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Abstract

The erratic and poor performance of the popular Wald confidence interval for a Bi-
nomial proportion was demonstrated in Brown, Cai and DasGupta (1999a,b) through
extensive computation and analytical calculations. It was also shown that the equal
tailed Jeffreys prior interval, the score interval obtained from inversion of Rao’s score
test, and another specific interval suggested in Agresti and Coull (1998) provide sig-
nificant improvements over the Wald interval in the Binomial problem.

We show in this article that across a class of practically important discrete distri-
butions, most of the key phenomena evidenced in the Binomial case are almost exactly
replicated. In the discrete Exponential family with a quadratic variance function, we
derive two term Edgeworth expansions for the coverage and two term expansions for
the expected length for the Wald and four other natural intervals. They are the Rao
score interval, the likelihood ratio interval, the equal tailed Jeffreys interval, and an
interval similar to the Agresti-Coull interval for the Binomial case.

These calculations reveal a great amount of common structure. For instance, the
calculations show that the Jeffreys and the likelihood ratio interval nearly annihilate
the systematic bias term in the Edgeworth expansion in all cases, and these same two
intervals are also the best in expected length in all the cases.

Simplicity of computation aside, our theoretical calculations show that the likeli- i
hood ratio and the Jeffreys interval are the two best all rounded alternatives in all =
these lattice problems.

The results are complemented by an array of illustrative examples.

Keywords: Bayes; Binomial distribution; Confidence intervals; Coverage probability; Edge-
worth expansion; Expected length; Jeffreys prior; Natural exponential family; Negative bi-
nomial distribution; Normal approximation, Poisson distribution; Quadratic variance func-
tion.
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1 Introduction

Confidence intervals for a binomial proportion have been studied by many researchers for
more than fifty years, and it had been generally known that the popular Wald confidence
interval p=tz4/0 n2(H(1—p))/2 was deficient for p near 0 or 1 in the sense of poor coverage
probability. In two recent interesting articles, Santner (1998), and Agresti and Coull (1998)
initiated a more serious discussion of the severely poor performance of the Wald interval.
Agresti and Coull (1998) also did a comparison of a number of intervals for the nominal
95% case for selected values of n and suggested explicitly a new confidence interval. Brown,
Cai and DasGupta (1999a, b) then addressed the problem on a more comprehensive basis,
and based on extensive numerical evaluations and analytical calculations, concluded that
the Wald interval indeed is far too poor and unreliable, and recommended the Jeffreys prior
interval or the score interval for small n, and the interval previously suggested in Agresti
and Coull (1998) for larger n. Among other things, Brown, Cai and DasGupta (1999a, b)
showed that the Wald interval suffers from a systematic negative bias as well as a chaotic
oscillation in its coverage probability, and contrary to common perception, these problems
are not just for p near 0 or 1, and not just for small or moderate n. Appropriate Edgeworth
expansions in Brown, Cai and DasGupta (1999b) identified the source of these problems in
the lattice nature of the Binomial distribution, and an incorrect centering of the popular
Wald interval.

The principal purpose of this article is to present a unified and coherent description
of the interval estimation problem across a class of important discrete distributions. The
satisfactory part of this work is that the unification is not merely in the form of a technical
extension. The unification is many faceted. It will be seen in the constancy of the unpre-
dictable performance of the popular Wald interval, in wrong centering being a key reason
for this problem, in commonality of the mathematical results, and a sound uniformity in
the ultimate resolutions of the problem. For example, the results show that across a class of
discrete distributions, the equal tailed Jeffreys prior interval and the interval obtained from
inversion of the popular likelihood ratio test are perhaps the best all rounded alternatives
to the Wald interval. In addition, with a mystical conformity, these two intervals founded
on altogether different methods have virtually identical coverage and length properties. In
fact, the nearly identical Edgeworth and length expansions for these two intervals are quite
intriguing. The results also show that the interval produced by inversion of Rao’s score
test also always provides major improvements in coverage, but suffers in comparison in
parsimony with respect to length.

It turns out that for the purpose of the analytical calculations we are interested in, the
correct theoretical framework is the discrete Exponential family with a quadratic variance
function. Morris (1982, 1983) gives a very comprehensive account of the Exponential family
with quadratic variance functions; he shows that among the discrete ones, the Binomial,
Negative Binomial, and the Poisson have the quadratic variance property. Fortunately,
these are exactly the most important lattice cases in practical applications. The practical
importance of the Binomial case is obvious; Santner and Duffy (1989) give very interesting
examples of the practical importance of the interval estimation problem in the Negative
Binomial and the Poisson case. The applications range from oil exploration (Clevenson and



Zidek (1975)), safety of nuclear plants (Kaplan (1983)), to epidemiology (Lui (1995)), and
numerous others. These problems are certainly practically important.

In Section 2, the discrete Exponential family with quadratic variance functions is in-
troduced, and the relevant facts are summarized. In Section 3, we give some preliminary
examples to show that the problems with the Wald interval are real and not limited to the
Binomial case. We also provide some initial calculations to identify wrong centering as a
source of the systematic bias of the coverage of the Wald interval. Section 4 introduces,
with a brief motivation and background, alternative intervals. In contrast to Brown, Cai
and DasGupta (1999a, b), we now include the likelihood ratio interval in our calculations
as well, and the final results show unambiguously that this interval is among the best.

In Section 5, two term Edgeworth expansions for their coverage probabilities are pro-
vided. The most complex of these are the Edgeworth expansions for the equal tailed Jeffreys
and the likelihood ratio interval. In Section 6, the Edgeworth expansions are used to explain
what the alternative intervals can do to improve on the Wald interval, and also to compare
these alternative intervals among themselves. For instance, from the Edgeworth expansions
we see that the systematic bias term is nearly killed in all three cases by the Jeffreys as well
as the likelihood ratio interval.

In Section 7, we present comprehensive length expansions for the Wald as well as each
of the alternative intervals. The length expansions also reveal a significant amount of
structure. For instance, up to an error of order O(n~?), the length expansions show that
the likelihood ratio interval is the shortest pointwise for every value of the parameter in the
Poisson and the Negative Binomial case. This is certainly an exceptionally positive feature
of the likelihood interval. The expansions also show that in all three cases, the likelihood
ratio and the Jeffreys interval are the two shortest among the alternative intervals, in an
appropriate sense.

Section 9, a technical appendix, contains the proofs. The results are illustrated by
various examples and computation throughout the article.

2 Discrete Natural Exponential Family

We consider interval estimation of the mean in the discrete natural exponential family
(DNEF). with quadratic variance functions (QVF) (the variance is at most a quadratic
function of the mean). DNEFs with a QVF consist of three important discrete distributions:
binomial, negative binomial, and Poisson (see, e.g., Morris (1982) and Brown (1986)). First
we state some basic facts about the discrete exponential family for use in the rest of this
article.

The distributions in a natural exponential family have the form

f(x§) = e~ Oh(z);

€ is called the natural parameter. The mean, variance and cumulant generating function
are

p=19(), o*=4"(¢), and ¢¢(t) =p(t +&) ~ 9(¢)



respectively. The cumulants are given as

K, =¢"(€).

In the subclass with a quadratic variance function (QVF), the variance 9" (£) depends on &
only through the mean x, and indeed,

0?2 =V (u) = ag + arp + agp®. (1)

for constanté ag, a1, and as.
DNEFs with a QVF consist of the Binomial, Negative Binomial, and the Poisson distri-
bution. Let us list the important facts for the three distributions separately.

e Binomial, Bin(1,p): The pmf is f(z) = e ¥©h(z) with & = log(p/q), V(&) =
log(1 + €%), and h(z) = 1. Also u = p, V(u) = pg = p — p2. Thus in this case ag = 0,
a1 =1 and a» = —1.

e Negative binomial, NBin(1, p), the number of successes before the first failure; let p
= probability of success. Now £ = logp, ¥(€) = —log(1 — €°), and h(z) = 1. And
pw=7p/q, V(i) = p/q®> = u+ p2. Thus in this case, ag =0, a; = 1 and ay = 1.

e Poisson, Poi(\): In this case, £ = log), ¥(£) = €, and h(z) = 1/z!. And pu =
A, V(u) = p. Thus here ap =0, a; =1 and a; = 0.

Note that in all three cases agp = 0 and a; = 1. Hereafter we will drop ag and a; in (1) and
write V(1) = p + asp?.

The common setup throughout the rest of the article is that we have iid observations
X1, Xoy ooy X ~ f(z|€) with f as one of the three cases above, and we want to estimate p.
Estimation of monotone functions of y is certainly a relevant and important problem, but
is not considered here mainly due to space consideration.

