < 1,

« s t1—a

—z —ty—

INa,z) = c Z /ez—}—t dt
0

(e.g., see pp. 941 in Gradshteyn and Ryzhik (1980))

=e_zz°‘-E< ! /TNGamma(l—a)>

T+ 2z

[ e—Z

b. The case p = 1 is immediate.

Ifp=2,T(2 —1,2) = [ € dt. If z > 1, this is evidently < e™*. If z < I,
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< e *(|log z| +1).

Forp=3,T(£ -1,2) f % (see inequality (1.05) on pp. 67 in Olver (1997)).
z

c. This is just a well known representation of the Poisson CDF.

5.2.2. Upper and Lower Bounds

We provide below upper bounds on E(g(z, »)) for fairly general smooth functions and
lower bounds if the function g is subharmonic, i.e, Azg > 0 (convex for p = 1). The
interesting thing is that the bounds only involve the second order derivatives and yet they
are not Taylor expansion results: normality is playing a role. Also, the bounds for p = 1
provide a reversal as well as an improvement of Jensen’s inequality for expectations of

convex functions; the reversal is part a. and the improvement is in part b.

Theorem 10. Let X ~ Np(u,tI),p > 1, and let g(z, &) be any function as in Proposition
5.

a. Ifp=1,

E(g(z,pn) < g(p, p) +t - E(|gze(z, 1)]). (58)

If p=2,




Ifp=3

(60)

E(g(z,p)) < glu,pu)+t- E<M)-

Z—g)12

t

If p > 4 and is even one has the equality

b. If p =1 and ¢ is known to be convex,

Elofa,) > o(u) + ¢ B( £ ). (62

If p =2 and g is subharmonic,

Agg(z, p
Blole,0) = o)+ ¢ B gt ). (63
t
If p = 3 and g is subharmonic,
Aa:g z,
Blola,) > o) + - B( gt ). (64)
t

Proof: The bounds for p = 1,2, 3 and the equality of p > 4 all follow on combining

the basic moment formula (48) with Lemma 1; we omit the calculational details.

5.2.3. Two Short Examples

Although the more substantive applications are postponed till later sections, we will

present two examples briefly to create a context for the bounds of Theorem 10.

Example 2. Marginal Density in Bayesian Statistics.
Suppose z ~ Np(y,t]) and we want to estimate y. A recently popular prior is the t-prior

with density

G 1 .
7r(H’) - (aﬂ_)p/zl—\(%) (1 + %&)QTM ? (65)
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see Berger (1986).

The marginal density of z is just

m(z) =/ 1 _nz-pn?

T L L (66)

which is therefore E(7(Y)) when Y ~ N,(z,tI). 7(-) has all the properties needed and so
Theorem 10 is applicable. For instance, for specificity if we choose o = 1 (i.e., the prior
is a Cauchy prior) and p = 3, then on calculations, the Laplacian of 7 is wsz((ll:'ﬁrqulL—l))‘l And
s0, if we apply (60), then we have, uniformly in z,m(z) < n(z) + 12 " a simple bound (of

the correct order).

Example 3. Improving on Jensen’s Inequality. Of course, in general, for a convex
function g, one only can assert that E(g(X)) > g(E(X)). (62) says that due to normality,
we can say more. To be specific take Z ~ N(0,1) and a symmetric convex function
9(2) = f(z%). Thus, g"(2) = 2(f'(22) +2:2f"(22)). So i f/(t) > a > 0 and F(t) > b > 0,
then g”(z) > 2(a + 2b2°) and so, if we apply (62), then we get

a+ 2b72

E(9(2)) >¢(0) + e

Il

9(0)+ 40+ (6(/5) ~ ek 7 (66 - a)
g(0) + .54a + .766, (67)

as can be seen by exact computation of E(Wi_i_—k) for a chisquare(1) random variable W.

This is quite an improvement over what we can get from Jensen’s inequality.

6. APPLICATIONS TO DECISION THEORY

The heat equation identity (3) and the canonical normal identity (15) are now used
to study mean squared errors of estimates of location parameters in p dimensions, p > 1.

Two principal directions are pursued:

i) provide bounds and an approximation to the mean squared error of an estimate of
a multivariate normal mean. The approximation is compared to one that would

arise naturally from Stein’s (1981) unbiased estimate of risk:
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ii) prove, by using the canonical normal identity, the inadmissibility of z for estimat-
ing the location parameter of a multivariate ¢ distribution in 3 or more dimensions.
Along the way, we show that Stein’s identity for the normal distribution holds
as an inequality for ¢ distributions and his unbiased estimate of risk is now an

upwardly biased estimate of risk, under a condition.

6.1. Estimation of a Multivariate Normal Mean
For simplicity of presentation and notation, only the case g ~ Np(u,tI) is presented.
First we give lower and upper bounds on the risk of an estimate §(z).
6.1.1. Bounds and Approximations for the Risk Function
Theorem 11.

Let z ~ Np(u,tI),p > 1 and let §(z) be any three times differentiable estimate of
such that [|§(z)|| and Ad;(z) for each i are 0(e!IZ!l) for some 0 < ¢ < co. Then,

Eyi|lé(z) — pl?

— l3) ~ ulP + [ Eu{ 1V6:()|2

M I

N (5¢(~’E)—wi)A@'(éLf)+S'A(V'<§(~’£))}d8 (68)

1

™.
I

As noted in Section 2, in the above V - §(z) denotes the divergence

We defer the proof of Theorem 11 in order to first construct bounds and an approximation
for the risk E||§(z) — p||*> by using the result (68) of Theorem 11. The approximation will

be tested on an example. The following notation is used.

Notation. Given §(z) as in Theorem 11, denote

Di(z) = z 176:(z)][2 + ; (6:(z) — 2:) A6 ()

Dy(z) = A(V-4(z))

(69)
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Corollary 3. For §(z) as in Theorem 11,
;2
18(w) = wll* +¢ - inf D () + 5 - inf Dalg)
< Epgllo(z) — pll?

t2
<118(s) = pll” +¢ - supDs(2) + 5 - sup Daz)- (70)

Note that (70) is immediate from Theorem 11. For most common estimates, the bounds
in (70) are nontrivial (i.e., not +00). For any linear estimate cz + o, the lower and upper

bounds coincide with the exact risk. The average, i.e., lower bound in (70)+2upper bound in (70),

has served well in a few cases we tried. One such case will be reported as an example. The

approximation to the risk function is presented next.

