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1 Introduction

Consider a triangular sequence of functions {¢n;(Zni, 8), i =1,...,n, n > 1} taking
values in IRP, {Z,;} being a sequence of observable random variables and 8 € B C IRP.
Here, Z,; can have two components, Z,; = (Yni xm-)T where ¥,; can have an
interpretation of a response with x; covariates, as in a regression framework. Assume
that E¢ni(Zni, 6o) =0, i =1,...,n n > 1 for some By € B. The “parameter” §, is
typically unknown, and its estimate /3, is obtained by solving the estimating equations

>~ bslZuis ) = 0 (L1)

The random variables ¢n;(Zn;, fo) form a triangular array of martingale differences,
and hence we call (1.1) martingale estimating equations. Examples are abundant
in different contexts in statistics where estimators are obtained by solving martingale
equations, see Godambe (1991) and Basawa, Godambe and Taylor (1997) for extensive
discussion on estimating equations. Often an approximate zero of (1.1) serves as a
solution wherein certain kinds of semiparametric regression and density estimation
problems and local estimating equations may also be treated. Later we make some
remarks on this. The major objective of this paper is to estimate features of 3, by a
new approach resampling and to study their asymptotic properties.
We define our resample estimator ﬂ]g as the solution of

=1

where the bootstrap weights {wy;,2 = 1,...,n, n > 1} is a triangular sequence of
random variables, independent of {Z,;}. These are the so called ‘bootstrap weights’.
We discuss the conditions on wy; in Section 5. The concept of resampling with (1.2)
may be traced back to Freedman and Peters (1984) and Rao and Zhao (1992). A
major point about the present paper and the above two references is that these are
on “bootstrap” using equations, as distinguished from the more traditional approach
of resampling using observations. In the context of least squares estimator in linear
regression, Chatterjee and Bose (1999) introduced the uncorrelated weights bootstrap
(UBS) which is a generalisation of the paired bootstrap and the delete-d jackknives.
The present paper uses the same kind of weights in a martingale estimating equations
framework, hence we often refer to the bootstrap weights {wn;} as “UBS” weights.
This is because the asymptotic uncorrelated nature of the weights is a major aspect
for the UBS method, which serves to delineate various block bootstrap methods from
the UBS. It may be noted that the UBS technique is different from the bootstraps
suggested by Lele (1991) and Hu and Kalbfleisch (2000) in the context of estimating
equations.

Under broad conditions on the weights and on the ¢,;, we establish the consis-

A

tency of the UBS estimator for the distribution function of §,. We also obtain an
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asymptotic representation of the UBS variance estimator along the lines of Liu and
Singh (1992) and Chatterjee and Bose (1999).We generally consider models with fixed
dimension. However, in one section the bootstrap consistency is established even when
the parameter dimension p tends to infinity with data size n. Typically, the asymptotic
linearizations hold when p?/n — 0.

In many situations, naively resampling from the data leads to inconsistency. Con-
sider the model y; = 7 g(x;) + €;, and S, is estimated by least squared error. Con-
sider the two paired bootstraps which draw simple random sample with replace-
ment from the pairs (y;, g(x;)), and (y;,x;) respectively. These two procedures do
not result in identical estimating equations. Let & = (&;,...,&x) be distributed as
Multinomial(1,1/n,...,1/n). Then the first paired bootstrap yields the‘squared er-
ror’ term Y7, &;(y; — B3 9(x;))?, but the second yields 37, ( z-lj/zyj — ﬂg"g(gilj/ij))Q.
The latter can lead to inconsistency, as observed in Stute, Gonzalez Manteiga and
Presedo Quindimil (1998). More such examples may be found in Shao and Tu (1995).
Our approach helps clarify the correct way of bootstrapping in such situations.

A popular approach to resampling is by using “residuals” by using estimated pa-
rameters as plug-in. However, typical residual based resampling techniques are not
robust. For example, the classical residual bootstrap for the least squares estimator in
linear regression is inconsistent under heteroscedasticity. On the other hand the paired
bootstrap, is consistent under heteroscedasticity. The UB.S, which may be seen as a
generalisation of the paired bootstrap, is consistent under fairly general conditions.
The robustness aspect is apparent from the fact that several diverse kinds of problems
and several resampling techniques may be studied in a unified way using the approach
of this paper. In linear regression the trade-off for robustness is in a loss of efficiency,
see for example Liu and Singh (1992). Interestingly, for more general M-estimation
problems the UBS can be simultaneously robust and efficient. Also, the results of
Mammen (1996) serve as a caveat against using residuals in many situations.

Another visible advantage of the UBS over other comparable techniques (of Lahiri
(1992), for example) is its simplicity in use. The practitioner can use the same code
to obtain the estimator as well as its resamples, since the weights {wy,;} are often
easily obtained. This advantage can be carried further. Typically (1.1) is solved using
iterative techniques like the iteratively reweighted least squares (IRLS) technique. In
such cases sometimes (1.2) may be solved as one would solve a weighted least squares
problem. Thus for each bootstrap Monte Carlo sample only one linear equation is
solved, instead of an entire iterative scheme, thus greatly reducing the computational
burden. It is obvious that the one-step method would not work well always, but
whenever it does it is a great computational advantage. This aspect requires further
study.

The choice of weights is also an important computational issue. As a test case we
study the model y; = 81 + exp (—faz;) + €;, where $; = 10, B, = 1.25, z;’s are 4.i.d.
from Uniform(0,1), and e;’s are i.i.d. from Normal(0,1). A sample of size n = 30
was taken, and (1, ;) estimated by using least squared errors. This requires iteration,



and in order to get an initial estimate of the parameter we used the following steps: we
computed yo = 0.9 min;<;<y, ¥i, then used ordinary least squares to regress log (y; — o)
on —f3,z;, to get an estimate By of f5. Then we took the average of y; — exp — B z; as
P10, the initial estimate of-#;. The constant 0.9 used in the definition of y, was fixed
arbitrarily.

Figure 1: Different bootstrap density estimators

Density

T T T T
-1 0 1 2
Bandwidth = 0.07704566

In Figure 1 we plotted the density of the least squares estimator of B, simu-
lated from 1000 trials of the above experiment. By fixing one such dataset, we ob-
tained different UBS estimators also for the same quantity. The bold line shows the
density of the least squares estimator, the dashed line the bootstrap estimator using
Multinomial(n,1/n,...,1/n) weights, the double-dash line is the one step iteration
free estimator described in this section for the same bootstrap weights; and the dotted
line is UBS estimator with .i.d. Uniform(1/2,3/2) weights. In each case a kernel
smoothing with Gaussian kernel was used, and the common bandwidth used is quoted
in the figure. The figure shows that all the three bootstrap methods yield equally good
results. A number of other models were tried for simulation. The broad conclusion is
that the different choices of UBS weights yield similar results, but the performance of
the non-iterative one-step method is variable. Also it is not clear whether the choice
of bootstrap weights influences the accuracy of the one-step iteration.

In subsection 2.1 we obtain asymptotic representations of 3, and ,313) when [ is
real valued. This helps establish asymptotic normality and consistency of the UBS
for estimating the distribution. The conditions on ¢,; are reasonably weak but there
is scope for further relaxation.



For the important case where ¢,;, ¢ = 1,...,n, are independent, we establish an
asymptotic representation of the UBS variance estimator, along the lines of Chatterjee
and Bose (1999) and Liu and Singh (1992) in subsection 2.2. This implies the consis-
tency of UBS under heteroscedasticity for a very broad class of estimators and models,
including M-estimators in linear regression, generalised linear models and non-linear
regressions. However, the classification of common resampling schemes as efficient or
robust along the lines of Liu and Singh (1992) does not hold generally for M-estimators
in linear regression. The UBS estimators are always robust, sometimes they are also
efficient.

The estimators Bn and ,3]3 are typically biased. In subsection 2.3 we restrict to
independent ¢,; and consider the distribution of bias corrected, studentised £, and
show that the distribution of an appropriate studentised ﬂb when certain i.i.d. weights
are used, yield a second order accurate approximation.

In subsection 2.4 we consider general p dimensional parameters (p — 0o as n — oo.
Asymptotic normality and consistency of UBS results are obtained for the estimator
of a linear combination of parameters.

In Section 3 we discuss several well known resampling techniques which the UBS
class encompasses. Broadly speaking, the conditions for distributional consistency
results are satisfied by all resampling schemes except the delete-d jackknives for which
d/n — c € (0,1) is not true. The higher order accuracy results are valid only for 4.3.d.
absolutely continuous weights, for example the typical weights used in “bootstrap
clone” methods. Extensions to more general UBS weights is under investigation.

Estimating equations have been used in a wide variety of problems, including likeli-
hood and quasi-likelihood methods, semiparametrics and nonparametrics, time series,
biostatistics, stochastic processes, spatial statistics, robust inference, survey sampling
to name a few. Broadly, the UBS resampling applies to all such problems, subject
to adequate technical assumptions being made. In Section 4 we illustrate the use of
the techniques described in this paper in the context of some specific problems like
non-linear regression, M-estimation in linear models, generalised linear models, and
autoregressive processes. We discuss how traditional assumptions in these problems
turn out to be sufficient for the assumptions that we make in this paper. However, it
would be interest to explore UBS in these and other problems individually, to further
understand the nature of UBS and discover the minimal conditions under which it
works in a given problem.

Our results in this paper concentrate on the case where the parameter of interest
is finite dimensional, but the treatment for infinite dimensional parameters present no
additional conceptual difficulty. While a detailed analysis would require an independent
study, in Section 4 we show how to extend our ideas adequately for resampling for the
parametric component in semiparametric models.

The results of this paper require diverse technical conditions. We put all these
conditions together in an appendix (Section 5). Our different theorems require different
conditions both on the model as well as on the UBS weights. The results and remarks



of Section 2 are based on these technical conditions. Another appendix (Section 6)
contains the proofs of the theorems.

2 Main Results

The technical conditions and the assumptions needed for the results are all given in
Section 5. We do not refer to this fact in the statements of the theorems.

We establish consistency of the estimator and an asymptotic representation, in
Theorem 2.1 for one dimensional parameter and in Theorem 2.5 for general p dimen-
sional parameter, allowing p to tend to infinity with n. Asymptotic normality of the
estimator follows as a corollary. The asymptotic linearised representation for the I/ BS
estimator are given in Theorems 2.2 and 2.6 for p = 1 and general p respectively. The
consistency of the UBS distribution estimator follows from this.