3 Performance of the Wald Interval

The Wald interval p & z/2 n~/>(p(1 — $))"/ for a binomial proportion suffers from a
systematic negative bias and oscillation in its coverage probability. These problems are not
merely for p near 0 or 1, or for small n. Brown, Cai and DasGupta (1999a,b) described that
the problems persist for even very large n and even when p is near or even exactly equal to
.5. The problems are caused by the lattice nature as well as the skewness of the binomial
distribution. One would expect that these phenomena of a systematic bias and oscillation
are true in lattice problems in general, although the severity might differ. We will show by
two quick examples that indeed this is the case. The examples are for the Poisson case.

Example 1. Suppose we want to estimate a Poisson mean A on the basis of n iid observa-
tions. Consider the Wald interval

X +2.575nYV2VX



for the nominal 99% case, with n = 20. This is a moderate sample size. Figure 1 plots the
coverage probability of the Wald interval for variable A. The most striking aspect of the plot
is that the coverage never reaches .99; we see the clear systematic negative bias. What was
previously observed in the binomial proportion problem resurfaces in the Poisson problem.
The Wald interval has a systematic bias problem in discrete cases in some generality.
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Figure 1: Coverage probability of the Wald interval for n =20 and .1 < X < 5.

Example 2. Consider again the Poisson mean problem and the coverage of the Wald
interval as a function of the sample size n, for a fixed A, say, A = .5. Naively, one may
expect that the coverage gets systematically closer to the nominal level as the sample size n
increases. Figure 2 shows, that exactly as in the binomial problem, this is far from the truth.
For example, when n = 9, the coverage is .936, when n = 16, the coverage is only .892, when
n = 18, the coverage is .940, and yet when n = 72, the coverage is .933, actually smaller
than the coverage for n = 9! Exactly as it was seen in Brown, Cai and DasGupta (1999a)
in the Binomial case, the phenomenon of unpredictable arrival of large unlucky values of n
reappears in the Poisson problem. The Wald interval is simply too erratic and unreliable in
these lattice problems, and alternative intervals with better properties are earnestly needed.
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Figure 2: Coverage probability of the Wald interval for fixed A = .5 and variable n from 5 to 100.



3.1 Explaining the Bias

The standard interval is based on the fact that
Vil —p) ¢
W, = ———= = N(0,1),
T VEraw oY
where i = X; and the interval is constructed by “pretending” that W, is standard normally
distributed. However, as we shall see below, the distribution of W,, could significantly differ
from its asymptotic distribution even for moderate to large n. We consider below just the

“bias” of W,,. By itself, this bias calculation would be helpful in understanding part of the
reason for the very poor performance of the Wald interval in these lattice problems.

As in (9), denote
Vi ag?

Then simple algebra shows
Wy = Zy(1 4 (1 4+ 2a50) (071 Z,n Y2 + 0y 220~ 1)~Y/2

A standard Taylor expansion and calculations using the central moments of f(z|£) yield an
approximation to the bias:

1
EW, = —(5 + agp)o"In 712 4 (g + agpt + a2u?)o P Kan =32
1 15 _
- (5 + az,u)(g + 3asp + 3a2u®)o 3032 + O(n7?), (2)
where K3 is the third cumulant of f. Denote p = V(u) = ¢"(£). Then by chain rule,
dp _dp du 2
=P 2P (14 2a4p) - = (142 .
Ks i dp e (1 + 2a2p) - V(1) = (L + 2azp)0 (3)
Now (2) yields
1
EW, = —(= + agi) [+ (2 + app + a2®)onY o~ In 2 1+ O(n2). (4)

2 8
Again, consider the three special cases separately.
e Binomial (Bin(1, p)): In this case, a; = —1, u = p, V(u) = pg, and K3 = pqg(q — p).
After some algebra, we have from (4)
—1/2 7  9(p-—1/2)?
IRl b T T Y (5)

EW, =
" npq on 2npq

e Negative Binomial (NBin(1,p)): Now, a; = 1, u = p/q, V(u) = p/¢?, and K3 =
(p+ p?)/q. Tt follows from (2)

1+p 1 9¢° s
2\/@(1 + " + 8mo) +0(n™?). (6)

e Poisson (Poi(A)): In this case, az =0, and p = V(u) = K3 = X\. We have

(1+55)+0(n™). G

EW, = —

1
EW, = —
2v/nA



3.2 Discussion

These bias expressions give us useful information. From equation (5), one would suspect
that in the Binomial case W, has a negative bias for p < 1/2 and a positive bias for p > 1/2.
This would naturally suggest that the center of the Wald interval for p should be moved
towards 1/2. Brown, Cai and DasGupta (1999a, b) show that recentering does improve the
coverage properties in that problem.

Moving on to the Poisson case, we see both similarities and differences of phenomena
with the Binomial case. First, from equation (7), we see that W,, appears to have a negative
bias for all A. So the bias problem persists, but now in contrast to the Binomial case, the
center of the Wald interval for A should always be moved up. And indeed, our subsequent
calculations confirm that by moving up the center of the Wald interval, we can significantly
curtail the systematic negative bias in the coverage of the Wald interval (see Figure 6).

Let us also see some actual numerical evidence of a serious bias problem. Figure 3 below
plots the bias (i.e. E(W,)) for A = .5 and A =1 and for n =1 to 100. The clearly significant
bias even when nA is 40 or so is certainly disconcerting.

Similar disturbing bias is also present in the Negative Binomial problem, and again
examination of equation (6) would suggest that here too the center of the Wald interval
needs to be moved up to address a potential bias problem.

Tambda — &
-------- lambda — 1

so 100

(2]

Figure 3: Bias in Poisson case for n = 1 to 100 with A = .5 and A = 1.

4 The Confidence Intervals

Let f = X = ¥, X;/n; fi is well known to be the MLE of pu. Then the Central Limit
Theorem and Slutsky’s Theorem yield

W, = \/7—‘(/% — 1) vl —p) £ N(0,1), (8)

o Vit a2

and

_ V- _ VA p)
2, = = VB L N, 9)

We can construct confidence intervals for u based on the approximations (8) and (9).

7



1. The Wald interval is based on (8):

CI, = % kén™ 2 = j + k(i + agfi®) /2012 (10)

2. Define the recentered interval as

Clos = fit k6n™Y? = ik k(ji + app?)/*n =2, (11)

3. The score interval is based on (9). This interval is formed by inverting Rao’s score
test of equal-tailed tests of Hy : u = po. Hence, one accepts Hy based on Rao’s score
test if and only if 4 is in this interval. Denote i = (ni+&%/2)/(n— x2a;). By solving
a quadratic equation, one finds the score interval

enl/?

Clp=f+—
n

2
n “ K
o aai + 1), (12)

4n

4. The “Agresti-Coull” (AC) interval has the same simple form as the standard interval
C1I, but with a different {i and a modified value for n. Let X = X +k%/2, i = n—r2a,
and fi = X /f. Then the AC interval is defined as

Clac = i &(V(B)*7372 = i £ w(i + aafi®) /72, (13)

Note that here X =37, X,.

4.1 Likelihood Ratio Intervals

In Section 4 we introduced the Wald and the score interval which are obtained by inversion
of the acceptance regions of the Wald and the Rao’s score test, respectively. Another method
suggests itself. This is to construct an interval by inversion of the likelihood ratio test which
accepts the null hypothesis Ho : p = po if —2log(As) < x2;, where A, is the likelihood
ratio

An = L(po)/ Sup L(u),

with L as the likelihood function based on n iid observations from the underlying density.
See Rao (1973) and Serfling (1980).

The likelihood ratio method of constructing confidence intervals is a well accepted
method and so the likelihood ratio intervals merit a theoretical study on their own right. But
an example may further convince us that the interval deserves very serious consideration.

Figure 4 plots the exact coverage probability of the likelihood ratio interval and four
other intervals we discussed earlier for A = .5 and n from 5 to 100 in the Poisson case. We
see from these plots that the coverage of the likelihood ratio interval fluctuates acceptably
near the nominal level and it clearly outperforms the Wald interval. More interestingly, if
we compare the coverage of the LR interval and the score interval as well as the Jeffreys
in Figure 4, we see that the likelihood ratio interval has substantially smaller oscillation.
Much of our subsequent technical calculations will confirm this impressive performance of
the likelihood ratio interval.
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Figure 4: Coverage probability of five confidence intervals for a Poisson mean with A = .5, o = .05
and n from 5 to 100.