By Theorem 11, the risk function equals ||§(u) — pl|* + ft Ey s{D1(z) + sD2(z)}ds. In
applications, the observation denoted here as z will corresp%nd to the sample mean of n
observations and so the variance parameter { = O(%) The “first approximation” to the
risk function replaces ‘Eg,s{Dl (z) + sD2(z)} by D1(u) + sD2(u). In other words, the first

approximation is

R(p,t,0) ~ [|6(p) — pll® +tD1(k) + = - Da2(p), (71)

Note that the approximation R,(u,t,d) is not an estimate based on z for the true risk as
Stein’s unbiased estimate of risk is. But still there is a basis for comparison. Recall that

the Stein unbiased estimate is given as
R(u,t,8) = By{pt +118(z) — zl|* + 2tV - (&(z) — 2)}- (72)
So an approximation analogous to (71) will be
R(u,t,9) = [|8(w) — ull* + 2tV - (8(u) — p) + pt, (73)
= Ry(p,1, ) ( say)-

Inspection of (71) and (73) shows that R} involves terms up to the linear order in ¢ and the

first partials of § in x and R, involves terms up to the order ¢? and the third order partials
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of § in y. They are analogously constructed but different in form. We now compare R,

and Ry in an illustrative example.

6.1.2. Numerical Hlustration

Example 4. Let z1,...2, “®N(u,1) so that the sufficient statistic T ~ N(u,t) with
t= % As a fair test case, we take n = 16, a sample size that is neither large nor too small.
To have our notation consistent with the results above, we will denote by simply z. As
the estimate §(z), we will use a Bayes estimate. The prior is the double exponential prior
with density n(u) = %e"“'. This prior has several quite special properties: it satisfies
the Brown-Hwang (1982) gradient property; it arises as an asymptotically default proper
prior in a natural way, as shown in Delampady et al (2000); and it is one of the rare

nonconjugate priors for which the Bayes estimate can be written in a closed form.

Indeed, the Bayes estimate §(X) = X + t%, where m(z) = e%_””@(m—ﬁt) + e3t®

(1- <I>(“’—\'/";)) is the marginal density of X under this prior; see Brown (1986). Thus both
Ro(p,t,0) and Ry(u,t,8) are available in closed form. The exact risk function R(p,t,0) is
not available in closed form, but is computable by numerical integration of Stein’s unbiased
estimate of risk (or by simulation also). First we present a small table. F igure 1 shows
in more detail that R,(u,t,8) is a considerably better approximation to the true risk
function than Ry(u,t,6). The difference is especially visible for p near 0. In this example,

our proposal R, seems to work well.

i} Exact Risk R, Ry

0 .0469 .0464 .0402
.25 .0509 .0497 .0489
.5 .0586 .0586 .0615
.75 .0639 .0649 .0659
1 .0660 .0663 .0664
2 .0664 .0664 .0664
5 .0664 .0664 .0664

We now indicate the proof of Theorem 11.
6.1.3. The Proof.
Proof of Theorem 11: The proof directly uses the heat equation identity (3).
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Step 1. By identity (3), if one lets g(z, ) = ||d(z) — u||?, then,

1
R(ut,8) = 180) - sl + 5 [ Bua(Bag)ds
0
Step 2. Now,
0 0
6_xjg = 22(51 - /h)'a—:;]fdz,
=1
92 P00, 92

p P
and hence A, g = 22 ||Vc5i||2 + 22(52- — ;) AS;

=1 =1

(74)

p p p
i=1 i=1 =1

Step 3. By Stein’s identity,

L9 92
Ey.s((zi — pi)Ad;) = Sj; P a—a:?5i,

P
and hence Eg,s(Z(ﬂvz‘ — pi)Ad;)

=1

Step 4. Substituting (75) and (76) into (74) yields the result (68) of Theorem 11.

6.2. A Stein-Inequality for ¢ Distributions
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Diaconis and Zabell (1991) showed that the identity E((X — p)h(X)) = E(h (X))
cannot hold for all C}(R) functions except when X ~ N (i, 1). Interestingly, the inequality
E((T — ph(T)) > 2 E(W(T)) does hold if T ~ t(u, m) and if h(-) is monotone nonde-
creasing, as we show below. In fact, we give a multidimensional version. This can be called
a Stein inequality for ¢ distributions. The previously derived identity (27) is the key. We
shall also see how an upwardly biased estimate of risk and thence certain inadmissibility

results follow from this inequality.

6.2.1. The Inequality

Lemma 2. Let Z ~ Ny (0, £1),n,p > 1,Y ~ tx*(m),m+p > 2, and suppose Y and Z are
vmnZ

independent. Let Ty = . Suppose A : RP — RP has the following properties:

i h = Vf for some scalar function f

ox; ~/ =

Y4
iV-h=> 2 hiz)<0.
=1

a Then, E(Toh(To)) < 25 E(V - M(To)). (77)

b If for a given u, T = To + p, where T is as defined above, then,

m

E(T - _—
(@ m-+p—2

)'B(T)) < E(V - h(T)). (78)

=

Proof: The proof uses the multidimensional version of the canonical normal identity

(27). In the notation of the present lemma, the multidimensional version is:

Step 1. If a scalar function g(z,y) is twice continuously differentiable in z and once in

y, and if g, Vg are each O(e®lIZlly*) for some 0 < a, k < 0o, then

2 B(9(2,Y)) = 5 B(Awa(Z,Y)) + L B(¥)a(2,7)). (79)

Step 2. Let h and f be as in the statement of the lemma, i.e., h = Vf. For this f, define
a function g(z,y) as g(z,y) = f (—"jflg) The multivariate identity (79) will be applied to
Y

this g. Note that the distribution of g does not depend on ¢, and so %E(g(Z, Y))=0.
Step 3. In a straightforward manner,
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1 p
and  gy(z,9) = —5= > toihi(to), (80)
2y =1
where we have used £y to denote mng.
VY
Step 4. Therefore, by identity (79),
B> Tuuhi(To)) = mt - 5 T 2T0) (81)
e 0:/44\L 0 - Y .

Step 5. Treating ¢ as a parameter as merely a technical device, we see that Y +nZ'Z is a

complete sufficient statistic for ¢, and so by Basu’s (1956) theorem, Ty and Y +nZ’Z are

independent.

Hence,

E(;Tmhi(fo)) — mt - E(#@)

V - h(To)
< . _— 7
= mt E<Y+nZ’Z>

(since by assumption V - h < 0)

=mt - E(V - h(To)) E(YﬁW)

m
=" R(T 2
m+p_2E(V h(To)), (82)
Y+nZ'Z

where the last line is a consequence of the x2(m + p) distribution for n .

(82) proves part a of Lemma 2. Part b follows from part a.

Corollary 4. Let f : RP — R! be superharmonic and define h = Vf. Then

m

B(T - /b)) < —"—

E(V - h(T)).
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Corollary 4 increases the applicability of Lemma 2 by demonstrating how to construct
the function h as in Lemma 2. Its proof is just a restatement of the Laplacian property
Af <0.

6.3. Proving Inadmissibility from Biased Estimates of Risk

Lemma 2 and Corollary 4 permit construction of an upwardly biased estimate of the
risk of an estimate T+ h(T) of the location parameter u, analogous to Stein’s unbiased
estimate of risk in the normal case. The biased estimate converges pointwise to Stein’s
unbiased estimate as the degrees of freedom, m, of T tend to infinity. By suitable selection
of the function A(T), uniform domination over T still follows, although the risk estimate

is biased.