Assuming in addition that ¢y;, i = 1,...,n are independent, we obtain two more
results. In Theorem 2.3 an asymptotic representation of the UBS variance estimator
is obtained. After bias correction and studentisation of the original estimator as well
as its UBS equivalent, a second order accuracy result is obtained in Theorem 2.4. For
these two results we consider one dimensional parameter only for technical convenience.
Further details and remarks on the results are given in the different subsections.

We adopt the notations @(41yni(A) = Zdrni(A), for k = 0,1,2,.. ., where ¢ons()) =
Gni(N); Prni(Bo) = Prni for £ =10,1,2.. ..

2.1 Asymptotics and bootstrap for p=1
Let Y7y E¢; = O(a), and v, = [ ¢ii]_1/2 Yic1 Pini-

Theorem 2.1 Under (A0)-(A3) ezists a sequence {f,} of solutions of (1.1) such that

~

an(Bn — Bo) = Op(1) and (2.1)
YalBn—Bo) = —(EGR)V2S G+ (2:2)
=1 =1

wherer, = op(1). If further, c, = O(n), by = O(1) and d,, = O(1), thenr, = Op(a;").

Henceforth we work with that sequence of estimates {f,} which satisfies Theo-

rem 2.1. Assumption (A4) ensures that ¥; Xp; = a;'s; ¢n; = N(0,1) by Theorem
3.2 of Hall and Heyde (1980). The usual case of ‘n'/?-consistency’ is when a, = n!/2.
The following corollary is immediate.

Corollary 2.1 Assume (A0)-(A4). Then

’Yn(Bn - ﬁO) :D> N(O7 1) (2'3)



Let
Fo(z) = Probly(Bn — Bo) <] Gn=0;2 ¢%(Bn)
i=1
;yln = (1,;2 Z ¢1m' (Bn) YnB = 0-7:1[2 ¢$n (/311)]_1/2 Z ¢1m' (Bn)
i=1 =1 i=1

The bootstrap estimator is obtained by solving (1.2). The next theorem is on
its asymptotic representation. For any bootstrap random variable Tz,, we use the
notations T, = Opg(&,) and T, = opp(&,) if for any fixed ¢ > 0, the bootstrap
probability conditional on the data Pg[€;!|Ts,| > €] are respectively Op(1) and op(1).

Theorem 2.2 Assume (A0)-(A3) and the bootstrap weights satisfy conditions (5.1) -
(5.3) . Then there exists a sequence {fp} of solutions of (1.2) such that
(a) for fized €,6 > 0, AK > 0 and integer ny such that for all n > ny

Prob[Pg(0, tan|fp— Bul <K)<1—¢€ <6 (2.4)

(b) for some r,p = 0opp(1),

YnB (,BB ﬂn = Z E¢ ~1/2 Z Wibni + rnB (25)

=1

Further, if ¢, = O(n), b, = O(1) and d,, = O(1), then r,3 = Opp(a;?).

Let Fg,(z) = PB[fynB(Bé - Bn) < z]. The consistency of the UBS distribution
estimator Fg, for estimating F; is a consequence of the above two theorems and
Theorem 6.2. This is stated in the following corollary.

Corollary 2.2 Let {wn;,i =1,...n} be exchangeable for every n. Assume (A0)-(A4)
and conditions (5.1)-(5.5) on the bootstrap weights. Then

sup |Fgn(z) — Fp(z)| — 0 in probability (2.6)

REMARK 1 (On conditions on ¢,;.) Assumption (A2) is less restrictive than the
Lipschitz condition (C.1) of Lahiri (1992). We compare our assumptions and results
in details with that of Lahiri (1992) in subsection 2.3 where we consider higher order
accuracy of UBS.

Existence of second derivative ¢,; of ¢,; and related assumptions may be replaced
by the assumption that ¢,; admits the Taylor series approximation of the form ¢,;(a+
1) = ¢ni(a) + tdini(a) + o(|t|) as |[¢| — 0. Note that the functions ¢,; are random, so
the remainder term has a probabilistic interpretation. The assumption needed in that
case would be similar to assumption (h1) of Koul (1996).
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The assumption (5.19) that a;2 Y ¢1,;(A) > 0 for any A may be replaced by requir-
ing only a,2 Y ¢1:(Bo) > 0. Then the proof of Theorem 2.1 remains unchanged, but
the proof of Theorem 2.2 has to be modified, and the class of UBS techniques slightly
restricted.

REMARK 2 (On bootstrap weights). Many schemes like the classical bootstrap and
the delete-d jackknife satisfy 37 wn; = n (sometimes after scaling to ensure (5.1)).
This implies that the correlation between w,; and wy; is —(n — 1)~! ensuring that
our condition (5.3), ¢;; = O(n™') is satisfied. Interestingly, different block bootstrap
methods (see Kunsch (1989), for example) can also be identified with the framework
of (1.2); however, there the bootstrap weights satisfy c¢;; — 1. Without (5.3), the
calculations involved in the proof of Theorem 2.2 may still be carried out, but the rate
conditions would change and the rates of convergence are slower. Block bootstrap tech-
niques are powerful tools used for resampling in case of weak dependence, often used in
problems where assumptions on the dependency structure is minimal. However, in our
framework dependencies are of a special kind owing to our ‘martingale’ assumptions,
and block bootstrap techniques are not required here. The name uncorrelated weights
bootstrap is prompted by the importance of this asymptotic uncorrelatedness of weights
condition.

2.2 Asymptotic representation of variance estimator

Since the asymptotic distribution of 3, is normal, one may wish to estimate the asymp-
totic variance of G, using bootstrap. In this subsection we obtain the asymptotic
representation of the UBS variance estimator.

Liu and Singh (1992) obtained asymptotic representation of variance estimates
from different resampling techniques for the least squares estimator in linear regression.
They classified the resampling techniques as either robust against heteroscedasticity (R-
class) or relatively efficient under homoscedasticity (E-class). An important corollary
of our representation result is that such a classification does not carry over to general
M-estimation problems.

For this subsection and next, we restrict our attention to the case ¢,;, i =1,...,n
independent. Without this, the result of this subsection would be much weaker, and
that of the next subsection would require entirely different treatment. The UBS
weights are assumed to satisfy conditions (5.1), (5.3), (5.6) and either (5.7)-(5.9) or
(5.10)-(5.12) which are slightly stronger moment requirements than those of subsec-
tion 2.1.

Further, certain resampling schemes like the paired bootstrap and the delete-d
jackknives effectively select subsets of the data in the resample, and model assumptions
are often required to hold on these subsets (see Wu (1986), Chatterjee and Bose (1999)).
This motivates the assumption (5.34). It helps us to show that under appropriate
conditions the probability of a ‘bad’ set is small and helps to define the bootstrap
estimator for this subsection.



Proposition 2.1 Assume ¢,; are independent satisfying conditions (5.27)-(5.30) with
L =28(1+a) and (5.34). Assume B, is a solution to (1.1) satisfying (2.1)-(2.2) from
Theorem 2.1. Let A be the set on which m™' Y ez ¢1m’(,3n) > k1/2 > 0 for every
such choice of subset I, of size m from {1,2,...,n} and for every m in [mg,n]. Then
ProblA] >1—0(n™2).

We define our bootstrap estimator ﬁb to be the solution to (1.2) under the set

ANW, and f3, otherwise. The set A is defined in Proposition 2.1, and W is defined
in Section 5. The UBS variance estimate is Vyps = 0, ?Eg(06g — )®. This is used

for estimating V, = E(8 — (). In the statement of the next theorem we have used
@, @1, ¢ respectively for ¢n;, d1ni, Pon;- The sums range from 1 to n. Also let

gin =" S Ed1, go, =01 Y Ehy.

Theorem 2.3 Assume {¢ni, @ = 1,...,n} are independent satisfying (5.27)-(5.31)
and (5.34) with L = 8(1 + a). Then

ngt,(Vuss — Vn)

- 2 2
= 07 Y- BY) ~ 5 =30 b~ 5 =3 8 Y~ Ey)
+%E¢Z¢2E¢z + Op(n™Y) (2.7)

REMARK. Liu and Singh (1992) showed that for least squares estimator in linear
regressions, a weighted jackknife scheme is more efficient than the usual jackknife if
errors are homoscedastic but it is not consistent under heteroscedasticity. For general
M estimates in simple linear regression, we have ¢,; = —x;%(y; — Oz;). Bose and
Kushary (1996) showed that the above comparison does not remain valid and even
in common criterion functions like Tukey’s biweight function the jackknife can be
more efficient than the weighted jackknife. This also follows from the asymptotic
representation (2.7). So the UBS is not only robust against heteroscedasticity of
errors, but can be more efficient than the weighted jackknife in some homoscedastic
cases.

2.3 Higher order accuracy of UBS

For M-estimators in linear regression, Lahiri (1992) established higher order accuracy
of some residual based resampling techniques. It is generally understood that the
paired bootstrap is not second order accurate, owing to a second order non-negligible
bias term. Since the UBS is a generalisation of the paired bootstrap, it is also not
second order accurate in general.

The solution 3, of (1.1) also has a bias factor that is not generally second order
negligible. A natural approach is to try and estimate this bias factor and study the
asymptotic properties of the bias corrected statistic.



With technical conditions stated later on, and by calculations similar to those of
the proof of Theorem 2.3, we obtain that there is a solution (3, to (1.1) that satisfies

~[7 a2 — Bo)] = 07V 306 — 27T 0Tt Y ol (B — Bo))” +

where Er2, = O(n~(%9). The bias correction to this statistic can be done by esti-
mating the second term on the right side of the above expression. This requires an
estimate for E[n'/2(3, — 5y)]%. One such estimate would be Vygs from Theorem 2.3.
However, a different Va,rlance estimator, like the snnple plug-in @2 =nlye? (,Bn)
may also be used. Let g2 =n"13 ¢2. and Y, = n~ EQSkm(ﬂn) k =1,2. After some
routine algebra, we obtain the followmg bias corrected studentised estima,tor

T = Y187 (0% (Bn — Bo)] — 27 M2 25 4 Vg = —n~V2g > bni+1a (2.8)

where Er = O(n —(1+a))
For IBB’ define g2z = n™' Y, W2¢2 (/Bn) and g2p = n~* > W2¢2.. Then the boot-
strap bias corrected, studentised statlstlc is given by

Top = Andnplon™'n"*(Bg — Bu)] + 27020 i Aonlon 02 (B — Ba)]?
== _1/29;é Z Vqusm + B (29)

where Pg|r,5| > kn~/2(logn)!] — 0 almost surely.