4.2 The Jeffreys Interval

Now consider the Jeffreys interval. Denote b(-) = (%')*(-). Then b is a strictly increasing
function and £ = b(u). The Fisher information about 4 is '

1) = -5, g ) — g ) =m0 90
— o (00) ¢ )’
Noting that 9" (b(n)) = ¥"(€) = p+ azp® and V' (u) = 1/9"(€) = (b + agp®)™", we have
I(p) = n(p+ agp®) ™

Thus the Jeffreys prior is proportional to I'/2(u) = n'/?(u + ayu?®)~'/? and the posterior

1
f(plz) ~ exp{ab(s) — np(b()) — 3 log(n + azps™)}.
5. The Jeffreys equal-tailed interval for u is given by
Cl; = [Jas2, J1-a2] (14)

where J, /2 and Ji_, /2 are the a/2 and 1 — «/2 quantiles of the posterior distribution based
on n observations, respectively.
Consider the three special distributions for illustration separately.



e Binomial: here 9(¢) = log(1 + €°) and b(u) = log(p/(1 — p)). The Jeffreys prior in
this case is Beta(1/2, 1/2) and the posterior is Beta(X + 1/2, n — X + 1/2). Thus
the 100(1 — @)% equal-tailed Jeffreys interval for p is given by

Cl; = [pi, pu] = [Baja,x+1/2, n-x+1/2, B1-aj2,x+1/2, n—x+1/2)- (15)

e Negative Binomial: here ¢(¢) = —log(l — €f) and b(u) = log(p/(1 + u)). The Jef-

freys prior for p is proportional to p~*/2(1 4 )~'/2 and the posterior is a beta-prime
distribution (see Johnson, et al. (1995)).
The Jeffreys interval is transformation-invariant. We can obtain the Jeffreys prior
interval for p through the Jeffreys prior interval for p. The Jeffreys prior for p is
proportional to p~*/2(1—p)~! and the posterior is Beta(X +1/2, n). The 100(1—a)%
equal-tailed Jeffreys interval for p is given by

CI§ = [pi, pu] = [Baja,x+1/2,n, Bi—a/2,x+1/2,n)- (16)
Since p = p/(1 — p), the Jeffreys interval for y is
Cly=[p/(1 = p), pu/(1 = pu)l. (17)

e Poisson: here 9(¢) = ¢ and b(u) = logu. The Jeffreys prior is proportional to
A~Y/2 which is improper and the posterior is Gamma(X +1/2, 1/n), which is proper.
Therefore the 100(1 — @)% equal-tailed Jeffreys interval for A is given by

Cl; = [N, Ml = [Goya,x41/2, 1/ Gr—aj2,x+1/2, 1/n)- (18)

Example 3. We have introduced a number of different confidence intervals above as alter-
natives to the Wald interval. To the practitioner, a key question would be how do the actual
limits of these various intervals differ among themselves. If two different intervals have very
similar limits, a practitioner is likely to consider them as practically equivalent. For the
theoretician, examination of the limits is instructive in that two intervals with similar limits
are anticipated to have similar coverage and length properties.

In Figure 5 below, we have plotted the limits of some of the intervals in a Binomial
and a Poisson case. In the Binomial case, the limits are for the Wald, Jeffreys and the
likelihood ratio interval, and n = 20. In the Poisson case, the limits are for the Wald, score,
Agreti-Coull, Jeffreys and the likelihood ratio interval, and the plot is truncated at z = 20.

First, in the Poisson plot, we see a clear clustering; the score and the Agresti-Coull
intervals have close limits and these are visibly further out than the limits of the Jeffreys
and the likelihood ratio intervals, which are in a separate cluster. The Wald interval, on
the other hand, is all by itself, markedly separated from the other four intervals.

In the Binomial plot, we again see that the limits of the Jeffreys and the likelihood ratio
interval are virtually indistinguishable and the Wald interval is visibly different. The limits
of the score and the Agresti-Coull interval are a bit further out once again, although less so
than in the Poisson case. We do not show them on the plot to keep the plot less clumsy.

It would be reasonable to expect that the Jeffreys and the likelihood ratio interval have
comparable coverage and length properties. Later in our detailed theoretical calculations in
Sections 5 and 7, these visual conjectures would in fact be vindicated.

10
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Figure 5: Comparison of the limits of the intervals with n = 20 and o = .05.

5 The Edgeworth Expansions

Define
h(z) =z — z_ (19)

where z_ is the largest integer less than or equal to z. So h(z) is the fractional part of z.
The function h is a periodic function of period 1. Let

9(u, 2) = g(u, 2,n) = h(np + n''?0z) (20)
We suppress in (20) and later the dependence of g on n and denote
Qull, vw) = 1—g(p, £)—g(p, v
Qu(t, u) = %[—gz(u, 0) — g*(u, ) +g(u, &) +g(n, v) - %]

Theorem 1 Let u € p and 0 < a < 1. Suppose nu — n'/204, is not an integer. Then the

coverage probability of the confidence interval CI; defined in (10) satisfies

P, = P,(peCL)=(1-a)+o {g(u L) — glp,us)} - ¢(k)n~"/?
-+ {—%(8/{5 — 11x* + 3kK) — (2% + K> + 3k)} - d(k)n~t

1802
+ {—(1 + 20,2;1,)(%/{:2 + %)Qm (£, Us) + Q22(_K'7 H)}O'_zmﬁ(’i)n-l
+ O(n—3/2) (21)

where the quantities {5 and u, are defined in (46) in the appendiz.

11



Theorem 2 Let 1 € p and 0 < o < 1. Suppose ny — n'/2c4,, is not an integer. Then the
coverage probability of the confidence interval CI,s defined in (11) satisfies

Py = Py(n€Cly)=(1~0)+0 {g(u lrs) = g(p, urs)} - $(r)n 2

+ —;‘—;(25’ + 25K3 + 3K) — T2 (K° + 26° + 6K)} - p(k)n
+ {1+ 202#)(%”2 - %)Qm (brs, trs) + Qaa(—5, K) Yo 2kp(k)n ™
+ O(n~%/?) (22)

where the quantities £,s and u,s are defined in (46) in the appendiz.

Theorem 3 Let p € i and 0 < o < 1. Suppose nu — n*/%ck is not an integer. Then the
coverage probability of the confidence interval CIg defined in (12) satisfies

Pp = Py(p€CIp)=1-a)+0 H{g(u,—r) — g(p, 5)} - p(r)n /2

+ {—(11—;(255 — 11K* + 3k) — 36102 (K° — TK* +65K)} - p(k)n~"
+ {(1+ 2(12,[1,)(%%2 - %)Qm(—ﬁ, K) + Qaa(—k, k) Yo 2k (k)n ™"
+0(n~%?) (23)

Theorem 4 Let p € p and 0 < o < 1. Suppose ny — n*/?clyc is not an integer. Then the

coverage probability of the confidence interval Clyc defined in (18) satisfies

Pic = P, (u€Clic)=(1—a)+o {g(u,lac) — g(p,vac)} p(k)n~/?
+ {—%(2/{5 — 29k + 3K) — (K° — 16K® + 6k)} - p(k)n"

3602
+ {1+ 2azu)(%’€2 - %)Q21(£A0> Uac) + Qoz2(—k, k) Yo kp(k)n
+ O(n=3/2) (24)

where the quantities Lac and uac are defined in (54) in the appendiz.

Contrary to the all at one stroke derivations for the other intervals in the entire DNEF
with a quadratic variance function, for the likelihood ratio interval and the Jeffreys interval
a general Edgeworth expansion of the coverage probability seems to be very difficult, if not
impossible. So we will be forced to consider the specific negative binomial and Poisson cases
separately (The binomial case was derived in Brown, Cai, and DasGupta (1999b)). The
expansions themselves, however, can then be written in a general form.

The following theorem gives a unified expression for the two-term Edgeworth expansion
of the coverage probability of the likelihood ratio interval.

12



Theorem 5 Denote by ClILg a generic LR interval. Then the coverage probability of Clpg
satisfies the general representation

Pir = Pu(p€Clip)=(1—a)+0 {g(u,ler) — 9(p,urr)} - p(r)n~"?
P -1
-2k ok} gl
1
+ {—5(1 + 2a2) Q21 (brr, UL r) + Qaoz(—k, k) }o 2 kd(k)n
+ O(n=%/?) (25)
where the quantities £ and urg are defined in (57) in the appendiz.

The next theorem gives a general expression for the two-term Edgeworth expansion of
the coverage probability of the Jeffreys interval covering all three cases.