Explicit estimates dominating T for p > 3 are known; however, unlike the common
methods that use the mixture structure (normal mixture) and covariance inequalities,
Lemma 2 permits one to follow a more direct route squarely in the spirit of Stein (1981) for
the normal case; see Cellier and Fourdrinier (1995, Proposition 2.3.1) for another context.
In addition, the famous Stein superharmonicity result for the normal case also follows for

the t case for all p > 3.

Proposition 7. A Biased Estimate of Risk. Let T' ~ t,(m, u) and let h(T) be any
function satisfying inequality (78). For m > 2,

E(IT + &(T) — ¢ll*) = E(IT - pl?)

2m
SE(H@HZ‘FmV'h)- (83)

Proposition 7 is evident because h is assumed to satisfy inequality (78). The domination

result to follow from this is given next.

Proposition 8. Let T' ~ t,(m,u),p > 3,m > 2. Let h = V[ for some scalar function f

and suppose ||h]|2 + mj’;_zv +h < 0. Then T + h(T) dominates T in risk for all p. In

particular, the following special results hold:

|T
T

|22) )T dominates T' if () is differentiable, monotone

a. An estimate of the form (1 — T(l

2m
m+p—2

nondecreasing, and 0 < r(z) < (p — 2), or more generally, if
2m 4m

r?(2) — m(p —2)r(z) — mzr’(z) <0,
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for all z > 0;

b. An estimate of the form T + V log m(T) dominates T if m : R? — R! is a positive

superharmonic function.

Proof: The general statement that T + A(T) dominates T if h = V[ and

[|Al2 + mig_zv - h < 0 is an immediate consequence of Proposition 7 and Lemma 2.

The special cases a and b both follow on calculation of ||A||? + mf_’;_zv - h for h(T') of the

respective forms in a and b; we omit the calculation.

6.4 Discussion

Evidently, the condition ||A||2 + 22—V - h < 0 is a stronger condition than ||A||? +

m+p

2V -h £ 0. On the other hand, Proposition 8 does not make additional other assumptions,
as in Brandwein and Strawderman (1990, pp. 363 and 1991, Theorem 2.1 and Example
2.1). Another positive feature is that the Stein superharmonicity result for the normal

case is given for the ¢ case also (part b. in Proposition 8) for p > 3.

Most of all, the route adopted is directly in the spirit of Stein, as described in section

6.3. So, on balance, there are both pros and cons of the methods presented here.

7. APPLICATION TO BAYESIAN STATISTICS

The expectation identities presented by us can also be usefully exploited to study
Bayes risks in point estimation problems. Specifically, the expectation identities lead to
identities and bounds for Bayes risks. We will show only the normal case, i.e. only such
results that follow from the heat equation and the canonical normal identity for ease of
presentation. The Bayes risk identities relate the Bayes risk to oscillations of the Bayes
estimate; the Bayes risk bounds show methods to bound the Bayes risk from below by
expressions similar to those in the now classic Borovkov-Brown—Gajek—Sakhanienko lower
bounds for Bayes risk. In fact, as we shall see, in oné case our lower bound is exactly the
one previously obtained by these authors, by entirely different methods. We will give a

more thorough discussion of this issue after the results are presented.
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7.1. A Bayes Risk Identity

Proposition 9. Let z ~ Np(u,t>.),p > 1, and suppose y has a prior G with posterior
mean d¢. Then the Bayes risk r(t,G) = r(t,G,dg) of the Bayes estimate d¢ satisfies the
identity

d P
" Enl) (Véck) D (Véck), (84)
k=1

where g x is the kth coordinate of ¢ and E,, denotes marginal expectation.

Corollary 5. Let z ~ N(u,t) and let p ~ G. Then the Bayes risk r(t, G) satisfies

%r(t, G) = Enbl(z). (85)

Since the proof of (84) is essentially the same as that of (85), we will just prove
Corollary 5.

Proof of Corollary 5: Consider the function g(z,u,t) = (6g(z,t) — p)?>. By the
expectation identity (3),

2r(,6) = % [ Bulale,n, )4G0

= %EgEu(g;'(x, B, t) + 2 / / (6 (z,t) — ﬂ)%éa(w,t)p(wlu, t)dzdG(p);(86)

now note that the second term in (86) is zero because dg(z,t) is E(u|z). In addition, from

the definition of g,
9x(z, 1, t) = 2(8c(x, t) — p)dg(z, 1)
= g (@ t) = 200G (2,1))? + 2(0g(z, t) — 1)3G (2, 1).
Of these, EgE,((dg(z,t)—p)d&(x,t)) = 0 again, and so from (86), Lr(t,G) = En(0g(z, )%

Remark: A minor but immediate consequence of Proposition 9 is that for any prior G,
the Bayes risk is always an increasing function of t. Of course, this increasingness in ¢ will
follow from simply comparison of experiments results. But Proposition 9 goes further by

laying out explicitly what r(t G) equals, not just that it is > 0.
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7.2. Bayes Risk Bounds

We will now show how one can obtain lower bounds on r(¢, G) by using the identity of
Proposition 9. The derivation of the bound, as we shall now see, may seem to be strange!
Not only shall we use the apparently new identity (85), but a well known old Bayes risk
identity for the normal case, namely the Brown identity for Bayes risk (Brown (1971,
1986); see also Lehmann and Casella (1998)). The proof manipulates the tautology that
if two formulas exactly represent the same quantity (in this case the Bayes risk r(t, G)),
then the expressions implied by the two formulas must be the same. As regards the lower
bound itself, perhaps the comment most worth making is that the bound is the classic
Borovkov-Brown-Gajek—Sakhanienko bound (Corollary 2.3 in Brown and Gajek (1986)), -
but the method is different. For example, we never use any Cramer-Rao type inequalities
in our proof. There must be some connections, it seems. The bound in Proposition 10

below is attained when G is a normal prior.

Proposition 10 Let z ~ N(u,t) and let 4 ~ G. Then

t

= T (@) (87)

r(t, G)

where I(g) denotes the Fisher information of G. (Note that (87) is formally valid even if
I(G) = o0)

Proof: Step 1. The Bayes estimate dg(z) itself has the representation

Sc(z,t) =z + t::g))
/ _ m’(x)  (m'(z))?
= g(z,t) =1+t (@) t ()

Note: we should write m; for m, but the ‘t’ is being suppressed
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Step 2. By Step 1 and Corollary 5,

d
a’r(t, G)

= Em(élG(x’ t))z

> (B (85, 1))

o0
_ (1= tI(m))2, (as / m" (z)dz = 0)
—o0
where I(m) is the Fisher information of the marginal.

Step 3. The Brown identity says
r(t,G) =t — t2I(m).

