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Abstract:

This paper deals with the problem of selecting good ones compared with
a control from k(> 2) populations. The random variable associated with
population 7; is assumed to be positive-valued and has density f(x;|6;) =
c(0;)exp(—z;/6;)h(z;) with unknown parameter 6;, for each ¢ =1, - -+, k. The
distributions of parameters ;’s are also unknown. A nonparametric empirical
Bayes approach is used to construct the selection procedure. It is shown that
this procedure is asymptotically optimal with a rate of order O(n™!). The

results are applicable to data arising from (most) life-test experiments.
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§ 1 Introduction and Formulation

In this paper, we are interested in the problem of simultanious inference
and selection from among k(> 2) populations in comparison with a standard
or control. The populations are denoted by 7y, - - -, 7. The random variable
X; associated with 7; has the density f(z;]6;) = c(6;)e~*/%h(z;) with h(z) >
0 in (0, 00) or (0, 7] for some 79 > 0, where the unknown parameter 0; is the
characterization of population 7;. For convenience, we write (0, 7] uniformly
for (0, 00) and (0, 7g].

Let 6y denote a standard or a control. In practical situations, we desire
to differentiate between good and bad populations and select good ones and
exclude bad ones. Here a population 7; is said to be good if 6; > 6y and bad
otherwise. This type of decision problem has been considered by many au-
thors. For example, see early papers: Gupta and Sobel (1958) and Lehmann
(1961), and later: Gupta and Hsiao (1983), and more recently: Gupta and
Liang (1999).

Let Q={0=1{61,-,0:}:0;,>0,i=1,2,--, k} be the parameter space.
Let A={a ={a1,---,ax} :a; =0o0r 1,4 =1, ---,k} be the action space,
where a; = 1 means that population 7; is selected as good, a; = 0 means
population 7; is excluded as bad.

The loss function we use is

(1.1) L(,a) = él(@i, a;)

with
1(0:, ai) = aib; (00 — 0;) jg,<6,) + (1 — @:)0:(6; — 00) I 19, 56,)-

We also assume that 6; is a realization of a random variable ©;, and Oy, - - -,
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Oy, are independently distributed with priors Gy, ---, G respectively. Let
G =115, Gy(6).

Let X = (X3, -, X;) and X be the sample space of X. Here X; may be
thought of as a sufficient statistic based on several i.i.d. samples.

The selection procedure 6 = (8, -, 0%), where 6;(Z) is the probability of
selecting population m; as good when X = Z is observed. To ensure that the
Bayes rule exists, we assume [$° 6%2dG;(0) < co fori=1, ---, k.

Based on previous assumptions, a straightforward computation shows that

(1.2) R(G,6) = f Ri(G, &)
and
(1.3) Ri(G,8) = [, ST f;(z)lws(wa)h(w:)di + T,

j#i
where

filzi) = /ooo c(6:)e™ /% h(z;)dGy(6:),
|7 6:(60 — 0:)c(8:)e==/%dGi(65),

w;(;)
Ty = [ 0:(6; — 00) Iip>0dGi(65).
Here f;(z;) is the rharginal density of X; and T; is independent of the selection
rule 4. Clearly, a Bayes selection produce dg = (0gi, - -+, 0gr) 1s given by
1 if wi(z;) <0,
0 if wi(z;) > 0.
Let o;(zi) = J§°0ic(0:)e™®/%dG;(8;) and y(z;) = [$° 63c(8;)e=%/%dG;(6;).

(1.4) Sgi =

Denote ¢;(z;) = 1;(z;)/cs(x;), the posterior mean of ©; with respect to prior
G7(6), where dG}(0) = 6dG;(6)/ [ 0dG;(6). Then dg; can be expressed as

1 if ¢i(zi) > 6o,

0 if ¢;(z;) < 6.