Theorem 6 Denote by CI; a generic equal-tailed Jeffreys prior interval as defined in (15)
in the binomial case, (17) in the negative binomial case, and (18) in the Poisson case. Then
for any fired 0 < p < 1 (binomial and negative binomial cases) or any fized A > 0 (Poisson
case) and any 0 < a < 1, the coverage probability of CI; satisfies

PR ECIy) = (L= )+ (g0 &) — g0\ wn)lo™(s) - w72 = — g™
+ [_%(1 + 2a20)Q21(8s, wg) + Qaa(—k, K)o *kP(K)n ™"
+0(n™%?) (26)

The Edgeworth expansions for the three specific distributions, binomial, negative bino-
mial, and Poisson, can be obtained easily from Theorems 1 - 6 by plugging in the corre-
sponding as, 4 and o.

e Binomial: a; = —1, u = p and o? = pq.
e Negative binomial: a2 =1, p = p/q and % = p/¢°.

e Poisson: a; =0and p =02 =\

6 Comparison of Coverage Probability

We will now use the two term Edgeworth expansions to compare the coverage properties
of the standard interval CI, and the various alternative intervals, for all three distributions
simultaneously. The encouraging part is that we can reach general conclusions for all the
three distributions. The recommendations therefore carry a unifying character. First we
will show how the non-oscillatory part of the second order term can be used to explain
the deficiency of the standard procedure and the much better performance of competing
ones such as the likelihood ratio and the Jeffreys procedure. The O(n~!) nonoscillating
term measures the systematic bias in coverage. Figure 6 displays the nonoscillating O(n™!)
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terms of each interval for binomial, negative binomial, and Poisson cases. It is transparent
that there is a consistent serious negative bias in the coverage of the standard interval for all
the three distributions. The score interval C'Ir does significantly better than the standard
interval CI;, and especially so near the boundaries. On the other hand, the Agresti-Coull
interval C14¢ has higher coverage probability than CIg (and likewise the others), and again,
the difference is the most noticeable near the boundaries. The most interesting feature
manifested in Figure 6 is the near vanishing bias term in the Edgeworth expansions for the
likelihood ratio as well as the Jeffreys interval. Although the likelihood ratio interval has,
strictly speaking, a slightly larger negative bias than the Jeffreys interval, the difference
is entirely academic and is of no practical relevance at all. The Edgeworth expansions
thus show that both the likelihood ratio and the Jeffreys interval practically annihilate the
O(n™1) bias term. These two intervals are thus demonstrably superior competitors to the
Wald interval.

Binomial Negative Binomial Poisson

=
E13

0

406

Standard

— Standard

210
440

|

$

v

0

3

Figure 6: Comparison of the nonoscillating terms with n = 40 and « = .05.

Directly from equations (21) - (26), we have:

Py~ P, = {az( K® — 2K%) + 057 k5}p(k) - n~! + O(n3/?) - oscillations (27)
1
Prp— P, = {—agm + Ui(ﬁkc + =62 }é(k) - n 7t 4+ O(n3/2) + oscillations (28)
1
Pic— P, = {az( K’ +K°) + —(—n + 2/~z3)}q5(/<a) n7t+ O(n%?)
+ oscﬂlations (29)
1
P _ 113 5, .3 -1 —3/2
in=Po = (TR — 116%) + 1 08+ R)H(n) 17+ O )
+ oscillations (30)
1
P;—-P, = {18(8/¢ — 11x° + 3k) + 3657 (4k° + 263 + 3k)}b(K) - n7 + O(n3/?)
+ oscillations (31)
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6.1 Further Discussion

By consideration of the coefficients of the n™! terms in (27) - (31), we can make several
more interesting conclusions. These conclusions are borne out in Figure 6. First, recall
that ay is —1 in the Binomial case, +1 in the negative binomial case, and 0 in the Poisson
case. The coefficient of the n™! term in the expressions (27) - (31) determine if the coverage
probability of a specific interval has a smaller bias than another interval it is being compared
with. Using the values of a; as above, elementary calculations show the following :

(a). for each of the three distributions, the coefficient of the bias term in Pg — P;, Pac— P,
Psc—Pg, and Pyc— Py, is positive for all k and all values of the underlying parameter.
From this we can expect that each of the score and the Agresti-Coull interval will
improve on the standard interval as regards the systematic negative bias phenomenon
for all three distributions; we can further expect that of all these different intervals
under consideration, the Agresti-Coull interval provides the maximum improvement,
and it may even be that the improvement is so much that the Agresti-Coull interval is
somewhat conservative. Some of these can in fact be readily seen in Figure 6 above.
The coefficient of the bias term is positive for Prg — Ps; and P; — P; as well, provided
k > 4/11/8 = 1.17, which would be true in most practical cases. Thus these two
intervals would also provide relief to the systematic bias problem.

(b). In the particular Poisson case, the coefficient a; = 0. Comparison of equations (30)
and (31) immediately reveals the nearly identical coefficients of the O(n~') nonoscil-
lating term for the likelihood ratio and the Jeffreys interval. Even if ay is not 0, the
coefficients are very similar. We thus have the enlightening phenomenon that the
two intervals, constructed by using totally different methods, have nearly identical
coverage properties, in terms of their Edgeworth expansions.

(c). In Figure 6 above, we see something interesting when we compare the coefficients of
the bias term for the recentered interval and the standard interval. In the Poisson
case, the curves do not cross, but in the negative binomial case they do. On the other
hand, in Brown, Cai, and DasGupta (1999b), it was seen that in the Binomial case
the two curves do not cross either.

There is a unifying explanation of all of these. From the expressions in (27), (28), and (29),
we see that the coefficient of the n~! term in P,, — P, is

1 5 3 L 5
— (=5 -2 —
(3n lﬂ:)+12pql€

in the Binomial case, which is positive for all x and all p. The coefficient is x°/12 in the
Poisson case and so is again positive for all x and all A. So in these two cases, recentering
the interval to fi always reduces the bias problem. However, in the negative binomial case,
that coefficient of the n™! term is

k°/3 — 2K + K%/ (12p),
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which is positive only if ¢*/p > 24k™2 — 4. If 1 — o is .99, then k = 2.575, and in this
case 24k~2 — 4 = —.38, and so vacuously, the required inequality on ¢> /p holds for all p.
However, if 1 —a is .95, then x = 1.96, and in this case 24x~2 —4 = 2.2474, and the required
inequality on ¢*/p holds only if p < .25. This is exactly what we are seeing in Figure 6.
The conclusion is that in the negative binomial case recentering to i always reduces the
bias problem in the nominal 99% case, but not necessarily in the nominal 95% case. In the
latter case, recentering helps in reducing the bias only for relatively small p.

(d). we also see from Figure 6 that for each of the three distributions, the score interval
has a slight positive bias in coverage, comparable in magnitude to the likelihood ratio
interval.

7 Expansions for Expected Length

The two term Edgeworth expansions presented in Section 5 compare the coverage property
of the various intervals. However, in mutual comparison of different confidence intervals,
in addition to coverage, parsimony in length is also an important issue. Therefore, for the
intervals we discussed in Section 4 , we will now provide an expansion for their expected
lengths correct up to the order O(n=%/2). The expansions unfold a lot of common structure.

The theoretical calculations are somewhat technical. However, the main conclusions
from these calculations are clean and very structured. For ease of comparison, it might be
helpful to have a glimpse into what these conclusions are prior to the technical calculations.
Below we present such a short preview.

7.1 Preview

In the Poisson and the negative binomial case, up to an error of order O(n~?), there is
a uniform ranking of the five intervals in expected length pointwise for every value of the
parameter. The intervals are ranked as CI;, ClIpr, CI;, CIg and CI,¢ from the shortest
to the longest. Thus, among the four alternative intervals, the likelihood ratio interval is
pointwise the shortest.

In the binomial case, there is no such uniform ranking pointwise for every value of p.
But if we take the integrated version of the length expansion, then the ranking is CIj,
Clpg, ClIg = CI; and Clc from the shortest to the longest. Furthermore, CI; and CI;x
have virtually identical integrated length expansions. Note that it was already observed
in Brown, Cai and DasGupta (1999b) that CI, and CIg have exactly identical integrated
length expansions.

To put it all together, the combined lesson is that among the alternative intervals, the
likelihood ratio and the Jeffreys intervals are always the shortest, and the Agresti-Coull
type interval Cl,¢ is always the longest. Simplicity of computation aside, the likelihood
ratio and the Jeffreys interval may be the most credible alternatives to the Wald interval in
all three cases.
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7.2 Expansions and Comparisons

The expansion for length differs qualitatively from the two term Edgeworth expansion for
coverage probability in that the Edgeworth expansion includes terms involving n~/2 and
n~!, whereas the expansion for length includes terms n~1/2 and n=3/2. The coefficient of
the n=1/2 term is the same for all the intervals, but the coefficient for the n=3/2 term differs.
So, naturally, the coefficients of the n=3/2 term will be used as a basis for comparison of
their length.

Theorem 7 Let CI be a generic notation for any of the five intervals, CI;, Clg, Clac,
ClIpg and Cl;, for estimating the mean p, as defined in equations (10) - (14). Then,

(K, 1)
72n(u + asp?