Step 4. By Step 2 and Step 3,
d

ar(t,G)

= dt 21 Step 3
= —(t —*I(m)) (Step 3)
=1—2tI(m) — tZ%I(m)

> (1 — tI(m))? (Step 2)

=1 —2tI(m) + t*I*(m)

= — %I(m) > I*(m)

d 1
———>1 Vt>0
“ &% Im) - >

Step 5. Therefore, V¢ > 0,




Step 6. Using the Brown identity (Step 3) again,

t21(G)
t
TH(G) 1

completing the proof.

7.3. Discussion

Bounds similar to the one in Proposition 10 are obtainable by our methods for the
case £ ~ Np(g,tX) by using Proposition 9 and the Brown identity for (¢, G) and ég (z,t)
for the N,(u,tX) case. These would be even more useful compared to the univariate case

described in Proposition 10.

8. APPLICATIONS TO HARMONIC, SUBHARMONIC AND
POLYHARMONIC FUNCTIONS
We previously saw in Section 3 how our expectation identities connect unbiased esti-
mation to harmonicity. Now we will describe further implications and applications of these
identities for harmonic, subharmonic and polyharmonic functions. The results are of two

general types:

i) We show that certain very well known properties of harmonic functions follow

from an easy application of the heat equation identity;

ii) We present statistical properties of harmonic, subharmonic and polyharmonic
functions. For example, if X ~ N,(0,tI), how does the variance of a harmonic
function behave; what can we say about the covariance between two harmonic
functions, etc. For polyharmonic functions, specifically, we are able to give a
general explicit formula for their covariance with || X||>™. These exact formulas,
we believe, may have concrete applications to the topic of nonlinear principal

components. Now we present the results.

8.1. Unboundedness of Nonconstant Harmonic Functions

The result stated below is very well known, and a myriad of other proofs can be given
(e.g. by using properties of the Brownian motion). But we wish to indicate that it also

follows from an application of the moment formula (48).
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Proposition 11.
a) Let g be a nonconstant C2 harmonic function in the plane. Then ¢ is unbounded.

b) Let g be a nonconstant C harmonic function in RP,p > 3. If,

either liminf ||z|| [|[Vg(z)|] > 0
llz[|—+0

or liminf ||z|| [|[Vg(z)| >0,

]| =00
then ¢ is unbounded.
Proof:

a) For the purpose of this proof, consider X ~ N5(0,¢I). By formula (48),

B (X) = %(0) + 3= [ (a0, 120 0
=%(0)+ 5 [UIValP +929)70, 2 )
=220+ 5= [ 19010, 12l (58)

as g is by assumption harmonic.

From (88), by Fatou’s lemma,

12

||z
oF )dz

= 00 (89)

.. 1 ..
limyinf B, g°(X) > ¢(0) + 5~ / IVg|Ptimint T(0,

because tl_i)m INQ] ﬂ%l—z) = oo a.e. and ||Vg||? > 0 on a set of positive Lebesgue
o

measure, again by the assumptions on g. (89) forces g to be unbounded.
b) Once again, by formula (48), if X ~ N,(0,tI),

! IValPllzll? @ [z

E.¢*(X) = ¢%(0 1, —=—)d
tg (,.) g (~)+27Tp/2 ”-'EHP 2 ) 2% ) Z
) -1 r1IvelPlizl®
- : 2 2 2 -
= liminf g (X) 2 9°(0) + D)2 IR dz. (90)
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Now suppose |l|ia§ﬂinf“@” IVg(z)|]] = ¢ > 0. Then from (90), one gets
L||—0o0

liminf Byg*(X) = oo because [ jgypdz = oo for any M. If liminf||(z)]
t—o0 ~

l1z|1>M [1Z||—0
[|[Vg(z)l| > 0, the proof is the same, and this establishes part b).

8.2. Mean and Variance Properties of Harmonic and Subharmonic Functions

The results in this section say that the mean and the variance of harmonic and subhar-

monic functions under the N(Q,¢I) distribution satisfy certain monotonicity and convexity

properties and these properties follow from our expectation identity (3).

Proposition 12. Let g be a Cy function on RP. Let also z ~ Np(u,tI).

a.

b.

g is harmonic if and only if Ey +g(z) = g(u)-

Suppose g also satisfies the weak growth condition g(z) < ce®1ZIl for some ¢, > 0.

Then g is subharmonic if and only if Eg,tg(g) is nondecreasing in t.

. If g is harmonic, then Vary ;g(z) is nondecreasing in t.

. If g is subharmonic, E'H,tg(ag) is convex in log t when p = 2, and convex in t2~? for

p> 2.

Proof:

a. By formula (48), Ey:g(z) = g(p) if g is harmonic. Conversely, if Ey9(z) = g(u),

C.

then by the heat equation identity, Ey+(Ag(z)) = 0; in particular, By :—1(Ag(X)) =
0 Vu. By the completeness property of the N(u,I) family, Ag = 0 a.e. and hence

Ag =0 as g is in C2 by assumption. So g is harmonic.

. If g is subharmonic, then by the heat equation identity, %Egjtg(q;) > 0andso Ey 1g9(z)

is nondecreasing in t. Conversely, if Ey:g(z) is nondecreasing in ¢, then by the
heat equation identity, Ey:(Ag(z)) > 0 Vg,Vt > 0. By letting ¢ — 0,Ag(p) >
0 Vu provided we can show that %1_{% Eu:(Ag(z)) = Ag(p). This is true by the
dominated convergence theorem under the growth condition imposed in part b. So g

is subharmonic.

Since g is harmonic, by part a.
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Vary 19(z) = Epg*(z) — 9° (1)

0 0
= o1 Varg,tg(ﬂy) = &E,g,tgz(@)
= %Eg,t(Ag?‘(ag)) (by the heat equation identity)

= Ey+(IIVg(@)I*) (. Ag® = 29Ag +||Vy||* = ||Vg]?)

>0

Iy

implying that Vary, ;g(X) is nondecreasing in ¢.

d. We give the proof for the case p = 2; for p > 2, the proof is more or less exactly the

same.

Denote Ey :g(z) (for given p) by f(t). To show that f is convex in log ¢, we need to
show that f(e®) is convex in s.
From formula (48),

1 z —
o [@oro 22 g

ft) =g(p) +

2
and so it is enough to show that I'(0, ”562_6 = I ) is convex in s. By straightforward differen-

tiation, I'(0, <) is convex in s for ¢ > 0, and this completes the proof.