The slight difference in the ‘bias correction terms’ in (2.8) and (2.9) is because
in the former we used an estimator for [n!/2(3, — Bo)]%, whereas in the latter case
[0, 1n1/? (,3]3 — B,)]? was directly used. T, and T,5 are approximated by studentised
sample sums of possibly non-identical but independent random variables. To exploit

this, we need Edgeworth expansions for such variables. Such a result is established in
Section 6. Let Fy1(z) = Prob[T, < z]| and F,p;(z) = P[T,p < 7).

We assume (5.26) is satisfied for some a € (0, 1], and the model satisfies conditions
(5.27)-(5.30) with L = 16 and (5.32)-(5.33). For any constant C > 1, let p;(C) =
Prob[¢2, € [C~1,C]]. Additionally, assume:

Assumption A {¢,;} is a sequence of independent, absolutely continuous random
variables defined on the real line. Let the density of ¢,; be f,;(-). Define the function
hni(z) = min{ fr;(z), fri(—2z)}, and let Hy(z) = n"1 T Ani(z). We assume that for
all large n, 3 a real valued function g(z) > 0 such that A = {z : H,(z) > g(z)} has
positive measure, and 0 < [, g(z)dz < oo.

Assumption B For some ¢ € (0,1), there exists a constant C > 1 such that
n~ 13 p;(C) > c for all large n.

For the bootstrap, we assume that the U BS weights are i.7.d. absolutely continuous,
and satisfy (5.1), (5.7), (5.13)-(5.15). Additionally, assume:

Assumption C Assume that the distribution of W; has a density f(z) such that
for some positive numbers o and b, we have f(z) > b for all z € (—zg, z¢).



Theorem 2.4 Under the assumptions of this section, we have

sup |Fp1(x) — Fo(z)] = o(n~Y?) almost surely (2.10)

REMARK 1 Corollary 2.2 is a weaker result compared to Theorem 2.4 which was
obtained under weaker model assumptions.

REMARK 2 Lahiri (1992) considers M-estimation in linear regression with non-
random regressors and ¢.:.d. errors, whereas our model set-up is much broader. When
considering M-estimators in linear regression, we allow random regressors and het-
eroscedastic errors in our framework. A quantity <, defined in Lahiri (1992, C.6),
which is dependent on the design variables, appears as a term in the various conver-
gence rates of Lahiri. But for us it may be random and thus cannot appear in the
convergence rates. Lahiri obtains second order consistency of residual based bootstrap
techniques. The resampling techniques we consider may be seen as generalisations of
the paired bootstrap. The moment assumptions of Lahiri are of lower order than what
we assume, and no bias correction is needed for estimators considered by him. The
assumption of absolute continuity of weights was not required by Lahiri. By assuming
absolute continuity of our weights, we ignore many important resampling estimators.

Thus Lahiri makes more relaxed assumptions than us and obtains second order
accuracy in estimating the distribution of M-estimators in linear regression, for a
residual based bootstrap. Our set of problems is much larger, the assumptions more
stringent and the resampling schemes different from Lahiri. It is plausible that with
more effort Theorem 2.4 can be proved under much weaker assumptions like strong-
nonlatticeness instead of absolute continuity.

2.4 Dimension asymptotics

In this subsection we consider dimension asymptotics, that is, we allow p — oo as the
data size n — oo. Dimension asymptotics has been a major aspect of study in resam-
pling in linear regression framework (Bickel and Freedman (1983), Mammen (1989,
1993)). Classical residual based bootstrap has been studied for the least squares esti-
mator (Bickel and Freedman (1983)) and for general M-estimators (Mammen (1989))
using non-random design matrix. The random design case and resampling using paired
bootstrap and wild bootstrap has been studied in Mammen (1993). This subsection is
an attempt to explore the high dimensionality aspect in more general problems.

We obtain the consistency of UBS distribution estimator, extending the result of
subsection 2.1. The asymptotic representation of variance and second order accuracy
of distribution estimation may also be considered, but with additional complications
in technicalities involved.

The mutual relation between n and p is inherent in the assumptions made. Suppose
SUD|c||=1 2im1 E(c"¢n)? = O(a}) and s, = p~2[(Ti; Edin) '] [0, Ednidy;). The
model assumptions are given in Section 5.
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Theorem 2.5 Under (B0)-(B3) ezists a sequence {f,} of solutions of (1.1) such
that
(a) if pa,t — 0, then

anp_l/Qll(A —Bo)ll = Op(1) and (2.11)
a;’ _WZE%M —fo) = —a'p Y it (2.12)

=1
where E||r,||*> = O(a,;*p?).
(b) pr3 ~2 3 0, then for any c € IRP with llel| = 1,

ST (B — o) = “5;1[(§E¢1ni)_lc]T¢ni+0P(1) (2.13)
= }TL_:Xni'FOP(l) (2.14)

() if pa,;® — 0 and (B4) holds, then
_1 _1/2 Z¢1m - ) - _a—lp—1/2 Z¢m +Tn (215)
i=1

where E||ry||?> = O(a,%p?).

Part (c) of the above theorem is actually proved under slightly weaker assumptions.
The conditions listed in (B4) is required only for A = ;. In many examples satistying
(B0)-(B5), one has a, = n'/? and p?/n — 0 is assumed, so that one has £, = B +
Op(n~'/?p/?). In many cases p?>/n — 0 can be improved, even upto p/n — 0. Part (c)
of the above theorem achieves this under some additional conditions. The assumption

(B5) ensures that 3; Xp; = N(0,1) by Theorem 3.2 of Hall and Heyde (1980).

Corollary 2.3 Assume conditions of Theorem 2.5 (b), and (B5). Then for any c € IRP
with ||c|| = 1, we have

st (B — Bo) 2 N(0,1) (2.16)

The next theorem is an analog of Theorem 2.2.

Theorem 2.6 Assume the conditions (B0)-(B3) and the bootstrap weights satisfy
conditions (5.1) - (5.3) . Then there exists a sequence {Sg} of solutions of (1.2) such
that

(a) if p/an — 0, then for fired ¢,6 > 0, AK > 0 and integer ny such that for all
n > Ng

Prob[Pg(on tanp ?|fp — Bul <K) <1—¢] <6 (2.17)
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(b) ifp/an — 0, then

on a7 0 (3 Edunt) " (B — B) = —az' 02 Wibni(Ba) + rmpn (218

i=1 i=1

(2.19)
where ||rp1|| = opp(p™!).
(¢) if pPa;® — 0, then for any ¢ € IRP with ||c|| = 1,
silon ' (Bp=Fa) = D WiXui+ops(1) (2.20)

=1

(d) if pa;? — 0 and (B4) holds, then

on a5 (Y. b1 (B — f) = —ap > Wibni(Bn) +1apr (221)
i=1 :

i=1
where ||rnp1|| == Opg(ona,'p).
Let Fy,(z) = Probls;'cT(Bn— o) < z]. and let Fg,(z) = Ps(s, on T (fg — fn) < .

Corollary 2.4 (Proof omitted) Let {wy;, 2 = 1,...n} be exchangeable for every n.
Assume the conditions of Theorem 2.6, part (c). Also assume (B5) and conditions
(5.4)-(5.5) on the bootstrap weights. Then

sup |Fpn(z) — Fp(z)| — 0 in probability (2.22)

3 Examples of UBS resampling techniques

In this section we discuss some special cases of UBS resampling techniques. In each
such case, we identify a random mechanism, and show how the UBS conditions (5.1)-
(5.15) relate to it. Also, some of our results assume that the weights are exchangeable
or independent. In all the examples we consider, weights are exchangeable, and cases
of independence will be particularly mentioned.

Example 3.1 THE CLASSICAL BOOTSTRAP AND ITS VARIATIONS

(a) Consider the vector of bootstrap weights w,, = (Wn.,---,Wnys) to be a ran-
dom sample from Multinomial(n,1/n,...,1/n). These weights can be interpreted as
simple random sampling with replacement of the functionals to minimise, thus this is
essentially the classical bootstrap of Efron (1979). All the conditions except for (5.10)
and (5.13) holds in this case. Thus these weights satisfy the conditions required for
asymptotic representation of the bootstrap variance estimator and consistency of the
bootstrap distribution estimator.

12



We now consider some variations of (a). The variations (c)-(e) have been mentioned
in Praestgaard and Wellner (1993).

(b) Consider the m out of n bootstrap, where m — oo m/n — 0. This is car-
ried out by selecting m data points randomly out of the n available. If the selection
is without replacement, this scheme can be identified with the delete-(n — m) jack-
knife. If the selection is with replacement, the weights are a random sample from
Multinomial(m,1/n,...1/n). Both are special cases of UBS, and after appropriate
scaling of the weights, (5.1)-(5.5) are satisfied. This establishes first order accuracy of
the distribution estimator. Consistency of the variance estimator can also be obtained.

This bootstrap works in many problems where the “n out of n bootstrap” may
not work. For example, as in the case of degenerate U-statistics, where the limiting
distribution is non-normal. This suggests that a sub-class of UBS techniques is possibly
applicable to a much broader framework, where the assumptions leading to asymptotic
normality of the estimator is dropped. This requires further investigations.

(c) For double bootstrap or nested bootstrap the weights (w1, ..., wn,) follow
Multinomial(n, My /n, . .., Mpn/n) conditional on M, = (M,,...,M,,), which in
turn follows Multinomial(n,1/n,...,1/n). The behaviour of this bootstrap is simi-
lar to the classical bootstrap described in Example 3.1(a), but this is more likely to
concentrate on fewer data points than the classical bootstrap.

(d) The Polya-Eggenberger bootstrap is similar to the double bootstrap, except
that none of the conditional probabilities for the second stage sampling is zero. In
this case (wn1, ..., Wnn) follow the Multinomial(n, Dy1/n,. .., Dyy/n) conditional on
Dy, = (Dp1, ..., Dyy), which follows Dirichlet,(c, ..., a) for some parameter a > 0.
The behaviour of this bootstrap is similar to the classical bootstrap and the double
bootstrap.

(e) In multivariate hypergeometric bootstrap, the weights satisfy,

K\ K\ &
Prob[wm:kl,...,wnnzkn]:(nn> (i)(lﬂ)’ Ekizn,ogkigK
n) i1

where K is some integer parameter. The behaviour of this bootstrap is similar to the
classical bootstrap, or the double bootstrap or Polya-Eggenberger bootstrap.