L(n, p) = E(length of CI) = 2k(p + agu?)/2n~1/2 <1 - )> +0(n™%) (32)

where
Ok, p) = 9 for CIy; 33

: (
= 9(1 — &?) — 726%as(p + asp?) for Clg; (34
9(1 — 2k%) — 108k2ay (i + agp®) for Clyc; (35
(
(

Il

9 — 2k* — 26Kk%ay(u + agp®) for Clog; 36
9 — 2(k® +2) — 2(13k% + 17)as(p + azp®) for Cly; 37

Nt N’ N e N

Corollary 1 Consider the special Poisson case. Then the expected lengths of CI;, Clpg,
Cl;, ClIg and Clac admit the expansions

9

E(L,) = 2xAY2n712[1 — 72n/\] +0(n™?)

E(Lrg) = 26XY2n7Y2[1 4 9(r? ;2172)/\— 7/12] o)
E(L;) = 26AY2n7Y2[1 4 9(x? — ;)2;4 - 7/{2] + O
B(Lr) = 2671+ 9(';;—;\1)] +0(n?)

E(Lac) = 2:An7Y2[1 4 %ﬂ;l)] +0(n?)

Remark: Hence, up to the error n=2, very interestingly, for every A > 0, the ranking of
the intervals is CI;, CIpgr, Cl;, CIg and Clsc from the shortest to the longest, as long
as k > 2/v/T = .76. In practice, x will certainly be larger than .76 and so, we have the
quite remarkable fact that pointwise in ), a uniform ranking of the intervals is possible.
Furthermore, we see from the above Corollary that among the alternative intervals, the
likelihood ratio interval is the shortest. It is particularly worth noting that it beats the
Jeffreys interval CI; at every A.
The next corollary deals with the Negative Binomial case.
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Corollary 2 Consider the problem of estimating u = p/q in the Negative Binomial case.
Then the expected lengths of CI,, CIpg, CI;, Clg and Cluc admit the expansions

E(Ly) = 2kp?q7In 21— %} +0(n™?)

E(Lir) = 2mpV2q-tn~Y2[1 — 9q% — 2;-;2%;111) +p2)] +0(n~?)
B(Ly) = 2mpq-nt[1 9¢2 — 262(1 + 11p ﬂ;;o:;— 2(2 4+ 13p + 2p2)] +0(n )
B(Ln) = 2kpMgn 21 — 9¢% — 9n27(21n; 6p + pZ)] +0(n?)

B(Lac) = 2npM2q-tnt2[1 - 9q% — 18/-6;;11;- 4p +p2)] +On?)

Remark: From the above expressions in Corollary 2, one can verify that up to an error of
O(n~?), pointwise at every p > 0, the ranking of the intervals is CI,, CI;g, CI;, CIg and
Clyc, from the shortest to the longest, provided x > 4/17/23 = .86. Note that this ranking
exactly coincides with the ranking we previously derived in the Poisson case. Again we see
the quite impressive performance of the likelihood ratio interval.

Finally, now the Binomial case is addressed. Unlike the Poisson and the Negative Bino-
mial cases, a uniform ranking in length pointwise for all p is not valid in the Binomial case.
However, if the expansions are integrated over p, then a clear ranking still emerges.

Corollary 3 Consider the special Binomial case. The integrated expected lengths of CI;,
Clpg, CIg, CI; and Clac admit the expansions

1 KT 37 5k kT
E(L.\d — M -1/2 20 GNP -3/2 9] -2
| BEdp = Tonr - (4 25 S 4 0
1 KT 5k% KT
I _ B2 ORTNET sy —2
/OE( Lr)dp 7" (+36)4n +O0(n™%)
1
[} B = S = Bty 007,
0
[ e T
0 4 4
1 2
/OE(LAC)dp = %n_l/z-l—(%—1)%7371"3/24-0(71‘2);

Remark: Hence, up to the error n~2, the ranking of the intervals is CI;, CIy g, CIgr = CI,
and Cl ¢ from the shortest to the longest in integrated expected length. Note specifically
the almost identical expansions for CI; and CIrr. Thus again we see that the likelihood
- ratio interval delivers solid performance in the Binomial case as well.
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8 Summary and Conclusions

The examples and theoretical results we have presented demonstrate that the popular Wald
interval is uniformly poor in a number of important lattice distributions, and better al-
ternatives are urgently needed. Our comprehensive comparisons show that fortunately, in
each of these cases, a number of alternative intervals provide significant improve ments with
respect to the disturbing negative bias in the coverage of the Wald interval. However, in
coverage as well as length, two intervals always stand out. The likelihood ratio interval
and the equal tailed Jeffreys interval are the best overall alternatives in all these cases. It
is certainly true that the Rao score interval and the Agresti-Coull type interval are easier
to present and compute in an informal environment. But in the absence of an overriding
need for easy computation, the likelihood ratio and the Jeffreys interval can be resolutely
recommended.

9 Proofs

All of the distributions in the discrete natural exponential families under consideration are
lattice distributions with the maximal span of one. The two-term Edgeworth expansion for
a lattice distribution with the maximal span of one is

Fue) = () +pi((a)n 2 + 07 g, ) + 5192 + pa(e) ()

1

+{lol,2) + loms(z) — [56%(m ) ~ 30l 2) + T5llo~ 2 (In ™

+0(n%?) (38)
where
i) = -2
p2(2) = —%,le(z3 —3z) — —%ﬂg(zs —102° + 152)
ps(s) = s -3)

where 83 = K3/0% and 8, = K4/ o* are the skewness and the kurtosis of X;, respectively.
If z = z(n) depends on n and can be written as

z=zy+cn 2+ eun + O(n7%/?)
where 2y, ¢; and ¢, are constants, then
- _ _ 1 _ - _
Fo(z) = ®(20) + 91(2)p(20)n V2 to l[g(lia z) + §]¢(Z)n 1/2 + Pa(2)P(z0)n !

+ {olg(u, 2) + %]ﬁa(z()) - [%gz(u, z) — %g(u, z) + 11—2]}0_2Z0¢(Zo)”_1

+ O(n~%?) (39)
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- 1

(z) = o+ 5,83(1 — 23) (40)
~ 1 5 1 4 1 3 I 2 5 3

Po(2) = co— §z0c1 + g(zo — 320)Bs¢1 — ﬂ&(zo —3z) — —7§ﬁ3 (z5 — 1025 + 152¢) (41)
- 1

p3(z) = —C + 6,33(2(2) — 3) (42)

Proof: The expansion (38) follows from Theorem 23.1 of Bhattacharya and Rao (1976). See
also Esseen (1945).

If 2= 20+ cin™ Y2 + con™t 4+ O(n=%/2), we expand ®(2), ¢(z) and 2% around z:

®(z) = B(z)+crd(zo)n™/2 + (co — %zocf)qb(zo)n_l +0(n=%?) (43)
¢(z) = ¢(z) — 20c16(z)n/? +O(n") (44)
2 = 224 2zcn (45)

Now plugging (43) - (45) into (38) and noting that ¢*(u,2) — g(u, 2) admits a one-term
Taylor expansion, we obtain (39). 1

Remark: In (39), the second O(n~%/2) and the second O(n™!) terms are oscillation terms.

Proof of Theorems 1 and 2: We consider the standard interval and the recentered interval
together. Let fi = (1 4 01)4 + d2 be the center of the confidence interval for u. In the
case of the standard interval, we set §; = d, = 0 and in the recentered interval case we set
01 = K%az/(n — K*as) and 6, = 1k%/(n — k2ay). Denote

A = n(l1+6) - K%ay
B = 2n(l+6)(u—8)+«
C = n(p—3d)°

By solving a quadratic equation, we have
o, n) = Py € CL) = P& < n/*( = ) o < w,)

where

2 _
B++/B?-4AC _ #> olnl/? (46)

(b w) = ( 24

The + sign goes with u, and the — sign with ¢,. Expanding 4, and u,, one has
by, u,) = {(—;— + agp)k? — (udy + 8y)n}oin Y2
+ (k+ %/{,Ad_z + agr3n~t — 26,k) + O(n=%?)
where A = (81 — 2ax0;)p — 69 + K2/(4n).
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e Ior the standard interval, letting 6, = d, = 0, we have
(b ) = (5 + om0~ ™2 £ (s + (az + %a—z)ﬁn—l }+O(m ) (47)
Now, P,(u € CI) = F(us) — Fp(4s). Then (39) yields
P(peCL) = (1-a)+o {g(u &) — gl u)} - d(r)n™? + 265(u,)p(r)n ™"
+ {03 (us) Qa1 (£s, us) + Qoa(—k, k) }o*kd(k)n ™"
+ O(n=%/?) (48)

where 5(-) and Pa(-) are given as in (41) and (42) with zg = &, ¢; = (1/2+ agp)k20™!
and c; = (az +1/(80?))x3. Similar as in (3), we have

dK3; d
Ko=y®(©) = 22 L= V() +60(V(1)? = 0>+ 600", (49)
dp  d¢
Hence,
Bs = K3/0* = (14 2ap)0™" and By = K4/t =072+ 6a, (50)

Using (50), after some algebra, we have

~ _ Q2.0 5 3 . 5 3
2P (us) = 18(8E 11£° + 3k) 1352 (2k° + K + 3k) (51)
d
an ) 1,1
apg('u,s) = —(1 + 2(12,&)(5/‘6 + 5) (52)

We obtain (21) by putting (51) and (52) in (48).

e For the recentered interval, by letting §; = x%a2/(n — k%as) = K2agn~ + O(n~?) and
(52 — %kz/(n — /q,za,z) = %K)z’n_l -+ O(n_2), we have

(Gro, tns) = {5 — (a3 + %0-2)5371—1} +0(n—?) (53)

Similarly, P,(u € Cl,s) = Fo(urs) — Fy(4rs), and (22) follows from (39) with the same
derivation as that for the standard interval. We omit the detailed algebra here.