8.3. Covariance Properties

Harmonic and polyharmonic functions satisfy a number of interesting covariance prop-
erties under the N(0,¢J) distribution. The case of harmonic functions is presented sep-
arately first as harmonic functions are more popular in some sense. For polyharmonic
functions, we will present a general formula for their covariance with [|X||?™. What is
special about this formula that it is worth presenting? Roughly speaking, what is special
is that the covariance can be found by only knowing the iterated Laplacians of the poly-
harmonic function at 0, i.e., across the entire class a global quantity can be found exactly

by only knowing a few local numbers. We will explain it precisely during the derivation.
Proposition 13. Let g, h be C2 harmonic functions and let X ~ Ny (g, tI).
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a. Covy=os(llzl% 9(z)) =0 ¥t
b. Covyt(9(z), h(z)) > 0 Vp,t if and only if (Vg)'(z)Vh(z) > 0 Vi.
Proof:

a. The proof uses both the Stein identity and the heat equation identity. First,

Cov,,(llzll*, 9(2)) = Eg .(llzll*9(2)) — ptEg ,9(z)

= Eg,(I1X|*g(z)) - ptg(0),

as g is harmonic. Hence,

2 Covg (I, 9(2)) = 5By (llzll?9(z) ~ po(0)
— B0 (A(l2lPg(2))) - po(0). (o1)

8
But A(||z]|*g(z)) = ||z||Ag + 2pg(z) + 4Nz 5—g

0
= 2pg(z) + 4¥z;—g,since Ag = 0.
8.’1?7;

0
Therefore, E,(A(llzll*9(2))) = 2pBq .9(2) + 4E ,(Xi 5 —9)

82
= 2pE,,9(z) + 4tEg (X5 59)

(by Stein’s identity)
= 2pg(0), (92)

as g is harmonic.

Substitution of (92) into (91) yields

d

7 Covg,,(llzll*, 9(z)) = 0.

Hence, Covo’t(||@||2g(ay)) is a constant and this constant must be 0 as can be seen by the

dominated convergence theorem on letting ¢ — 0.
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b. The structural distinction now is that we have X ~ Np(u,tI) and the result says that
the only way two harmonic functions g and & can have a nonnegative correlation under
all g and t is that the inner product of their gradient vectors is always nonnegative
(if we take g(X) = ¢/ X and h(X ) = d'X, two linear functions, we see immediately

that we must have ¢'d > 0 for g, h to have nonnegative correlation).
The proof of part b) is essentially the same as of part a).

For example, for the if part,

ditCOVg,t(g(@)v h(@'))

= %[Eg,t(g(g)h(@)) — g(w)h(p)]

= %Eg,t [A(gh)]
= S ByslhAg -+ gAh 1 2(Vg) (V)

= Eus[(Vg)' (Vh))
>0, if (Vg)'(Vh) > 0 Ve,

and hence Covy +(g(z), h(z)) > 0 Vpu, t as can be seen on letting ¢ — 0. The only if part is

proved similarly.

8.4. Covariance Formulas for Polyharmonic Functions

In the preceding section, we proved that if X ~ N(0,tI), then the covariance between
| X||? and any harmonic function g(X) is zero. We show in this section that in fact for
any polyharmonic function g(X), the covariance between || X][*™ and g(X) admits a very
clean general formular that depends only on the local behavior of g at 0. The derivation
of this general covariance formula uses what is known to potential theorists as the finite
Almansi expansion of a polyharmonic function. We first provide these requisite technical

background as well as the necessary definitions.

Definition 1. Let g : R? — R! be a ¢ function. g is said to be polyharmonic of
degree n if A"g = 0, where A™ is the nth iterate of the Laplacian operator A.
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The following representation of polyharmonic functions will be shortly used by us and

is called its finite Almansi expansion; see Aronszajn, Creese and Lipkin (1983).

Lemma 3. Let g be polyharmonic of degree n. Then there exist unique harmonic functions
n—1

90,91,---y9n—-1 such that g(:,zj) = Z ||5§||2k9k(@)
k=0

Another fact about the functions gr we will need in our covariance derivation is the

following serio-integral representation; see pp 135 in Aronszajn, Creese and Lipkin (1983).
Lemma 4.

a. The harmonic function go(z) of Lemma 3 admits the representation

1
o~ (Dl 2 i— i—1( A
go( —I—Z 21()_”1”' /7'2—17 Y1 -7 Ag) (rz)dT; (93)
“— 225 — 1)l J
b. For k> 1,
T 2 P_q 4 i1, ;
gr(2) 22kk12221zl k|+||z /72 ML = )R 4 k) (AMFg) () dr. (94)

We now state our general covariance formula.

Theorem 12. Let g : R? — R! be polyharmonic of degree n for some n > 1 and let
m > 1 be any fixed integer. Let X ~ N,(0,tI). Then

@)™ R {TE)NE +m+ k) —T(E +m)T(E +k)}
T T(®) kIT(E + k)2k

Cove(|lzl|*™, g

(A*g)(0)t*
(95)

k=1

in particular, if n = 1 (i.e. if g is harmonic), then for any m > 1,||X||*™ and g(X) are
uncorrelated (which is an extension of the correlation zero result in Proposition 13 for

m=1).
Proof:

Step 1. From part a. of Proposition 13, if h is a Ca harmonic function, E:(||z||?h(z)) =
Ey(llzl|*) Ee(h(X)) = ph(0)t.
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Step 2. By direct verification, A(uv) = uAv + vAu + 2(Vu)'Vu. Hence, by Step 1,

induction, and some algebra, for r > 1,

E(|lzl*h(z)) = p(p+2) ... (p +2(r — 1))R(0)¢"

(3 +r)
=2"—2 __h(0)t". 96)
Step 3. By Lemma 3,
n—1
Cove(||zl1*™, 9(z)) = Y _ Covs(llz|*™, ||zl|**gx(z))
k=0

= i{Et(Iléyliz(m““)gk(@)) = Ey(llzl*™)Ee(l12l])** g (2)}
k=0 :

= Z{2m+k EEmAk)  ymts —gmgm DG ™) ol

I'(%) T(E) gk (0)t*}, (97)

the last line using Step 2 and the formula for the mth moment of a x?(p) distribution.

Step 4. In (97), the term corresponding to k = 0 cancels. For k£ > 1, by Lemma 4,

1
1 B-1(1 _ p)k-1
gk(Q) 22kk'(k / 2 dT
0

_ I'(5)L(k)
- 22kE(k — 1)IT(E + k)

(A*9)(0). (98)
Step 5. Substituting (98) into (97) yields the formula stated in (95) on algebra.

9. DIFFERENTIAL EQUATIONS DRIVING A MOMENT

SEQUENCE AND APPLICATIONS

We will now show that it follows from the heat equation identity (3) that if
z ~ N(p,t), then for any n > 1,E, +((x — p)*"g(z)) satisfies a ‘universal’ nth order
linear differential equation. Precisely, if h(t) = E, +(g9(x)), then there exists a fixed trian-
gular array of constants {a; ,} such that ag nt"h(t) + a1 nt" 1A/ (t) +. ..+ an 2" (2) —
E((z — p)™g(z)) = 0. A similar equation holds for E, ;((z — p)?*"*'g(z)). It is interesting
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that such a universal differential equation should hold at all; it is also interesting that the
results say that by knowing only E(g(x)) and E(¢'(x)), as a function of ¢, one can find
E((x — p)"g(z)) for any n > 1. In section 9.2, we will use this development to outline a
general formal approximation for E(g(|6, —6)) for an estimate 6, of a parameter of interest
. The formal approximation is then applied to a variety of cases, with quite nice accuracy

in each case. First we present the universal differential equation.