Example 3.2 THE BAYESIAN BOOTSTRAP Consider w,, to be a random sample from
Dirichlet(a, . .., o) distribution. All the conditions on weights except for (5.10) and
(5.14) are satisfied by these weights. This shows first order accuracy of distribution
estimate and consistency of variance estimate for the ‘Bayesian bootstrap’. If o = 4,
then (5.14) is also satisfied. Dirichlet weights are exchangeable but not independent,
however the " such weight can be expressed as nX;/(3 X;) for some i.i.d. sequence
X;. This representation is often found useful in studying the second order accuracy of
Dirichlet bootstrap. We discuss this further in Example 3.3.
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Example 3.3 THE BOOTSTRAP CLONE METHOD Consider the weights w,; to be
i.4.d. random variables, satisfying moment and support restrictions imposed by (5.1)-
(5.15). Absolute continuity and restrictions on the density of the weights may also be
imposed. Such weights may be used to get first and second order accurate distribution
estimates and variance estimate. Very often as a variation of this, generalised bootstrap
is done by considering weights of the form w; = nX,/(}> X;), for i.i.d. absolutely
continuous random variables X;. This is the idea behind the ‘bootstrap clone’ method
of Lo (1991). A recent application of this method is given in James (1997). In (1.2),
one may replace such w; by X; without loss. Thus second order accurate distribution
estimates and variance estimates may be obtained for all such weights. This covers the
case of Dirichlet weights also, discussed in Example 3.2.

Example 3.4 THE WEIGHTED LIKELIHOOD BOOTSTRAP In case ¢,;(-) has a log-
likelihood interpretation, the weighted likelihood bootstrap of Newton and Raftery
(1994) is a special case of UBS. This can be used for approximate Bayesian inference
as suggested by Newton and Raftery (1994). A completely different treatment for
bootstrapping likelihoods has been pursued by Davison, Hinkley and Worton (1992).

Example 3.5 THE DELETE-d JACKKNIVES For an integer d in {1,...,n}, consider
the n dimensional vectors 7., ,....;, Where the 4* coordinate of Tnsin,...ig 1 0 if 7 is
one of iy,...,1q4, else it is n/(n — d). Thus there are (2) such vectors. Consider w;, to

be a sample from the set of 7, each of the (Z) vectors having the same probability of
being selected. Such weights can be identified with the delete-d jackknife weights (see
Chatterjee (1998) for more details). It can be seen that (5.1), (5.3) always holds. If
n —d — oo then (5.2) also holds, and (5.6) holds for mg = n — d.

If d/n — ¢ € (0,1), then (5.4)-(5.5), (5.7)-(5.9) and (5.15) also hold. If d/n — 0,
then (5.10)-(5.12) hold. Thus if n — d — oo, the basic representation of the jackknife
estimator holds. If further, d/n — ¢ € (0, 1), then first order consistency of the delete-d
jackknife distribution estimator is established. However, if d/n — 0, (5.5) is violated,
and the jackknife histogram is no longer consistent distribution estimator. However,
for variance estimation, the jackknives are consistent. A higher order accuracy of
the jackknife distribution may not be expected in general, since a crucial skewness
condition (5.14) fails to hold.

The standard interpretation associated with the jackknife, that of ‘deleting d obser-
vations’ and considering the rest does not make sense in time series, since that way the
crucial temporal dependence among the observations is lost. Earlier, Kunsch (1989)
suggested a jackknife based on block size of the block bootstrap. Our suggestion is
different, we ‘jackknife’ the estimating equations.

Example 3.6 “DOWNWEIGHT-d JACKKNIVES” This is a new variation of the more
celebrated delete-d jackknives discussed in (3.5). The modification is as follows: For
an integer d in {1,...,n}, consider the n dimensional vectors Mniiyjia,...ig Where the
7% coordinate of 7y, 4, is d/n if j is one of 41,...,i4, else it is (n + d)/n. The
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resampling weight vectors are a sample from the set of 7, where each of the (Z) vectors
have equal probability of being selected. The asymptotic properties of the weights
of this resampling technique is same as that of the delete-d jackknife, however, since
no observation is assigned a weight zero, model assumptions like (5.34) are often not
needed.

4 Examples of martingale estimating equations

In this section we discuss some examples of estimating equations. The problems of M-
estimation, non-linear regression and generalised linear models are discussed in some
details.

Resampling for M-estimators was profoundly studied by Lahiri (1992), and by
Mammen (1989, 1993). The latter also incorporated dimension asymptotics aspect
in his study. In non-linear regression, resampling was studied in Huet and Jolivet
(1989), Huet, Jolivet and Messean (1990) and Gruet, Huet and Jolivet (1993). In
generalised linear models resampling was studied by Simonoff and Tsai (1988), Moulton
and Zeger (1989, 1991), Sauermann (1989) and Lee (1990). Shao (1992a,b,c) studied
the properties of jackknife variance estimators in non-linear regression and generalised
linear models. However, almost entirely the literature has concentrated on residual
based resampling. As has already been pointed out, the UBS may be seen as a
generalisation of the paired bootstrap and delete-d jackknives.

Example 4.1 M-ESTIMATION IN LINEAR REGRESSION Let y; = x;0y+e¢; be the linear
model and Sy be the parameter to be estimated. Here ¢ni(y;, 25, A) = —z;0(y; — Ax;) for
some function (-). For simplicity assume that the covariate observations z; are non-
random, and the errors e; are independent. The formulation with random covariates
is similar, with some additional complexity. Suppose that the function (-) is twice
continuously differentiable, with the first and second derivatives denoted by 11 (+), 12(-)
respectively. In the following assumptions, k; and K; are used as notations for different
constants.

(MO0) Assume that for all 7, 0 < k; < |z;] < K; < co. This assumption was made in
Liu and Singh (1992), for example.

(M1) For all 4, Ev(e;) = 0.

(M2) For all 4, 0 < ky < Ev%(e;) < Kz < 00, and Evi(e;) < oo.

(M3) For all 4, ¥1(e;) > 0, 0 < k3 < Ev1(e;) and 0 < E92(e;) < K3 < oo.
(M4)

M4) For some 6 > 0, 3 a function M (-) such that for all 4, supy s |12 (ei+t)| < M(e;),
and sup; FM?(e;) < oo.

(M5) {zs(e;)} satisfy the Lindeberg condition.
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The above assumptions ensure that assumptions (A0)-(A5) hold. Note that condi-
tions (MO0)-(M5) are only sufficient conditions. For some robust regression techniques
1a(+) is assumed to be bounded, and this ensures (M4).

Example 4.2 LEAST SQUARES IN NON-LINEAR REGRESSION AND GLM In non-
linear regression we have the model y; = f(x;, B) + €; for some known function f (+)
and in generalised least squares, we have u(y;) = x;60 + e; for some link function
p(-). The least squares in these two models are similar Here we have ¢n;(y;, x;, ) =
—f1(xi, M) (ys — f(xi, A)) for some function f whose k** partial derivative with respect
to A is written as f;.

We again assume non-random covariates x; and independent errors e;. We as-
sume that for all x;, the functions fi(x;, A), fo(xi, M), fa(xi,A) exist. In the following
assumptions, ¢; and C; are used as notations for different constants.

NGO) Assume that for all 4, 0 < ¢4 < |7;] < C4 < 0.
NG1) For all i, Fe; = 0.

NG2) For all 4, 0 < ¢; < Ee? and Fe? < oo.

NG4) For all 4, 0 < ¢; < |fi(x;, N)] < C1 < 0.

(NGO)
(NG1)
(NG2)
(NG3) Assume that for all 7, the functions f;(x;, A), k=1,2,3 are bounded.
(NG4)
(NGS5) For all i, the functions g(x;, A) is continuous at B, for g = £, f1, f2, fs-
(NG6)

NG6) Assume that {fi(x;, O)e;} satisfies the Lindeberg condition.

Conditions (NGO0)-(NGS6), ensure that assumptions (A0)-(A5) hold. Conditions
(NGO)-(NGS5) are satisfied in commonly used generalised linear models, see McCullagh
and Nelder (1989). The error conditions (NG1) and (NG2), and (NG6) are usual
assumptions. Note that all the usual link functions are injective functions, and in our
frame-work, the function f(x;, A) is actually the inverse of a link function. For the
link functions described in McCullagh and Nelder (1989, pages 30-32), it is a small
matter to check that conditions (NG3), (NG4), (NG6) hold, if the covariate variable
z satisfies (NGO).

Non-linear regression models with martingale difference errors have been considered
(Lai (1994)). Conditions of a different flavour appear in Wu (1981). The framework
of both these papers overlap with ours.

Example 4.3 MODELS WITH NUISANCE PARAMETERS The following problem has
been been of considerable interest (Neyman and Scott (1948)): Suppose X;, i =
1,...,n are independent with mean p and variance 7;%, where p is the parameter
of interest. For ordinary least squares, ¢,; = —(X; — p). The different sufficient
conditions of our set-up can be satisfied in this example by assuming sup, EX1® is
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bounded. This ensures first and second order accuracy of UBS distribution estimator,
and the UBS variance representation result. A more careful analysis specialised to
this problem shows that actually a much lower moment is sufficient.

Example 4.4 AUTOREGRESSIVE PROCESSES Suppose we have a stationary process
{Xy,} satisfying X, = 6:X,,_1 + ... + 0,X,_, + e, where {e,} are i.i.d. and the
polynomial 1 — 6;2... — 0,2P has its roots outside the unit disc over the complex
plane. The parameter of interest is Gy = (61, ..., 6,), whose estimate may be obtained
by various techniques, see Brockwell and Davis (1986) for details. Assume p = 1
and least squares estimation technique for simplicity. Thus we have X; = 60X;_; + e;
where |§| < 1 and {e,} are i.5.d.. Here we have ¢,; = —X;_je;. If fourth moment
of e; is bounded, other conditions may also be easily checked. One can use general
M-estimation also in time series models. Recently Allen and Datta (1999) have used
modified forms of estimated innovations for bootstrapping, which is comparable to the
bootstrap of M-estimators in linear regression as in Lahiri (1992). Our technique of
resampling is perhaps a simpler approach and does not use estimated residuals.