Proof of Theorem 3: The Edgeworth expansion for P,(u € ClIg) is slightly simpler because

Pr=P,(u € CIg) = P(—k < n'%(ji — p) /o < k)

And now (23) follows from (39). &

Proof of Theorem 4: The Edgeworth expansion for P,(p € CI4c) can be derived in a similar
way. Denote

A = (n-—2k%ay)n?
B = 2u(n— k%ay)*n + k'agn
1
C = p*(n—rKay)® — Kiu(n — k?ay)? — Z/i4n



We have, after some straightforward algebra,

Pu(p € Clac) = P(lac < n'*(p— p)/o < uac)

where
B+ /B2 —-4AC
(Lac, uac) = —pu) o™ nl/? (54)
2A
The + sign goes with usc and the — sign with £4¢. Expanding £4¢c and u4c, one has
1 1
(Lac, vac) = £{x+ (§a2 + ga"z)/ﬁ3n_1} + O(n_‘o’/z) (55)

with the 4 sign going with u4¢ and the — sign with £4¢. Now Psc = F,(uac) — Fr.(bac),
and (24) follows from (39). &

Expansion for the Likelihood Ratio Interval

We now prove Theorem 5. The proofs of the three cases are similar. We will give the proof
of the negative binomial case in detail, the proof for the binomial and Poisson two cases are
slightly simpler and will be omitted here.

Let Xi,---, X, % NBin(1,p). Then the MLE for p is p = X /(1 + X) and

=) 6

Let z = v/n(Z — p/q)/+/p/q? Then it follows, after some algebra, that —2log A, < x? is
equivalent to

grK?

p(1+ (pn)~22) log(1 + (pn)~Y22) — (1 + p*n~%2) log(1 + p'/*n~1/?2) — o < 0. (56)

Denote the RHS of (56) by d(z). It is easy to verify that d(-) is a convex function and so
has at most two roots. Denote by £;r and upg the roots of the equation d(z) = 0. So

d(ﬁLR) = d(’LLLR) =0 (57)

We need to find an approximation to £.r and urg. Let b(t) = (1 + ¢)log(1 +¢). Then b(t)
can be expanded into Taylor series as

RPN R S S 5
b(t)_t+2t 6t+12t+0(t) (58)

Now applying (58) to (56), we have, after some simplification, that d(z) = 0 is equivalent
to

1
2 %(1 +p)p V22,8 6(1 +p+pA)p In 12t = k2 = O(n %) (59)
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Now let z = &k + byn~Y/2 + byn~'. Plugging into (59) and solving for b; and by, we have

1 1
b= 0 +p)p V2K = S+ )0 K?
1

-2 _ 9,3
72( 2)Kk°.

1
by = Frs(I-dp+p)p 'k’ =7

72 (
So the roots of d(z) = 0 are

1 1
(LR, uLr) = -6(1 +p)p—1/2,£2n—1/2 + {k — ﬁ(l —4p + p? )p K3n 1} +0(n _3/2). (60)

The + sign goes with urr and the — sign with ;7. Hence,

n2(z-plg) _
(p/q?)*/? < uLr)

The binomial and the Poisson cases can be worked out similarly. The three cases together
admit a unified expression

P(p € ClLg) = P({r <

P € CItg) = P(lrr < n*?(fi — p)/o < upg)
with

1
(LR, uLr) = 6(1 + 2a9p)0 kI TV + [k — 2 —2ay)k*n 7t} + O(n7%?).  (61)

72 720
Now Prp = Fy(urr) — Frn(fLr), and the Edgeworth expansion (25) follows from (39).

Expansion for Jeffreys Prior Intervals

We now prove Theorem 6. We will use the direct expansion method to derive (26) (see
Barndorff-Nielsen and Cox (1989) and Hall (1992)). The expansion can also be derived
using asymptotic expansions for posterior distributions (see, e.g., Johnson (1970) and Ghosh
(1994)).

Contrary to the all at one stroke derivations for the other intervals in the entire DNEF
with a quadratic variance function, for the Jeffreys interval a general Edgeworth expansion
of the coverage probability seems to be basically impossible. So we will be forced to consider
the specific negative binomial and Poisson cases separately (The binomial case was derived
in Brown, Cai, and DasGupta (1999b)). Theses specific cases are already very complex, as
shall be seen in the proof below.

Negative binomial case: The posterior distribution of p given X = z is Beta(z + 1/2,n).
Denote by F(z; m1, mg) the cdf of the Beta(m;, ms) distribution and denote by B(a;my, ms)
the inverse of the cdf. Then

PlpeCl;) = P(B(a/2;X+1/2,n) <p< B(l-0/2;X +1/2,n))

= P(a/2<F(p X +1/2,n) <1-0a/2)
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Holding other parameters fixed, the function F'(p; X +1/2, n) is strictly decreasing in X (see,
e.g., Johnson, et al. (1995)). So there exist unique X; = p1(1 — a/2,p) and X, = p2(/2,p)
satisfying
Fp; X;+1/2,n) <1—-0a/2 and F(p;X;—1/2,n) > 1 — /2,
F(p; Xy +1/2,n) > a/2 and F(p; X, +3/2,n) < a/2

Therefore ) /2()_( /)
. n —Db/q w
PlpeCly)=P{; < Tk < uy)
with
t; = [p(1—/2,p) — np/d}/(np/q*)"/?
u; = [p2(a/2,p) = np/q)/(np/q*)"/* (62)

The quantities £; and u; are defined implicitly in (62) through p; and ps. The proof of (26)
for the negative binomial case requires an asymptotic expansion for both £; and u;. We do
this below.

Step 1. Denote
T = z2-1/2, m=n+r-3/2, pp=z1/m, =1-p

_ 12 _1/2 _ F(m -+ 2)
s (P1qr)*ny ", v T(zy + 1)D(ny — 21 + 1)

Here p; is the mode of p under the posterior distribution. Let Y = (p — p;)/s. Then the
conditional density of Y given X = z is

P(y) =7 - s(p1 + sy)™ (qn — sy)™ ™.

Step 2. Let L(y) = log®(y). Then it is easy to see that L'(0) = 0, L"(0) = —1,
L®(0) = 2(1 — 2p1) (maprg1) "2, and L®(0) = —6(1 — 3p1q1)(n1p1gr) " Applying Stirling’s
formula to the Gamma functions in L(0), one gets, after some algebra

F('I’Ll + 2)
]._‘(1171 + 1)F(n1 -+ 1)
+ zq logzy + (N1 — 1) log(ny — 1) — ny logmy

L(0) = log( ) + log(z1/ (ny — 1))

1 13 1 VR T -
= —5 log(2m) + (35 — 75 (ma) ni” + O(ny*")
Expanding L(y) at 0, one has
1 1 - _ -
L(y) = —3 log(2m) + cony ™ — 5@/2 +ein PP + eyt + O(n ) (63)

where ¢ = 12 — S5 (p1a1) ™" e = 3(1 — 2p1)(p1gn) /2 and ¢; = —{(p1q1)™" — 3]. Then

- 1 _ _
Y() = ¥ = YL+ emp 7y + (o + gt + SO+ O (64)
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Step 3. Integrating both sides of (64) from —oco to z, we have

H(z) = /

—0o0

¥4

P(y)dy = B(2) — vi(2)(2)n7 /> + va(2)(2)ny* + O(ny*?)