9.1. A Universal Differential Equation

For simplicity, we present the derivation for the case y = 0. First we state a lemma
that would be used in the derivation. This lemma is the reason that the constants {a; ,,} in

the differential equation can be written explicitly, which adds to the utility of the equation.

Lemma 3. Let H,(z) be the nth Hermite polynomial defined as

2 (3]

d‘i—nn(e_g: ) = (=1)"Hp(z)e ~%  Then z" E:Oz'(n ST H,,_2i(x).
2

In particular,

o _ N~ (2n)12° . '
22— 2_: i ) (99)
and
£2n L Z o _2n —;zlJrQl)'?" Hjiy1(z). (100)

Proof: This representation of the powers z™ in terms of Hermite polynomials may be

derived from the identity given in Problem 77 in pp 389 in Szego (1975).
The differential equation is given next.
Theorem 13. Let z ~ N(0,t).

a. Let n > 1 and suppose g(%) satisfies the heat equation identity (3) for j = 0,1,...,
n — 1. Then

Bi(a™g(@) = 3 asnt™ o (Brg (x)), (101)
i=0
2n)122t
where a; , = (2n) 0<i<mn;

2n(2))(n—9)" " — — 7
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b. Let n > 1 and suppose g(3*1) satisfies the heat equation identity (3) for j =0, 1, ...,

n — 1. Then
d
2 +1 n+i+1
Ey(z*" ; 0 Cint o —(Eig'(x)), (102)
2n + 1)122
where ¢; ,, = (2n+1) ,0< 1< n.

2n(2i+ Dl(n =)V’
Proof: We will only prove part a) here as part b) is similar. Towards this end,
Ey(«*g(z))

= " Ey1(2*"g(2V1))

t=1
- 2n 12
- Z (n—4)!(20)12n E;—1(Ha2;i(z)g(zv?)) (Lemma 3)

=35 ( 7;)@2 i3t Fe(9*)(2)) (integration by parts)
—1
1=0
n = 2n)12¢ 3 i i
- =0 (n —( i)! )(21)'271 dtt (Etg (z)) (beat equation identity)
2L (2n)12%

— (n — Dt & (Brg(a),

K3

as claimed.

The coefficients a; , and c; ,, as given in Theorem 12, are tabulated below for 7 <5

for the user’s convenience.

Table 2

n Qin Cin

1 1 2 3 4 ) 1 2 3 4 5
0 1 3 15 405 945 3 15 105 945 10395
1 2 12 90 840 9450 2 20 210 2520 34650
2 0 4 60 840 12600 0 4 84 1512 27720
3 0 0 8§ 224 5040 0 0 8 288 7920
4 0 0 0 16 720 0 0 0 16 880
5) 0 0 0 0 32 0 0 0 0 32
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Is Theorem 13 of any demonstrable practical use? We think it is; in the next section,
we will give a few examples and we think the potential for further practical applications

is high. But first we give below an interesting consequence of Theorem 13.
Corollary 6. Let X ~ N(0,t).

a. Let g(z) = h(z?) be an even function of z. If X2 and g(X) are uncorrelated for each

t > 0, then g must be a constant.
Proof:

a. From part a. of Theorem 13, one readily gets Covy(z2, g(z)) = 2t>(% E¢g(z)). Thus,
Covi(x2,g(z)) = 0 Vt = E:g(x) = c (a constant). Since g(z) is a function of 2%, by

the completeness of 22, it follows that g itself is a constant.

9.2. Formal Gram-Charlier Expansions and Approximate
Computation of Expectations

The material in this section is our most prominent attempt at using theorem 12 for

practically useful applications. The goal is to supply a general recipe by using Theorem 12

for approximate computation of E(g(Z)) when Z does not have exactly a normal distribu-

V(X —Er(X1))
v Vare(X1)

for X1,..., X, iid from some F’; other types are considered in section 9.4. We expect, by

tion, but an “approximately” normal distribution. For instance, Z may be

virtue of the central limit theorem, that Z would be approximately normal. Our recipe
below for approximation of E(g(Z))then has a good chance of producing an adequately
accurate result. The recipe, as presented below, is a formalism; we did not give error
bounds, although we think rigorous error bounds can in fact be given. The formal recipe
for approximation of E(g(Z)) for a nonnormal Z presented below uses two main ingredi-
ents: Theorem 13 above and a formal Gram-Charlier density expansion for Z. The density
expansion is used only as a tool to produce an approximation. But in concrete appli-
cations, the approximation may be used even if Z is discrete. In fact, in our illustrative
demonstrations, we will try our approximation on a Poisson and a Binomial example. Now

let us see the formal approximation.

Let X1, X5,..., X, be iid real valued random variables with E(X}) < oo; if the

characteristic function of X; is in L7(R) for some j > 1, then Z = Z,, = @ has a
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density for all n > j and the density, say f,(z), admits the Gram-Charlier expansion

a4
Fale) = 61+ L - 32) ¢ M 00 (4~ 627+ 3)
2
+ o (20 = 32)] + 0(n ), (103)

uniformly in z; here p; is the central moment E(z — u)* and 0? = ps. See pp 508 in Feller
(1966). Of course, the expansion (103) cannot be integrated for a general function g(z) to
obtain an approximation to E(g(Z,)) with an error of 0(n=') (or any error bound in fact).
But interestingly, if we integrate g(z) with respect to the two term expansion in (103), then
the terms involve exactly En(,1)(Z2™g(Z )), for which we have certain representations in
Theorem 13. Use of that representation leads to a simple but formal recipe for approximate
computation of E(g(Z,)). We must reemphasize that the approximation is a formalism
for we are not supplying error bounds. We shall see in the example that the formalism can

work very well even for very small n.
To proceed with the formal approximation, denote

d d?
My(t) = Enon(9(e)), My(t) = 2 My(t), and My () = 25M,(0).
We present our formal approximation for an even function g(z) only to simplify the

steps; all the steps in the formalism go through for a general g(z) at the expense of slightly

more notational complexity.

By using part a. of Theorem 13, one gets

En(o,1(z®g(x)) = Mg(1) + 2My(1) } (104)
EN(071)(x4g(3:)) = 3M,y(1) + 12M£'](1) + 4Mé’(1)

Thus a formal approximation to E(g(Z,)) = [ ¢(2)fn(2)dz for an even function g(z) is

— 00

E(g(Zn)) ~ M,(1) + %(31\49(1) +12M) (1) + 4Mg"(1) — 6M,(1) — 12M (1) + 3M,(1))
= M,(1) + &%%L—M;’(l). (105)
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(105), really, is just a term-by-term integration; the point is that computation of En,1)(z*g(z))
for 7 = 1,2 is replaced by computation of the single number M o (1). Another point is that
presumably the formal approximation will generally get more accurate by using more terms
in the density expansion (103) involving higher moments. Let us see two examples of the

use of the formal approximation (105).