Example 4.5 CO-INTEGRATED PROCESSES This example is on multivariate time-
series data. A univariate time series {Y;} is integrated d times (I;) if differencing
it d times results in a stationary, invertible ARMA process. A multivariate time
series process {X; = (Xu,..., X(p+1))} is co-integrated of order (d,b) if (3) {Xj:} is
I and (i) there exists a non-zero vector a such that a”X, is I;y_y) for b > 0. The
vector a is called the co-integrating vector and is the parameter of interest. For a
discussion on these models see Engle and Granger (1987). Co-integrated time series
have applications in many economic problems. An important feature here is the study
of equilibrium, that is, when different economic variables behave in a way that preserves
some economic balance between them, which translated in mathematical terms, mean
that the variables are I; for some d > 0, and d = b, thus the co-integrated process is
stationary.

Consider a simple example of a co-integrated process: where we have Xy, = Gy X1:+
Y:, where Xy; is I(1) and Y; is AR(1). Suppose ordinary least squares on (X4, Xo;) is
used and the parameter estimator is 3, = (X X%)71 Y X3: X In this example we have
a, = n, thus the usual n'/ 2_convergence phenomenon is violated. Let Y; = fe;,_; + e;
and X1, = Xy-1) + 44, and assume that {u;} and {e;} are independent, each with
mean zero and finite non-zero variance. Our model conditions (A0)-(A4) are satisfied
by assuming bounded fourth moment of X; and Y;.

The asymptotics for estimating the co-integrating vector and its bootstrap may be
derived from our set-up.

Example 4.6 ROBUST ESTIMATORS Robust estimators of location, scale and regres-
sion are typically M-estimators like the ones considered in Example 4.1, and may be
similarly treated.

In all these examples, the assumptions (A0)-(A1) on the function ¢,; and its first
derivative is standard, and the second derivative is often bounded, hence assumption
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(A2) is satisfied. The moment assumptions in (A3) and the asymptotic normality
assumptions of (A4) are also routinely satisfied.

Our set-up covers such inference based on likelihoods, where ¢,; has the interpre-
tation of being derivative of (weighted or unweighted) log-likelihood terms. Note that
the martingale structure is particularly important in such situations.

REMARK: SEMIPARAMETRIC INFERENCE PROBLEMS In semiparametric inference
problems, along with the finite dimensional parameter an infinite dimensional nui-
sance parameter is present. One standard approach is to use a kernel based plug-in
for the infinite dimensional parameter, and then use least squares technique for the
finite dimensional parameter. Since estimation of the infinite dimensional component
involves the entire data, the crucial martingale property of the estimating equations for
the finite dimensional parameter estimator is lost. However, a slight generalisation of
the set-up of this paper can be used for such cases, as explained below. We restrict our
discussion to the problem of asymptotic normality and consistency of UBS. Higher
order results and variance representation will require more careful analysis.

Assume that ¢p; = my; + 7o where {(Sn; = Yl imp, Foj), 7 = 1,...,n} is
a martingale for some filtration F,;, and r,; is an ’error’ term resulting from using
an estimator 7 (-) of the non-parametric component m(-) of the model. Let R,,, =

n

n
i=n—ny+1 Tni- The solution to Z on; = 0 and E my; = 0 would be close if
i=n—mni1+1 t=n—mn1+1
R, is small.

The theory developed in this paper can be generalised to cover this case also. By a
careful reading of the proofs it can be seen that our asymptotic representation theorems
only use the property O((X7,_n, 41 9ni)%) = O(Zp_n 41 92%) and this is available
in this general set-up also.

The technical conditions of Section 5 are required to hold for m,; and its derivatives
only. Additional requirements are that R,,, = op (nla,jll) and is F, , measurable. This
is also easily satisfied; typically by letting n; — co and n;/n — 0.

n

The bootstrap estimator is obtained by solving Z Wni®n; = 0 for the same
i=n—n1+1
integer n;. The asymptotic normality of the estimator andlzonsistency of the UBS are
also easily established using the martingale difference structure of {m,;} and asymp-
totic negligibility of R,,,. We mention four examples below in this more general
framework. A detailed discussion of UBS used in these examples may be found in
Chatterjee (1999).

Example 4.7 LOW DIMENSIONAL COMPONENT ESTIMATION IN SEMIPARAMETRIC
ADDITIVE REGRESSION MODEL Consider the regression problem: y; = f(x;,6) +
m(Z;) + e;, where f() is a known function, m(-) is an unknown function, 5, is finite
dimensional parameter, e;’s are independent. Sometimes f(-) is linear, resulting in
the model being a partial linear model. These models have generated interest owing
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to their wide applicability. See Fan, Hardle and Mammen (1998) for some results on
these. The partial linear model has been considered in Shi (1998) and in much greater
generality in Mammen and Van de Geer (1997).

Example 4.8 ESTIMATION IN PARAMETRICALLY LINKED ADDITIVE MODELS Con-
sider the set-up y; = u + Z]JZI m;(X;) + e;, where m,’s are unknown functions. For
identifiability, set Em;(X;) =0, j = 1,...,J. This is the set-up of the additive non-
parametric regression, studied in Hastie and Tibshirani (1990), Fan, Hardle, Mammen
(1998) and may others. Motivated from non-parametric GARCH model, Carroll, Har-
dle and Mammen (1999) consider m;(z) = B3 'my(z), and simultaneous estimation
of my(-) and fy. Carroll, Hardle and Mammen (1999) discuss examples from financial

data and autoregression, and also cite several references for other applications.

Example 4.9 EXPONENTIAL FAMILY DENSITY ESTIMATES Suppose ¥i,...,Y, are
i.1.d. observations from an absolutely continuous distribution with density g(z) =
go(z)exp(by + t(x)b1). Here go(z) is a carrier density, and the exponential component
ensures that the density belongs to exponential family with sufficient statistic ¢(z). The
parameter by is a normalising factor, whereas b; is the finite dimensional parameter of
the exponential family. The problem of density estimation in this family have been
considered in Efron and Tibshirani (1996). This semiparametric model is remarkably
versatile in applicability and mathematical tractability. More classical density estima-
tion procedures often require post-repair of the mean, variance etc. (see Jones (1993)),
which are in-built in the present model. The carrier go(z) is usually uniform density,
but other densities can also be used. This is effective in capturing the local properties
of the data, whereas the exponential term captures the global features.

Example 4.10 REGRESSION WITH CENSORED OBSERVATIONS This example is from
typical regression problems that arise in the context of survival analysis. We consider
only one of a large variety of techniques, namely, the proportional hazards model. The
data generally consists of the triplet (¢;, d;,x;), where ¢; is an observed time point, §; is
the indicator on whether the i observation is uncensored, and x; is the observation
on the covariate. The proportional hazards model is given by the hazard function
A(t) = Xo(t) exp (xF By) where g is a baseline hazard function and § is the parameter
of interest. Modelling is often done by using a plug-in for )g, like an exponential or
Weibull hazard function. This is similar to Examples 4.8 or 4.9. The rest of the mod-
elling technique is similar to generalised linear models. Conditions from Example 4.2
can be adapted in this set-up.

5 Appendix 1: Technical conditions

We first state the conditions on UBS weights. and then state the model conditions
used for the different results of this chapter. We write ¢;(Zni, A) = ¢ni()), and assume
that forall 1 < ¢ < mnand all n > 1, the functions ¢,;()) are differentiable twice almost
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everywhere. Two conventions are used for the conditions listed below: Any condition
stated for a random function is assumed to hold almost surely unless otherwise stated;
and the usage of the term ‘for all A’ signifies that the stated condition holds for all
values A in the interior of the parameter space, which is always assumed to be an open
set. Also, throughout this paper, £ and K, with or without suffix, are used as generic
for constants.

5.1 Conditions on UBS weights

Let {w;n;1 < i < n,n > 1} be a triangular array of non-negative random variables
to be used as weights. We drop the suffix n from the notation of the weights. The
notations Py, Eg will respectively denote bootstrap probability and expectation, con-
ditional on the data. Let V(w;) = 02 and assume that the quantities

We— 1, wp—1..,w.—1

E ¢ J koL
(B (e
are functions of the powers ¢, j, k... only, and not of the indices a,b,c.... Thus we
can write
we— 1, wp—1,; w.—1
Cijk... = E(——)( Y(—=—)*. ..

On On On

Note that if the weights are assumed to be exchangeable, then this is true.

Let W be the set on which at least mg of the weights are greater than some fixed
constant ky > 0. The value of mg may be related to the model assumptions, and will be
specified later. We now state some conditions on the weights. Various combinations of
these conditions are used in proving our different results on UBS bootstrap throughout
this chapter. The conditions are stated keeping in view that later we allow p — oo in
some results.

Bw; = 1 (5.1)
0<o02 = o(minap~3 n) (5.2)
= O (5.
C2 — 1 (5.4)
ca < 00 (5.5)
Ps[W] = 1-0(@p*n™) (5.6)
0<k<o2 < K<oo (56.7)
k
Cirigipy = 0NV dq,4y,. .., % satisfying ) i; =3, (5.8)

i=1

k
Cirigiy = O(min (n™"2,1)) V  d1,4s,. .., satisfying Y i; = 4. (5.9)
=
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2

0«0, < K<oo (5.10)
k

Cirig.dp = O(’I’L_k_HO'n_l) \ ’1;1, iz, ey ik satisfying Z ’I;j = 3, (511)
j=1

k
Cirigeiy = O(W™*2) 'V 4,4y, ..., i satisfying > i;=4.  (5.12)

=1
PB['wi >k > 0] =1 (513)
e — 1 (5.14)
g < o0 (515)

5.2 Assumptions for subsection 2.1

We adopt the notations ¢1yni(A) = %qﬁkm-(/\), for kK =0,1,2,..., where ¢o,;(A) =

G1i(A); Drni(Bo) = Prni for k =0,1,2.... Let Spj = S, bps-
For the sequence {a,} described later on in (5.17), define

k13
Si = ZE¢ii/ai
i=1

Yo = [ oL > 1
=1 =1

Assume that for each n > 1, there is a sequence of o-fields F,; C ... F,,, such that

{Snj, Fnj, j =1,...,n} is a martingale sequence. The following are a set of conditions
on this martingale:
(40)
E¢p,;=0foralll <i<n, n>1. (5.16)
3 a sequence {a, — oo} such that K1 > > E¢2, /a2 > k >0 (5.17)
i=1
(A1)
n
0<ky < > E¢ini/a’ < K, (5.18)
i=1
0 < > bini(N)/a2 for all A (5.19)
i=1
(A2) There exist May;, possibly random and depending on 3, and a sequence {c,}
such that
sup |poni(A)| < May; for some fixed §y > 0. (5.20)
IA—Bo|<do
E() " M) = O(cl) where a;%c2 = O(1). (5.21)
=1
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(A3) For some sequences {b,} and {d,},
Ela;' Y (¢1ni — Edrns)]* = O(B2) where a;2b2 = o(1). (5.22)
Elag* Y (¢n; — E6L)]* = O(dy) where a,,2d} = o(1). (5.23)