(65)

where v1(2) = —c1(2® + 2) and va(z) = —[3¢3(2° + 52° + 152) + ¢3(2% + 32)]. (Because the

O(n1_3/ ?) term in (64) is bounded by a polynomial in y times é(y)ny 3/ 2)

We wish to find an expansion for the quantiles of the distribution H. For fixed 0 <a<l,

let {on = H™(a). It is easy to see that £,, — 2, = ®~!(a) as n — co. Let
ga,n = zq + '7-1”7'1_1/2 + 7-277';1 + O(nl_l)'

Plugging in (65) and solving for 7, and 7, after some algebra, we get

1
o= 5(1 —2p1)(22 + 2) (prqu) /2
1 11 _ 13 71
Ty = (%22 + %Za)(qul) - (%Zi + %Za)

Step 4. It follows that an approximation to the limits of a 100(1 — )% interval is

1 -
(1, Pa) = P14 (1= 2p1) (K + 2)ny" £ {k(prgr) /20y 2

3
a1, 11 L 13, T )
h(p100) s (k) (mr90) ™ = (o + 2]+ O(ni?)
Let
2 1 1
wi(p) = (°+3)B+3)
13 17 1 1 ~
wa(p) = {(%ﬁ3+%ﬂ)(u+u2)+(%m3+ﬁm)}(ﬂ+uz) 12,

(66)

(67)

(68)

Rewriting the approximate limits (66) in terms of p = p/(1 — p), n, fi = z/n, after some

algebra, one has
(1, ) = (B +wr(@B)n™") £ {K(a + 22072 + wa(B)n ™} + O(n?)

with the + sign going with p, and the — sign with ;..

(69)

Step 5. Now we expand the coverage probability by using (39). In order to use (39) we

invert the inequalities p; < pu < ., into the form of
ly <02 = u)/(p+ 1) <y

We need the following lemma. The proof, which we omit here, is straightforward.
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Lemma 1 Let w; and wy be two functions with continuous first derivative. Then the roots
z. of the equations

+k[z(1+ )02 L (z)n "t +wa(@)n ™3 —p=0 (70)

can be expressed as

- 1 - - -
o= uF (4 u) e+ (G + e — o F () 2en )T — wg(u)n?

S )4 (ot )22 — (5 )t )P () +0(n™) (71
All the — (+) signs in F in (71) go with the + (=) sign in £ in (70).
Applying Lemma 1 to (69), we obtain
P(p e Cl;) = P(L; < n'(p— p) [ (u + ) < uy)
with
(bruy) = +r+ [(% + )R —wi(p £ (p+ p2)Pen ) (u+ p) 7202

+ {[,5*(% et 12) — (s + pwn )]+ 12+ wa ()} + )

2
+ O(n=%?)
= %(I‘Lz _ 1)(1 + 2,LL)(,U; + p,z)_l/2n_1/2
7 1 1
+{s+ [(%H‘q‘ — 369 ~ (R + R) e+ p) T+ O (1)

with all + signs go with u; and all — signs with £;. Now the expansion (26) for the negative
binomial case follows from (39).

Poisson case: The posterior distribution of A given X = z is Gamma(z +1/2,1/n). Denote
by F(z;mi, my) the cdf of the Gamma(my, my) distribution and denote by G(a;m;y, my)
the inverse of the cdf. Then

P\(AeCI;) = P(G(a/2; X +1/2,1/n) <A< G(l—a/2; X +1/2,1/n))
= P(e/2<F(A X +1/2,1/n) <1-a/2)
Holding other parameters fixed, the function F(A\; X 4+ 1/2,1/n) is strictly decreasing in X.
So there exist unique X; = p1(1 — @/2,A) and X, = pa(a/2, \) satisfying
FAXi+1/2,1/n)<1—-¢a/2 and F(\X,—1/2,1/n) >1—«a/2,
F(A\X,+1/2,1/n) > /2 and F(X\ X, +3/2,1/n) < /2
Therefore

nM2(X — \)

PA(AECIJ):P(£J§ /2 SUJ)
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with
Ly =[pi(1 — a/2,2) — nA]/(RN)M? and uy = [p2(/2, ) — nA]/(n))Y2. (73)

The quantities £; and u; are defined implicitly in (73) through p; and ps. Again, the proof
of (26) for the Poisson case requires an asymptotic expansion for both Z; and u;. We do
this below.

Step 1. Denote

nz+1/2

1 = z—1/2, Ay =z1/n, s:x}/zn_lz/\}/zn_lﬂ, ’Y:——F(x ey
1

Here A; is the mode of the posterior distribution. Let Y = (A— A;)/s. Then the conditional
density of Y given X =z is

Y(y) =7+ (M + sy)TreT Ot
Step 2. Let L(y) = log®(y). Then it is easy to see that L'(0) = 0, L"(0) = -1,
L®(0) = 207 Y2n-1/2, and LW (0) = —6A;'n~1. Applying Stirling’s formula to the Gamma
functions in L(0), one gets, after some algebra

1 1
L(0) = —Elog(27r) - ﬁ)\l‘ln_l + 0O(n=%?).

Expanding L(y) at 0, one has

1 1 1. _ 1 1
L(y) = —=log(27) — =y + =] 1/2y3n‘1/2 — (= + >yt O (n 3, (74)
2 2 3 12 4
Therefore
_ JLy) _ 1 -1/2 3 _1/2 1 1 4 1 4 -1, -1 —3/2
PY(y) ="V = d(y)[1 + M YT (e gyt 7g¥ )M T ]+ 0™ (79)

Step 3. Integrating both sides of (75) from —oo to z, we have

z

HE) = [ p)dy = 8() + 0 (2)d(@)n 2 + vy (2)g(n™ +0m™?)  (76)

—00

where v;(2) = —%/\1_1/2(22 +2) and v3(z) = —ATH (52 + 52° + 52).

We wish to find an expansion for the quantiles of the distribution H. For fixed 0 < o < 1,
let &0, = H™(a). It is easy to see that £, , — 2z, = ® () as n — oco. Let

V24 nt 4 o(n™h).

é.a,'n. = Zq + TN
Plugging in (76) and solving for 71 and 7, after some algebra, we get

1 —1/9 1 11 -
n =z +2N V2 and = (3% + TR
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Step 4. It follows that an approximation to the limits of a 100(1 — )% interval is

1 1 11 _
(A, A) =M + g(nz +2)n7t £ {/1)\}/271_1/2 + (%ff + %kc)/\l 1/ZTL_?’/z} +0(n™?%) (77)

Rewriting the approximate limits (77) in terms of A = z/n, one has, after some algebra,

n n 1 «
u, M) = A+ (%HZ + é)n_l + (KA 2n102 (g%ﬁ + ) AV 1O ) (18)

Step 5. Now we expand the coverage probability by using (39). In order to use (39) we
invert the inequalities A\; < A < A, into the form of

éJ S nl/z(;\ — )\)/)\1/2 S Uy.
We need the following lemma. The proof, which we omit here, is straightforward.

Lemma 2 Let w be a function with continuous first derivative. Then the roots z, of the
equations

1
z £z 2kn712 4 (%lﬁz + g)n_l +w(z)n ¥ -1 =0 (79)

can be expressed as

Te = A+ é(lﬁz — Dt —w(\)n 2 {\Y2kn Y2 - (im‘ﬂ’ + %H))\—uzn—s/z} +0(n™?)
(80)
The — (+) sign in F in (80) goes with the + (=) sign in & in (79).
Applying Lemma 2 to (78), we obtain
P(A € CI;) = Pty < nt?(A = X)/AY? < uy)
with
L o ~1/2,-1/2 Loa, 1 vy ~3/2
(by,ug) = E(K, — DAY 1 g — (7—2% + égm))\ n}+O(n™%) (81)

The expansion (26) for the Poisson case now follows from (39). 1

Expansions for Expected Length

We now prove Theorem 7. The derivation of the expected length expansions in equations
(32) - (37) is algebraically intense. We will report the main steps below and skip the many

intermediate algebraic simplifications. We denote below Z,, = ﬁ

The interval CI;. The length of the Wald interval CI; is

Ly = 2k(X 4 a,X?)Y2n 712
= 2%(p+ aop®) 27V (1 + Z(1 4 2a0p) (1 + agp®) VP02 4 0y 2207 1) 1/2,
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on some algebra by using the definition of Z,,. Hence,

1
Ly = 26(u+ ayu®)?n~1/2 {1 + EZ”(l + 2a0p) (1 + agpu?) " 2p /2

1
+ (522 = G220+ 200+ aop) ! + Ru(Z)} (52)

where E(|Ry(Z,)|) = O(n~%?). Note that this statement on E(|R;(Z,)|) has to be verified
separately for each of the Binomial, Poisson, and Negative Binomial case, by using the
specific central moment formulas in the three cases. The first six central moments are used;
see Brown, Cai and DasGupta (19999b) for further details of this step. Now from (82), on
using F(Z,) =0 and E(Z2) = 1, we have

1 1
E(Ls) = 25(p + agp®)V?n V21 + -2—a2n"1 — —g(l + 2a50)% (1 + agp®) "0 + O(n72),
which simplifies to expression (33) on some algebra.