Examples

Example 5. Suppose we are interested in writing an approximation to
n ..

E\Y z; — n)\l where z; Poi()).
i=1

Then in the notation of section 9.2, we want to approximate E(g(Z,))v/n) where
9(2) = |z|. The approximation is accurate unless X is small although Z, does not even
have a density at all. The quantities needed for execution of the formal approximation (105)
are: M,(1) = \/g, M(1) = 2\_/;_”, o? = ), pa = A+ 3)2. Thus, the formal approximation

lei — A ) — VINE(g(Z)) ~ ,/2:?(1 - 24;). (106)

5 >

n
Actually, E(] > z; —nA|) also has an exact formula so the accuracy of the very simple ap-
i=1

n

proximation (106) can be checked. The exact formula is E(| 3 z; —n\|) = 2nre” " (n2) 7Y

[nA]!

=1

(see Diaconis and Zabell (1991)). The following table reports the percentage error of

approximation (106) when A = 1; the percentage errors are very small.

Table 3
n Exact Approximation (106) % Error
6 1.9275 1.9407 .68%
10 1.9383 1.9464 .42%
15 1.9437 1.9491 .28%
25 1.9478 1.9513 18%

Example 6. This example illustrates use of the formal approximation (105) in a decision

theory problem. Suppose X ~ Bin(n,p) and we wish to estimate p using the loss function.

L(p,a)=0if |p—al <e¢
(p,a) lp— al 107)
=lp—aliflp—al>¢
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The problem is to write a simple approximation to the risk function of the usual esti-
mate p = % Thus, in the notation of Section 9.2, we want to approximate E(g(Z,))+/%2

1 _ Vn(p—p) —
where g =1-p, 7, = /pg and g(z) = |Z|I]z[>f/%'

By calculation the quantities needed for application of the formal approximation (105)

are . .
My(1) = /2%
nez
M7(1) = €57 @00 =p* —2npe® 4n?el—p?(1-2nct)) ¢ (108)
g - 2\/§;p2q2
o® = pq, pa =pq(p® + ¢%); )
the approximation to the risk function is R(p,p) = /%2 (Mg(l)-i—%M 4 (1)). Curiously,

approximately 135 years ago, Todhunter published a formula (Todhunter (1865)) for the
binomial distribution which can be used to give a closed form formula, although frightening,
for R(p,p). This formula is as follows: let b(k, n, p) denote the binomial pmf P, ,(X = k).
Let [ ] and { } denote the floor and ceiling of a. nonnegative integer. Let also m denote
the smallest integer > mp. In the expression below, {n(p — €)} is interpreted as 0 and

[n(p + €)] is interpreted as n when they are outside of the range 0 to n. Then,

2gm b(m,n,p) — ({np}q b({np},n,p) — (n — [n(p +€)])p

R(p,5) = b((nfp + )l m.p) — {nlp — €)}q b({n(p — )}, p) + (n — [np])p b([np] m. ).

" (109)

in comparison, (108) is much simpler. The following table reports the accuracy of the

approximation (108) when p = .25 and € = .01. The accuracy seems to be high.

Table 4
n  Exact Risk Approximation (108)
) .1582 .1552
10 1126 .1093
20 .0759 0770
30 .0637 .0626
40 .0541 .0540

9.4. Bahadur Representation and Hajek Projections

So far we have illustrated our formal approximation formula (105) to approximate

E(g(Z,)) when Z, is exactly ‘/—L(f_—“—) for an iid sequence z1,zs,.... But we can also
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use formula (105) when Z,, is not a standardized sample mean but only admits a linear

representation

Zy = %; ¢r(zi) + Ry, (110)

where ¢r is an approximate function and the remainder R, is of a “lower” order; often
R, = op(%). There are two main ways to write such linear representations for nonlinear
statistics; certain statistics are known to admit a Bahadur representation and for certain
statistics one can compute the Hajek projection. Bahadur representations are available
(under conditions) for sample percentiles, M estimates, Bayes estimates, etc. Hajek pro-
jections, in principle, are available for the attractive general class of U statistics (and
certain statistics which are not U statistics, e.g. suitable linear combinations of order
statistics). The formal approximation (105) for F(g(Z,)) may be used for all such statis-
tics; whether the approximation can be produced will depend on two factors: can we
produce ¢r(X;) = Y; (say) in (110) explicitly, and can we compute the moments o%(Y;)
and p4(Y7) explicitly. In the cases where these can be done, the formal approximation
formula (105) may be applied and may be a practically useful thing to have. We now

present two additional examples to illustrate this idea.

Example 7. This example illustrates the use of our moment approximation formula (105)

when the statistic has a known Bahadur representation.

Specifically, let ép,n be the pth sample percentile and &, the pth population percentile

for a standard Cauchy distribution. fp,n admits the Bahadur representation

ép,n — & = 7n + R, (111)

where Z; = %ﬁm and R, = O(n_T3 (log log n)%) (see Kiefer (1967)). To approximate

E|épn — &), we will use the approximation formula (105) with g(z) = |z|. The moments

4, 4 _ .
02(Z1) and p4a(Z;) are equal to 02(Z1) = 7y and (%) = p%&z)q = pqﬁ(;’;q). This

gives the simple approximation

ol P [P 1
Blépn &l ~ s 20— 50D, (112)

No exact formulae for Elfp,n — &, are possible and so we verify the accuracy of (112) by

simulation; a simulation size of 10,000 was used. In the table below, p = .5; again the
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approximation is accurate.

Table 5
n Simulated E|«§Ap7n — &l Approximation (112)
20 .2897 .2814
30 .2342 .2295
40 .2005 1986
60 1638 .1620

Example 8. This example illustrates the use of formula (105) for a U statistic. For pur-
poses of illustration, we take our statistic to be the Gini mean difference T, = (i—)— Y2 X—

2 j<k
Xk|. T has the Hoeffding decomposition

n
T, — E|X1 — Xa| = Y E(To|X;) — nE|X1 — X3| + Ra, (113)
=1
where R, = 0(n"!(log n)z1%) for any § > 0 if E(X2) < oo (see Geertsema (1970) or
Serfling (1980)).
For the ensuing calculation, denote F|X; — X»| = 6 and E|X; — u| = m(u). Then the

terms E(T,|X;) in the Hajek projection can be calculated if we can calculate E|X; — X|| X;

for all pairs 7 < k. For instance,

E(T,|X1)
— %Z S BIX; - Xil| X:
2/ §<k
1 n n—1 n
= W{ZEPQ — Xi}| X1 + Z Z E\X; - Xkl}
2/ V“g=2 Jj=2k=j+1
_ é—){(n - Dm(ay) + B2 9} (114)
Thus
ZE(Tn|Xi) = (%{(n —1) Zm(x,) n(n — 12)(n — 2)9}
- % zn:m(Xi) + (n —2)6. (115)