(A4) ( Asymptotic normality assumptions)

The triangular sequence X,; = (X7, E¢2,) "2 ¢,; satisfies

max | X,| 0, Y X2 51, sup E(maxX2) < oo (5.24)
2 i=1 m 7
Fri C Fogri fori=1,...,n,n>1 (5.25)

5.3 Assumptions for subsections 2.2 and 2.3

In both subsections 2.2 and 2.3, we assume that ¢,;, 7« = 1,...,n are independent.
Assume that

bri( A+ 1) = Gni(A) + 1Vt 4+ 27 bons (V)12 + Rpi(t, M)t (5.26)

where |Rp;(t, A)| < k|t|* for each A for some 0 < a < 1.
Thus for this restricted set-up we can use simplified expressions for some of the
assumptions stated earlier. Following is the list of assumptions in this framework:

E¢,;, = Oforalll <i<n, n>1. (5.27)
Y. Eldul" = O(n) (5.28)
i=1
Y El¢mil® = O(n) (5.29)
i=1
> Elposl” = O(n) (5.30)
i=1
nt Z¢1m' > k; >0, (5.31)
i=1
E¢2, > k>0, forall ) (5.32)
¢1m()\) > ko > 0, for all A (533)

In the above, the constant L is to be specified in the results. For some resampling
schemes that we consider, condition (5.31) is not sufficient. Suppose mq is a specified

integer in the range [n/3] to n. For any integer m in {my,...,n} consider the subset
T ={i1,02...,im} of {1,2,...,n}. We assume
m~! Z G1ns > k1 >0 (534)
i€Tm
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for every such choice of subset Z,, of size m from {1,2,...,n} and for every m in
[mg,n]. The more stringent assumption (5.34) is required to make resampling schemes
like the paired bootstrap and the different jackknives feasible.

Note that (5.27)-(5.30) covers the conditions listed in (A0) and (A2)-(A43). The
conditions (5.34) reflect the condition (A1).

5.4 Assumptions for subsection 2.4

The model conditions here are extensions of the conditions (A0)-(A4) for the p dimen-
sional case, along with a condition on the growth rate of p with respect to n. The
following notations will be used: {|c|| is the Euclidean norm of a vector ¢, AT is the
transpose of the matrix A, ¢r(A) is the trace of A, Apes(A4) and N, (A) are respec-
tively the maximum and minimum eigenvalue of A, and for symmetric matrices A and
B, A > B means A — B is positive definite.

Note that each ¢,; is actually a vector valued function, thus

¢ni()‘) = (¢m'1()‘)’ cey ¢m'p()‘))T
For each ¢,;,()\), we assume that the following Taylor expansion holds:
Pria(A + 1) = Gnia(A) + ¢Thia (N)E + 2747 Hopio (M2 (5.35)

for Ay = A+ ¢t for some 0 < ¢ < 1. We consider two separate possibilities: the
dimension p is a fixed positive integer; or p — 0o as n — oco. As earlier, we often

denote ¢n;(Bo), ¢1m‘a(50) etc. by @ni, P1nia etc.
Let Spj = Y1, ¢ni. Assume that for every n, there is a sequence of o-fields F,; C

.. Fpn, such that {Syn;, Frj, j=1,...,n} is a martingale sequence.

(B0) Assume that

E¢ni=0 (5.36)
3 a sequence {a, — oo} such that K > [stlzn:E(chﬁm)z]/afL > k>0 (5.37)
cll=14=1
(B1) Assume that
>3 Bllmall? = Oais) (539
2”: i E||$1nia — Edrnicl|> = O(a2p?) (5.39)

i=1a=1

(B2) For the symmetric matrix Hap;, in (5.35), for some & > 0 there exists a sym-
metric matrix Ms,;, such that

for all {t : ||t|| < (50} Hgm'a(ﬁo + t) < M2nia (540)
n p
> D BN (Mania) = O(appn™) (5.41)
i=1a=1
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(B3) Let ¢1ni()) be the (p X p) matrix, whose a** row is given by ¢ . ()), for a =

lnia
L...,p- Let T'1y(A) = 6,2 5% d1ni(N). Assume that 'y, is nonsingular. Let
Gin = 0,2 3", E¢ipi. Assume
0<ky < Amin(27Y(G1n +GT) (5.42)
sup [|Gp,cll = O(p) (5.43)

llell=1

(B4) (strengthening of (B3)) Recall that I'i,()) = ;23" ; d1n:(2). Consider all
A€ {X:||A = Bol| < 8}, where without loss of generality & is same as in (B2).
Assume

0<ks < Apin(27H(T1m(N) +TT (X)) (5.44)

Sup ICi2(Nell = O(p) (5.45)

(B5) Consider any fixed vector ¢ € IRP with ||c|| = 1. Let
s = P00 Edrn) e 1Y Epnitnil (O Edins) ']
=1 =1 i=1
Xm' = _37_7,1[(2 E¢1ni)_1c]T¢ni
i=1

Then X,,; satisfies

n
max | Xl 20, Y X% 51, sup E(max X%) < oo (5.46)
¢ i=1 n :
fn,i C fn—l—l,i for ¢+ = 1, NN I L Z 1 (547)

6 Appendix 2: Proofs of results

Our first result in this section is on Edgeworth expansions for studentised sample

sum of independent, not necessarily identically distributed random variables with zero

mean. The proof of Theorem 2.4 easily follows from this, and hence it is omitted.
Consider random variables {X;} satisfying the following moment conditions:

EX, = Oforall¢ (6.1)
0<EX? = 1< K; <00 (6.2)
S EX} = O(n) (6.3)
ZEX? = o(n?) (6.4)

Under the above set of assumptions, we consider Edgeworth expansion for the statistic
t, = (X X?)"/? % X;. The standard notations ®(-) and ¢(-) are used for the standard
normal distribution function and density function respectively.
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Theorem 6.1 For random variables {X,} satisfying Assumption A and (6.1)-(6.4),

sup [PIGC X2 3 Xi <yl — @(y) — n7p(y)d(y)| = o(n/?) (6-5)

for some polynomial p(y) of degree 8 whose coefficients are continuous functions of the
averages of the first three moments of X;, i=1,...,n.

REMARK 1. Hall (1987) established Edgeworth expansion for the studentised sam-
ple mean of 7..d. random variables with finite third moments and non-singular distribu-
tions. The non-singularity of the distribution was used to establish a Cramer condition
type result (see Lemma 2.2 of Hall (1987)), using a result on the density of the ab-
solutely continuous part of the random variable (see Lemma 2.1 of Hall (1987)). We
have assumed for convenience that the random variables are all absolutely continuous.
The proof of Theorem 6.1 is along the same lines as that of Hall (1987).

REMARK 2. This theorem is a partial generalisation of the main results of three
important papers. Bai and Zhao (1986) considered nonstudentised sample averages
from independent random variables, our result is for the studentised case. Hall (1987)
established Edgeworth expansion for studentised sample average of 7.7.d. random vari-
ables under minimal conditions, we extend it to the independent case, but not under
minimal conditions. By using standard techniques, our result can be extended to func-
tions of sample averages of independent random variables, thereby extending the result
of Bai and Rao (1991). Our result may also be viewed as a variant of Theorem 20.6 of
Bhattacharya and Ranga Rao (1976), where individual random variables are required
to satisfy the Cramer condition. We derive a ‘conditional Cramer condition’, as in
Lemma 2.2. of Hall (1987) in the present set-up, and for this we need assumption
A. However, by following a different approach based on Edgeworth expansions for
strongly non-lattice random variables, assumptions about absolute continuity of X,’s
can possibly be replaced by strong non-latticeness of X;’s.

For weighted sums of ¢.i.d. random variables, a sufficient condition for ensuring
assumption A is given below. The proof is easy and is omitted.

Proposition 6.1 Suppose {{;} arei.i.d. mean zero absolutely continuous random vari-
ables with density f(x) such that for some constants zo > 0 and b > 0, f(z) > b >0
for all x € (—zo,z0). Let {a;} be a sequence of non-random constants such that for
large n, and for some a > 0; at least [an] of {|ai|, i =1,...n} lie in [a™!, a] for some
a>1. Then {X; = a;&;} satisfies Assumption A.

SKETCH OF PROOF OF THEOREM 6.1 Theorem 6.1 is proved by closely imitating
the arguments of Hall (1987). Hence we give only a sketch of the proof. In Hall
(1987) the X;’s are i.i.d. but in our case it is not so. Let ¥; = X; — E(X;||X;]),
p; = PX; > 0|, B = E[YZ|1X;]] and v;(t) = Elexp(it¥;)||X;]], where all the
above expectations are conditional on |X;|, as is obvious from the notation. The
arguments of Hall (1987) may be followed, by substituting appropriate averages of
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moments (or conditional moments) in place of the moments (or conditional moments)
from the single distribution considered by Hall (1987). Note that the remarks of
Hall (1987, page 922, after (2.4)) do not hold in case X;’s are not i.i.d.. However,
Assumption A allows us to overcome these issues. With a notation similar to that of
Hall (1987), we may then define yy = n~ 'Y EX? and v = n 1Y Efly; among other
things, and follow his arguments. One additional technical condition that is required
for the present set-up is that both uy and v, must have a positive lower bound. This
follows from Assumption A. We also need a parallel to Lemma 2.2 of Hall (1987),
which is stated below. We omit its proof, which is easy.

Lemma 6.1 If X;’s are absolutely continuous with densities satisfying assumption A,
then

supn Y El;(t)] < 1

|t >e

for all € > 0 for all large n.