The interval CIg. For the Rao score interval Clg, the length is

> = 1
Lr = 26(1 —agk®n™)"H(X +ap X2 + Zkazn"l)l/zn_l/z
— 2/-@(,u,+a2u2)1/2(1 _ a21£2n_1)_1n_1/2 {1 + Za(1 +2a2/.L)(,u+a2,u2)_1/2n_1/2

1 -1/2
+ (a222 + Zmz(,u + az,uz)_l)n_l} ,

again on some intermediate algebra by using the definition of Z,. So
1
Lr = 26(p+ aypu®)?(1 — agk®n~1)"Lp~1/2 {1 + §Z”(1 + 2a50) (1 + agu?) Y 2n 12

1 1 1 _ _
+ [§a2 + g(# + ap®) 7t — g(l + 2aop)? (1 + agp®) ') 2207t + RR(Zn)} ,

where exactly as in (82) above, E(|Rg(Z,)|) = O(n~%?2). Thus
1
E(Lg) = 2k(p+ap®)?(1 — apr’n~) 171/ {1 + %n‘l +5(n+ asp?) " In

1
- —8—(1 + 2a2p)*(p + azuz)_ln‘l} +0(n™?)

1
= 2k(p + agp®) Y V2{1 + (agk?® + "8‘(52 —D(p+ap®) ™ Hn '} +0(n™?)

which simplifies to expression (34).

The interval Cluc. For the interval Clac, the length is Lo = 2k(ji + apfi?)'/?7~/2, where
i =n — agk? and ji = (X + k2/2) /7. By using the definition of Z,,

1
f= (1t Zn(u + aap®) P02 4 §/€2n"1)(1 — agk’n™) L,
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and hence, after some algebra,

1
Lac = 2k(p+ axu®)Y?(n — agr?) /2 {1 + [az + Z(u + agu®) K*n 1

1 1
+ [50,2 — g(l + 2&2#)2(/.L + az,uz)_l]Z,fn_l + RAc(Zn)} y

where E(|Rac(Z,)|) = O(n=%2). Thus, finally, from (83),
1 1
E(Lac) = 2x(u+ az,uz)l/z(l + Eazﬂzn‘l)n‘l/z {1 + agk’nt + Eazn_l
1 1
+ ZK,Z(/J, + agu?)Int — g(l + 2a21)%(u + az,uz)_ln_l} +0(n™?)

which simplifies to equation (35) stated in Theorem 7 on a few steps of algebra.

The interval CI;. The limits of CI; admit the general representation

X+ wi(X)n! £ {6(X + ;X)) Y2 4y (X)n=3/?} + Ry (n),

where the remainder R;(n) satisfies E(|Rs(n)|) = O(n™2), and the function w,(-) is defined
as

ws(11) = 3_16(“ o) V2 + 3K) + ag (4 + ag®) (1365 + 17x)} (83)

Thus, directly, the length L; of CI; satisfies
E(L;) = ER2c(X +a: X2 4 2wy (X )32 + O(n2)
1
= 26(u+ape®) P21 = S+ aap®) T 4 2wa(p)n? 4 O(n?)

which simplifies to the expression (37) after some algebra.

The interval C'Ipg. This is the most complex case and the expansions for the expected length
have to be first derived separately for the Binomial, Poisson, and the Negative Binomial
case. The three separate expansions can then be unified into the general expression (36)
stated in Theorem 7. '

The limits of the likelihood ratio interval are the roots of the equation — log A, = x2/2,
where A, is the likelihood ratio statistic for testing a simple null on the relevant parameter.
The general method followed in each of the three cases is to first find asymptotic expansions
- for these roots up to the order n=3/2 and then find expansions for the expected difference of
the roots. The asymptotic expansions for the roots are found in each case by the method
of Theorem 5, as described in equations (56) - (61). We will now describe the main steps
in each of the Binomial, Poisson, and the Negative binomial case.

1. The Poisson case:

Step 1. The likelihood ratio A, is given by

)\n)_(e——n)\

A, (84)

~ XnXo-nX
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For an expansion of the expected length up to the order n=%/2, the case X = 0 does not
matter. If X > 0, by a unimodality argument, the equation — log A,, = k?/2 has two roots
in A; these are the limits of the interval CI;g.

Step 2. Writingt = A/X — 1, the roots of —log A, = k?/2 satisfy

t —log(1+t) = k?/(2nX).
Step 3. By the same steps as in equations (56) - (61), the roots, say ¢ and £, satisfy
t = —r(nX)+ %rﬁ(m‘()-l - %ﬁ(m?)*f‘ﬂ + R (85)
and I = w(nX)1/2 4 %nz(n)?)_l + %lf(n)z)_?’/z + Ry 0, (86)
where E(|R;n|) = O(n™2), 1 =1, 2. From (85) and (86), the length L.z of CI.p satisfies
E(Lrg) = 2kE(XY?)n~12 + %&3)\1/271—3/2 +0(n™?) (87)

Step 4. Writing now Z, = n'/2(X — X)/A'/2, by a straightforward calculation,
E(XY?) = AV2[1 — (8nM) 7Y + O(n=3/?),
and so from (87) one obtains
1
E(Lrg) = 26XYV2[1 — (8nX)Yn~Y/2 + Eﬂs)\—l/zn—a/z +0(n™?%),

which easily simplifies to

9 — 242
72nA

E(LLg) = 26AY2n~Y2(1 — ) +0(n7?).

2. The Binomial case:
Step 1. With X ~ Bin(n,p), the likelihood ratio is given by

p¥(1 —p) X
(X/n)X(1 = X/n)r=X
Again, we may assume that = X/n > 0, and for p > 0, the equation —log A, = x2/2 has

two roots in p, which are the limits of the interval Cl .
Step 2. Writing t = p/p — 1, the roots of —log A, = k?/2 satisfy

Ap =

(88)

log(1+1) — %log(l - gt) = k?/(2np).

Step 3. The roots t and  satisfy

1 1
t = —r(G/p)*n 2 4 §E2(1 — 2p)(np) ™ — %,&(1 — 13p§)¢7 2 (np)"¥2 4+ Ry, (89)
and
) 1 1
to= w(@/p)*n7" + 3k (1 = 20)(n) ! + 2ok° (L~ 13p0)¢ 7V (np) 7 + Ry (90)
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where E(|R;,|) = O(n™?), i =1, 2. From (89) and (90),
1
B(Lir) = 26B((50) P + k(1 ~ 1300)(pa) n2 4 O (o)

Step 4. Writing Z, = n'/2(p — p)/(pq)"/?, by a straightforward expansion,

E[(53)"/%] = (pg)"*[1 — (8npg) '] + O(n™/?),
and so from (91) one obtains
1
E(Lyr) = 2(pg)"*[1 ~ (8npq) ~In™* + —k* (1 - 13pg) (pg) /*n~*2 + O(n™?),
which simplifies to

9 — 2k%(1 - 13pq)

E(L =9 1/2,,—-1/2 1-—
(Lzr) = 26(pg)"*n™"" o T—

]+ O0(n™?).

8. The Negative Binomial case: In our parametrization (See Section 2), the mean p = p/q,
and so p = p/(1+ p).

Step 1. The likelihood ratio is given by

nRk >\ n(1+X)
A, = () (A . (92)
X 14+ p

Step 2. Assuming X > 0, if we write t = u/X — 1, then the equation —log A, = k?2/2 is
equivalent to

2

_ X _ K
1+ X)1 2 1) - Xlog(1 ==
(1+ )og(1+1+Xt) og(1+1t) o

Step 3. The roots ¢ and ¢ of this equation satisfy
— = 1 _ _
t = —&[(1+X)/X])n 12 4 552(1 +2X)(nX)?

1 _ _ _ _
- %&3(1 +13X +13X%)(1 + X)"Y2(nX) %2 + Ry (93)

and

P o= [(1+X)/X])2n-V2 4 %Fm +2%)(nX)!
+ 33}6””3(1 +13X +13X%) (1 + X) V2 (nX) %% 4+ Ry, (94)

where E(|R;»|) = O(n~?), i =1, 2. From (93) and (94),

_ _ 1
E(Lrgr) = 2kE[(X + Xz)l/z]n—l/2 + Eﬁ3(1 + 13+ 13u2)(,u + ’uz)—1/2n—3/2 + O(n_z) (95)
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Step 4. As usual, writing Z, = n/2(X — p)/(u+ p?)/?, from (95) by a straightforward
expansion,
E(Lrr) = 26(p+p*)*{1 — [8n(p+ @) /2
1
+ E,~e3(1 + 13+ 13u®) (u + p?) 20732 1 O(n7?)

9 — 2x%(1 + 13p + 13u?)
72n(p + p?)

= 2k(p+ p®) 20721 — ]+0(n™3?). 1

Remark: The unified expression

9~ 2k — 2605k (1 + agp?)

E(L =9 2\1/2,—1/2 1
( LR) H(l‘l’+ az ) n [ 7277,(/1,‘*‘/.1,2)

]+ O0(n™?).

follows from the specific expressions for the Poisson, Binomial, and the Negative Binomial
cases.
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