Hence, T,, — 0 = 2(% >om(X;) — 9) +R,, with R, = 0(n~'(logn)z+%). If we denote
=1
m(X;) = Z;, then to approximate E|T,, — 6| we use formula (105) with g(z) = |z|, i.e.,

_ 20(Zy) 2 1 pa(z) - 30%(Z1)
it~ o= 22 (2 - ) (19

If we take, for illustration, the population density to be %e_Tz, then on calculation

— U

m(u) =u— A+ 2Xe> 17
o2(7 Zy) = L9 (117)
(Z1) = %, pa(Z1) =

Substitution into (116) yields, on algebra,

E|T, — 0| ~ m[ (118)

Again, an exact expression for E|[T}, — 6| is not available and we check the accuracy of

(118) by simulating E|T), — 0|; we have taken A = 1 in the following table.

Table 6
n Simulated E|T,, — 0| Approximation (118)
15 .2356 .2202
20 2074 .1945
30 .1687 .1619
40 1473 1416

Compared to the previous examples, it takes a larger value of n for the approximation to get
very accurate; it is probably due to the pronounced skewness in the original Exponential

population.

10. APPLICATIONS IN GRAPH THEORY

The heat equation identity (3) leads to certain applications in graph theory. In the
following, we will indicate its application in counting matchings in graphs. Roughly speak-
ing, the heat equation identity gives a method to count perfect matchings in a graph
by breaking it into graphs with successively smaller numbers of vertices. If the original
graph has n vertices, then the reduced graphs have n — 2,n — 4,n — 6, ... vertices. This
method may have some practical utility due to reduction to simpler graphs for which

counting matchings may be physically easier. Matchings in graphs appear to have been
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independently reinvented a number of times in different branches of science. Important
applications have been made in statistical physics and theoretical chemistry; Godsil (1993)
describes the discovery that the properties of aromatic hydrocarbons depend on the num-
ber of matchings if a molecule is represented as a graph with the atoms as vertices and
the bonds as edges. Farrell (1979) introduced matching polynomials in the combinatorics
literature; a later exposition is Godsil and Gutman (1981). A common example of the use
of perfect matchings is assignment of a set of tasks to a set of competent individuals so
that none is assigned more that one task. First we present the definitions, notation and

certain technical facts that we will use in our derivation.
10.1. Definitions and Notations

Definition.

a. An rmatching in a graph G with n vertices is a set of r edges no two of which have

a vertex in common. It will be denoted as p(G, 7). By convention, p(G,0) = 1.

b. The matching polynomial of a graph G with n vertices is the nth degree polynomial

,—.
(VIR
i

pe(z) =Y (—1)"p(G,r)z™ . (119)

r=0

c. A perfect matching in a graph G with n vertices is an r-matching with r = % (thus,

n has to be even). It will be denoted by ¥(G).

d. The complement of a graph G is a graph with the same vertex set as G and two

vertices sharing an edge if they did not share an edge in G. It will be denoted as G.

e. For a graph G with n vertices, and w4, . . ., u; some t > 1 specified vertices, G—uq,...u;

is the graph with uq,...u; deleted from the vertex set of G.

f. A graph G with n vertices having no edges is called an empty graph. It will be denoted

as ¢n.

g. The complement of ¢, is called the complete graph on n vertices. It will be denoted

as K,,.
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10.2. Certain Known Technical Facts

Below we state a collection of facts on matchings and matching polynomials that we
will use in the proof of our subsequent result. Significantly more similar facts are known
but we do not state them here; many of these can be seen in Godsil and Gutman (1981)

and Godsil (1993).
Lemma 6.

a. The matching polynomial of the disjoint union of any two graphs G and H satisfies

peun (z) = pe(z)pa (). (120)
b. For any graph G, & ug(z) = Zuglu. (121)
c. For any graph G, the total number of perfect matchings in G satisfies

W(G) = «%—W_Z ne(@)e= % da. (122)

Remark. Formula (122) manifests the enjoyably surprising connection between matchings

in graphs and the normal distribution. It will also be a key ingredient for our result.

10.3. Perfect Matchings and the Heat Equation

The result below gives an identity relating perfect matchings in the complement of the
disjoint union of two graphs to matchings in appropriate subgraphs. Of course, there are
various other ways to express the number of perfect matchings in complement of a union

of graphs, but we will not mention them here.

Theorem 14. For some m > n > 1, let G be a graph on 2m vertices and H a graph on

9n vertices. Then the number of perfect matchings in the complement of G U H equals

$@UH) =Y (j—;,ai,n,H(ziw(G ), (123)
i=0 )

where 3; denotes sum over all subsets of 2i vertices of G regarding identical collections

with different orderings of u, uo, ..., us; as different, and
n
. (2r)!
. fo— — n T__.—— —_—
Qin,H = ;( 1) = Z_)!p(H, n—r). (124)
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Proof: The principal tools for this identity on perfect matchings are Lemma 6 above and

Theorem 13 in section 9.1. Towards this end,

W(CUH) = / noon (2)(z)dz (equation (122))
= /ug(m),uH(a:)é(x)dx (equation (120))

= Z( 1)"p(H,r /xzn_zr/,bg(x)qﬁ(x)dx (equation (119))
r=0

S 1y HT{Z - f”‘”‘ )12 (G Pvan (o @)))ema)

TL—T—Z
r=0

(equation (101))

= LRI g o gy P )

(iteration of the heat equation identity (3))

Z )p(H,r {Z o= ,,(2:__7,21)32(22) Ene0,1)(Bip(2)o—uy,...;uzi }

(iteration of equation (121))

S 1) p(H, {Z T s B0 ()]

r=0

(1 DEDY o S (@)
i=0

(equation (122) again)

r=0

(22;)!{2(—””10(% ") o (3(7; al mr LR
=0 r=0

(change in order of summation)

(22;)! {;(_1)n_rp(H’ n- T)%}Ziiﬁ(m),

(change of variable)

n
=0

completing the proof.
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The following corollary is for the special case when H has 2 or 4 vertices.

Corollary 7.

a. If G has an even number of vertices and H has 2 vertices, then

Y(G@UH) = (1-p(H,1))$G)+ > (G~ w) (125)
v#u

b. If G has 2m vertices for some m > 2 and H has 4 vertices, then

Y(GUH) = (83— p(H,1) +p(H,2))$(G) + (6 — p(H, 1)) _ > (G —uv)
vEu

+ Z Z Z Zzﬁ(G — uvwz). (126)

2 WHVHEY

Proof: Each part follows on some algebra from Theorem 14.
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