Then, by following arguments similar to that of Hall (1987, pages 926-930), we
obtain

sup |Pltn < v] - 2(y) - n"2q(y)p(y)| = o(n?)

for some third degree polynomial ¢(y) whose coefficients depend on moments upto
third order of X;’s and (2p; — 1)|X;|’s. From Theorem 20.6 of Bhattacharya and
Ranga Rao (1976) it follows that ¢(y) must be as stated in (6.5), with coefficients
depending only on the averages of moments upto third order of the random vectors
(X;, nY2(X2-72%)T, i=1,...,n, since if two second order Edgeworth expansions
exist for the same quantity they may differ only by o(n~'/?). However, now we can
use the special structure of our statistic to see that the coeflicients of ¢(y) must be
functions of n™' Y, EX? and n~' 3 EX?, since EX; = 0 for all . An easy cross check
is accomplished by observing that this is indeed the case when X,’s are i.i.d random
variables. This completes the sketch of the proof of Theorem 6.1. [ |

Proof of Theorem 2.1 Note that given any ¢ > 0, 3 K > 0 and an integer ng
such that for all n > ng

Probllaz}S ¢uil > K] < ¢/3 (6.6)

=1

This is easily established using Chebyshev’s inequality, (A0) and (A3). Let vy, =
a2 3" | d1ni. Next note that given any constants €, C, K > 0, for all n large enough,

Prob[sup |S,(t)] > K] < €/3 where (6.7)
lt}=C

Sn(t) = a;* i[@n‘(ﬂo + a;'t) — ¢ni(Bo)] — Yint
iz
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Instead of (6.7), we actually prove the much stronger result

E[lflli% Sa(®)l]* = O(az?) (6.8)

By Taylor series expansion we have
> [bni(Bo + a't) — $ni(Bo)] = @'t b1ni(Bo) + 5(1; 2" boni(B1)
i=1 i=1 =1

where f; lies in between fy and fo + a,'t. Then S,(t) = 1a;%2 % ¢os(61). Thus
we have for all large n, supj;<c |Sn(t)| < 27a,°C? ) Moy, using (A2). Thus

Elsup |S,.(1)])? < 47'a,°C*E(}° May)?
t|<C i=1
= Of(a;?) using (A2)
This completes the proof of (6.8). Note that
Itilnfc{a;ltz bni(Bo + a7 t)} > —C sup |Sp(t)| + C*y1n — Cal| Z Pnil (6.9)

(From (6.6), (6.7) and (6.9) we have, choosing C' large enough,

Prob] jnf a4 3> dwi(6o -+ a5"1)} > O
- i=1

> Probla;'| Y ¢nil + sup [Sa(t)| < Cyia)
i=1 ltI=C
= 1— Probla,'| > ¢ni| + sup [Sa(t)] > Cyin)
i=1 t|=C
> 1— Probla,?| > ¢ni| > Cky/4] — Prob[sup |Sn(t)| > Cka/4]
|t}=C

=1

—Probla,?| Y (b1ni — Edins)| > k2/2]
> 1 — € for all n sufficiently large

Using continuity of -7 ; ¢,;(A) in A, this means that for fixed € > 0 for all n sufficiently
large 3C large such that

> éni(Bo + a,'t) = 0 has a root ¢t = T}, in |t| < C with probability > 1 —¢ (6.10)
i=1

Putting £, = fo + a,'T,, we get a solution to (1.1) which satisfies, for fixed ¢ >
0, Probla,|Bn — Bo] < C] > 1 — € for all n large enough. This shows (2.1). Now
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notice that with this C' fixed, we have actually obtained in (6.8) that with ¢ = T,
anYin(Bn — Bo) = —a; S0 Gus + 71, where Er2; = O(a;?). Now a little bit more
algebra and conditions (Al) and (A3) yields (2.2). ||

Proof of Theorem 2.2 The techniques used in proving (2.4) and (2.5) are not
much different from what was used to prove (2.1) and (2.2). First fix ¢, > 0. Using
Chebyshev’s inequality, (5.1 and (5.3) it can be easily shown that 41, = Op(1) and
hence for some constant %,

Pallaz® > wini(Bu)] > Cnnon/2) < 2 ’“g" - (= Uic say) (6.11)

=1

Thus this bootstrap probability is bounded by a random variable depending on C,
which we call U;¢. By choosing C' large enough and using some algebra, it can be
shown that Prob[Uyc > €/2] < §/2. Fix such a C and define

SnB -1 Z w; ¢m /Bn + a_lt) Qsm (;én)] - ’AYlnt

Using Taylor series expansion, for some Bn1 between B, and f, + a,'t, we have
Snp (1)
n
= G,;2t Z wz(blm(ﬂn) - ;5'1nt + a 3t2 Z wz¢2m Bnl)

= 0nQ 2t2W¢1m /Bn 3t sz¢2m /Bnl)

= Sppi(t )+ Snp2(t) say

Consequently,
Py [I |suCp IS8 (t)| > CH1n0n/2]
t On
< PB[I sup 1SnB1(t)] > CHinon/4] + PB[| sup |SnB2(t)| > CH1non /4]
tjI=Cop t|=Con
= Uy say (6.12)
Now
PB[[ lsucp |Snp1(t)] > CHinon/4]
t|=Conp
= PB[UZG'EQCl Z VVz(blm(:Bn)' > C'A}'lnan/‘l]
i=1
S kU Z¢1nz(ﬂn)
an’Yln
= Op(o2a;?) using (A1), (A2) and (A3)
= OP(l)
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IA

IN

IA

IN

I

Pp[ sup |Snpa(t)| > CH1n0n/4]

[t|=Con
PB[| |SuCP | an3t2 sz¢2m ﬂnl)l > C’)/an'n/4]
t On i=1

1
P]3[—2~a;3| |sucp £2 Z Wi|boni (Bn1)| > CH1n0n/4] since w; > 0 for all i
t On  §=1

1 _
Py[5a,” Hins t2z wilgans(Ban)l > CHin0n/ VT ya_goj<torny + Lopolssosy)

t|=Con =1

1 _

PB[EG”3|t|Su£ tQZ;w’Wzm(ﬂ )l > Chnon/ N5 go1<sos2) T+ T18-polzs0/2)
1 _

PB[Ean ItS_U.CE()T t2zl’wz|¢2nz(,8n1)| > C’)’an'n/4]I{Iﬁ —Bo|<do/2} +0P( )

1
PB[EG 3 sup t? Zwlem > CY1n,04/4] + Op(a;') using (A2)

[t|=Con =1
1
PB[_a;302072; Z w; Mani > CH1n0n/4] + Op(a,?)
2a_ 3CUn’)/1n Z MQm + Op( )

Op(ona;®c,) + Op(a;') using (A2) and (A3)
Op(l)

So for all n large enough, Prob[Usxc > €/2] < §/2. Also, as in (6.9),

Thus

inf {a 1tZw,¢m (Bn + a7 '1)}

[t|=Co =1

> —Co, sup |S,p(t)] + C%0241, — Can|a;12wi¢ni(ﬁn)| (6.13)

|t|=Con

P [, 1nf {a ltzwz¢nz ;Bn + a_lt)} > O]

t|=C =1

PBHa;l zwz¢nz(ﬁn)| + sup |SnB(t)| S C’?lno-n]

i=1 t|=Cop

1- PB[la' ! szﬁbm ﬂn)| + sup !SnB( )I > C'?lno'n]

zl [t|=Con

1- PBH"'T:1 sz¢nz(,[§n)| > Cﬁ’lnan/z] PB[’ llnf | nB( )| > C71n0n/2]
=1 -
1 —Uic — U
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This establishes (2.4), since Prob[U;c > €/2] < §/2, i =1,2 from 6.11) and (6.12). By
modifying slightly the above argument it is easy to establish that

sup |Spp(t)| = onTnm1 (6.14)
[t|<Con

where Py (ay|ra51| > €) = Op(1) for any € > 0, then it follows that $1,07,  a,(fg—Ba) =
ot Wibni(B:) + Opp(a;t) With some more algebra, (2.5) follows. |

In order to prove Corollary 2.2, we need Lemma 4.6 of Praestgaard and Wellner
(1993), which is quoted below.

Theorem 6.2 (Praestgaard and Wellner (1993)) Let {n} be a sequence of natural
numbers, let {a,;} be a triangular array of constants, and let Wy;, j=1,...,n, né€
{n} be a triangular array of row-exchangeable random variables such that

n
-1 1 _
n ' (an;—@n)? =72 >0, n jgiﬁ'.}fn(a"j_a")
=1

Y (W — W) 5 2 >0, hm limsup E(W,,; — W,)? Low,;~wal>k3 = 0

j=1 K= n—oo

Then

1 & _
Tn > (amjWnj — @GaWy) = N(0,*1?) (6.15)
-

Proof of Corollary 2.2 It can be checked that with a,,; = —n'/2a; s, —1¢y,
the conditions of Theorem 6.2 is satisfied with 72 = 1, ¢ = 1. Using Lemma 3.1 and
4.7 of Praestgaard and Wellner (1993), the conditions of Theorem 6.2 are verified.

In place of Theorem 6.2, slight variation of the model conditions and assumptions
on resampling weights allows us to use Theorem 3.3 of Arenal-Gutierrez and Matran
(1996). In some circumstances this is a more general result. |

Proof of Theorem 2.3 The details of the algebra involved in this proof is similar
to those of Theorems 2.1 and 2.2, and we omit many of the details.

Let us concentrate on the set AN W only, since the contribution from the comple-
ment of this set is negligible. Under the conditions of the theorem, we have that

ngt, Vo =n"' > E¢* +O0(n™")
Define
UnB (t) = O'n_ln_l/2 Z wz[(ﬁm(ﬁn + ann_l/zt) - ¢m(ﬁn)]
=1

n n
—n_lt Z wi¢1ni (;Bn) - 2_1ann_3/2t2 Z wi¢2ni (/671)
=1 i=1
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Using (5.26), and proceeding along similar lines as with S,p(¢) in the proof of Theo-
rem 2.2, we can show that

Eg[ sup [Unp(t)]]* = Op(n~?)

[t|<Con

Now, under A N W, we may plug in ¢t = an“lnl/z(ﬂb — B) in Uy,p(t), and after quite
some algebra we arrive at

_glno‘n_lnl/z(ﬂlﬁ - B)
= —1/2 Z W¢m -n gln Z qsm Z W; ¢1m
-n- gln E ¢1m E¢1ni Z W¢m +n —5/2 gln Z ¢m Z ¢2m Z W; ¢m

+0an 2GS Widni > Wit + 27 000 2 gon g2 (" Withni)® + Rup
= Cn + Tln + T2n + T3n + T4n + T5n + RnB say

where EgR2 5 = Op(n~(1*2)). This derivation follows from obtaining Taylor series ex-
pansion about [, for quantities involving ﬂAn and ﬁ]3, then using the moment properties
and asymptotic expansion of B — fo.

Now it can be easily checked that EgC? = Op(1), and EgTZ = Op(n~ ) for
i =1,...,5. In the cross product, by direct computation EgC,T;, = Op(n~!) for
1 =4,5, and hence

ng%nVUBs = EBC?1 + 2EgC,, (Tln + T, + T3n) + Op (n_l)

Now the rest of the proof follows by calculating the above moments.

Proof of Theorem 2.5 ;From (5.37), one can easily show 7, E(||¢ni||?)
O(a2p), by using any orthonormal basis of IRP. Then we show that given any ¢ > 0,
3 K > 0 and an integer ng such that for all n > ng

Probja;p1/? qum-l > K] < ¢/2 (6.16)
This is easily established using Chebyshev’s inequality. Let

Sn(t) = a2 [ (B + az pM26) — hus(Bo)] — Gt

=1

Let Mln = ZZj:l Zp:1 (¢1m'a_E¢1m'a) (¢1nja,_E¢1nja)T- Then E/\marz:(Mln) = O( )
follows from (B1). Also, (B3) ensures that G, is non-singular. Because of (5.35), using
(B1) and (B2) we have that

||Sn(t)||2 < za;4||tl|2)‘mam(M1n) +27 ! _GPHtH4 Z Z )‘maz MZma)/\mam(M2nJa)

t,j=1a=1
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from which we have that
n P
[]Elup ”S ( )||]2 < 2a;4C2Amam(M1n) + 2_101,,:61304 Z Z /\maz(MZnia)/\ma:v(M2nja)
ij=1a=1

Now using (B1) and (B2) we have that E[sup)<c ||Sa(t)]|]* = O(a;?p®). Note that

inf {a P 1/2tTE¢m (Bo+a;'p'/?t)} > —C sup 1S, (t )||+Czlln~0a;1p_1/2||Zqﬁni][

ltl=C i=1 [t|=C i=1

where li, = Apin(27(G1n + GE)). By choosing C' large enough, from the previous
calculations we have that

Prob[ 1nf {a p /3T Z¢m Bo + a,'p"*t)} > 0]
i=1

> Probla;'p 1/QIIZ% |+|Slup 15a(8)]] < Clan]

=1

= 1 Probla;'p 1/2||Z¢m||+|s[up I1S4(H)]] > Clal

=1

v

1 — Probla;'p~1/?| Z¢nz|| > Cky/2] — Prob[sup ||S,(t)|| > Cko/2]
i=1 |t|=C
> 1 — € for all n sufficiently large

Using continuity of -7 ; ¢ni(A) in A, by Theorem 6.4.3 of Ortega and Rheinboldt (1970)
this means that for fixed € > 0 for all n sufficiently large 4C' large such that

> 6ni(Bo + ay'p*?t) = 0 has a root Ty, in |t| < C with probability > 1 —€ (6.17)
i=1

Putting 3, = Bo + a,'p*/*T,,, we get a solution to (1.1) which satisfies, for fixed € > 0,
Probla,p='/2||8, — Bo|| < C] > 1 — € for all n large enough. This shows (2.11). Now
notice that with this C fixed, we have actually shown that with £ =T,

anp_1/2G1n(/3n - /60) = _1 _1/2 Z ¢m + 7h1

where Er2, = O(a;,?p?). The representations (2.14) now follows easily, and (2.15) is
obtained by slightly modifying the above steps. |
Corollary 2.3 is immediate.
Proof of Theorem 2.6 We prove (2.17) and (2.21) first. Since 37, ¢ni(6n) = 0,
we have for some constant £ > 0

PB[an_lp_lﬂa;lH szqsm,(/én)'l > K]
PB[p_1/2a;1|| Z Wz(ﬁm(ﬁn)l' > K]
< kK %plq;? Z ||¢n2(:3n)||2

l
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Using (5.35), we have that éniq(Bn + 1) = Pnia + Plniat + 2717 Hopio(B2)t for some
Bz = Bo + c(Bn — Bo). On the set {||B, — Bol| < do/2}, with a little algebra, this leads
to

n R n p
Z||¢m ||2 S k[Z”QbmHZ_'—||/Bn_180“222”¢1ma||2

i=1a=1

+||Bn — Boll* Z Z A2 (Monio)]

i=1a=1
Thus
Pslon 07207t Y widni(Ba)l| > K]

n R n P
< kK‘2p”1a;2[Z l|&nil|* + |1 Bn — Boll?> > | Pl I”

=1 i=1e=1
+||/BTL /30” Z Z /\max M2ma ] - UK
=1 a=1

Note that Ux = K~20p(1), so that for fixed d;,d, > 0, by choosing K large enough
we have,

Prob[Pglo, ' p7 20, || Y widni(Ba)|| > K] > 61] < 6,
iFrom (5.35) we have that
Bnia(Bn + onp a7 ) = Gria(Bn) + onp2ar ¢T 0t + 27 02pay 2T Honia(B1)t
where 81 = B, + cp'/?a;t for some 0 < ¢ < 1. Let

SnB(t) = O_n—lp——l/2a;1 zn: wl[¢nl(ﬂAn + O_np1/2a7—th) - ¢m(/3n)] - F{n(ﬁn)t
=1

We have the a™ element of the vector S,p(t) given by
SnBa(t)
= ;2 widTia(Ba)t + 2700 24737y wi Honia(B1)t — TT (Bt
= ;200 Y WitTria(Bu)t + 272000 20737y wi Honia (B1)

On the set {||t|| < C} N {||B. — Bol| < do/2}, we thus have for large n
1Sns ()11

S 20 a"4C2 maz Z Z WWJ¢1nza(ﬁn)¢1nJa(ﬂn) )

a=11i,5=1
y4 n
+02pa;604 Z(Z wi/\maa:(MZnia))2
e=1 i=1
= T1 + T2 say
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Define b, , = 0, 'p"ta,. Thus we have

Pglbnp sup ||Sns(t)]] > 2K]
liel|<C

2
< S Ps[t2,Tj > K] + Op(a;'p'/?)
j=1

Now on the set {||3, — Bo|| < do/2},

and

IN

IA

INA

VAN

IA

IA

p n
PB[2O'2bELp ;402 maz Z WW ¢1ma ﬂn)¢1n]a(,3n) ) > K]
j:

p n N ~
20',,21[)72”) ;402 _IEB)\maz Z Z WW ¢1ma(;8n)¢1nja(ﬂn)T)

a=113,5=1
14 n N ~
20’1211772.”, ,;402 _1 z Z tT(EBmquslnia(ﬂn)(blnja(ﬁn)T)
a=14j=1
P n A ~
20nb'121p ;402 —1 Z Ztr(¢1nia(ﬂn)¢lnia(ﬂn)’r)

a=1i=1

—|-20'72Lb7sz n4C2K C 1t7' Z Z ¢1ma(ﬂn)¢1ma(ﬂn) )

a=11,5=1, i#j

P n N
20252 1074 C?K ' 303 | rnialBo) 2

a= lz—

+202bip n402K Clz Z I|¢1ma(/én)||||¢1n1a(13n)||

a=11j5=1, i#j

P n .
ko282 a7 C2 KL S 3 | Bimia(Bo) 2

a_lz 1

ko_fzb?zp 7:402 - Z Z[||¢1nza||2 + ||ﬁn /60||2/\12naz(M2nia)]
a=1i=1
Op(1)

n

p
PB [anpbnp ;604 Z(Z wi)\maz (MZnia))2 > K]

a=1 i=1
p n
= npbnp 7_1,604K ! Z EB (Z wi)‘maz(M2nia))2
P n
= 'npbnp n604 n + ]CO' Z Z )‘ma;p M2m’a)
a=1i=1

= Op(1)
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Thus we have that Pg|by, supy<c ||1Sns(t)|| > 2K] = Op(1).
Now observe that

n
dnf {on ™oz p™ 2T 3 widni(Bn + onarp!/2)}
- i=1

> —C sup ||Sp(t)|| + CZlAln - Co'n_laglp_l/zll sz%(ﬁn)”
’t|:C’ i=1

where {1, = Amin(271(T1n(Bn) + T (5,))). By choosing C large enough, from the
previous calculations we have that on the set {||G, — Bol| < d0/2},

PB[“ilEf('j{Un_la;lp—lﬂtT Z wz¢m(ﬁn + Una;1p1/2t)} > 0]

=1

> PB[U"_laglp_l/ZH qum,(/én)H + Elu% HSn(t)ll < Cz\ln]
i=1 =

= 1 Pylalp S il + sup 152 (®)|| > Clin]

i=1 [¢]

> 1- PB[O'n“la;lp—l/QH sz¢nz|| > Ckg/?] — PB[EII_I_%”Sn(t)H > C]{,‘z/Z]

=1
Thus for fixed d;,d2 > 0, we have that for C large enough for all large n,

Prob[PB[]tilnfc{an‘la;lp_l/%T > widni (B + onaz P2} > 0] < 1 — 6]
- i=1

< Prob[Pg[o, ta;p~ /| szgbmH > Cky/2] > 61/2]

=1

+Prob[Pg[sup ||S,(t)|| > Cks/2] > 61/2] + O(a; p'/?)
[t]=C
< by

Using continuity of 37 ; w;idni(A) in A, by Theorem 6.4.3 of Ortega and Rheinboldt
(1970) this means that for fixed €,6 > 0 for all n sufficiently large IC' large such that
the bootstrap probability that 3", w;¢ni(8, +0na; p/2t) = 0 has a root T, in lt| < C
is < 1 — e with a probability < §. Putting ﬁi?) = [, + ona, 'pY2T},, we get a solution to
(1.2) which satisfies, for fixed €,§ > 0, Prob[Pg[o, " 'a,p~?||fg—Bul| < C] < 1—¢] < §
for all n large enough. This shows (2.17). Now notice that with this C fixed, we have
actually shown that with ¢ =T,

Un_lanp_l/zFln(,Bn) (ﬂAB - Bn) = _aglp—1/2 Z I/I/'zqsm(/@n) + TnB1

=1
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where ||r,p1|| = Opg(ona;,'p). This shows (2.21). With slight modification to the the
definition S,5(t), and some more calculations one can obtain

O-n_lanp_l/zGln(ﬁlj?) - /Bn) = _a’;lp_l/z Z Wz¢m(/3n) + TnB1

=1
where ||r,p1]|| = Opp(p™'), without using (B4). Now using (5.35) again, after some
algebra, (2.18) is obtained. The representation (2.20) follows easily from this. |
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