(1.5) Sgi =



It should be noted that dg; depends on Z only through z;. Also ¢;(z) is
increasing for i = 1, -- -, k. If z; is large so that ¢;(z;) > 6o, we have dg; = 1;
If z; is small so that ¢;(z;) < 6, we have §g; = 0. There are two trivial cases:
dgi = 1 for all z € (0, 7] or dg; = 0 for all z € (0, 7]. To exculde these trivial

cases, we assume that 8¢ is non-degenerate, i.e.
(1.6) lim ¢;(z) < 6y < lim ¢;(z), i=1,---,k.
zl0 T

If GG; is unknown, the Bayes rule cannot be applied and the selection cannot
be made. The empirical Bayes approach is a way to help one to make the
decision when past data are available. Since Robbins (1956, 1964) introduced
the empirical Bayes approach, it has become a powerful tool in decision-
making.

For each i = 1,...,k, let (X;;,0;;),7 = 1,2,... be random vectors as-
sociated with population m; and stage j, where X;; is observable while ©;;
is unobservable. It is assumed that ©;; has a prior distribution Gj, for all
j = 1,2,..., and conditioning on ©;; = 6;;, X;; follows a distribution with
density f(z;;|6;;) and (Xi;,©i5),e =1,...,k,5 = 1,2,... are mutually inde-
pendent. At the present stage, say, stage n + 1, we have observed X =z
The past acumulated observations are denoted by (X ITREE ,fn) = % n, Where
Xj = (X1, -, Xk;) is the observation at stage j. Based on ;(vn and Z, we
wish to construct an empirical Bayes rule to select all good populations and
to exculde all bad populations. Such an empirical Bayes rule can be expressed

as

0n(Z,

>

n) = (5n1(57§n)7 T 5nk(577 }:(/n))

where 0,;(Z, Xz n) is the probability of selecting m; as good if E n and T are



observed. Let R(G, d,) denote the overall Bayes risk of é,. Then

(1.7 R(@,5) = X Ri(G.8).

where

(18)  Ri(G,6m) = [, El5(, X)] - [jl}i Fi(2;)] - wizo)h(z:)dz + T

The regret Bayes risk is defined as R(G, é,) — R(G, dg), which is used to mea-
sure the performance of empirical Bayes rule é,. If R(G, 6,)—R(G, dg) = o(1),
we say that &, is asymptotically optimal (a.0.). If R(G,4,) — R(G,d¢c) =
O(By) for some positive 3, such that lim,_, 3, = 0, we say that o, is asymp-
totically optimal at a rate of O(8,).

The aim of this paper is to construct an empirical Bayes rule for the selec-
tion problem described above. Then we show that the rule has a convergence
rate of O(n™!) under the above general setting or, in some cases, with the
additional condition f§°#3dG(f) < oo for most distributions in the family
f(@il6;).

It should be pointed out that Gupta and Liang (1999) studied the selec-
tion problem for gamma(z|6, s) populations, a special case of above problem,
firstly through an empirical Bayes approach. They constructed an empiri-
cal Bayes rule §* and established its convergence rate O(n~!) under some
regularity conditions. A rate of O(n"!logn) was obtained there under the
condition that ©%s are bounded.

The paper is organized as follows. We gives the introduction and formu-
lation of the problem in Section 1. In Section 2 an empirical Bayes selection
rule 4, is constructed. The asymptotic behavior of 8, is investigated in Sec-

tion 3. In Section 4, we provide a few typical examples as applications of our



results. The proofs of our results are given in Section 5.

§ 2 Construction of Empirical Bayes Selection Procedure on

The construction of 8, can be divided into three steps. First, we construct
an estimator of w;(z). Second, we localize the Bayes rule. And then we
complete the construction by mimicking the Bayes rule using the estimator
of w;(x).

The construction of an estimator of w;(z) follows the idea of Gupta and

Liang [1999]. For the loss function (1.1), an unbiased and consistent estimator

of w;(z) can be obtained. For eachi =1, .-, k, j =1, -, n, and z > 0,
define

b + x — Xij
(21) Vi) = -

Through a standard calculation, we have E[V;;(z)] = wi(z). Based on this
nice property, an unbiased and consistent estimator of w;(z) can be con-

structed as:

(2.2) Wi(z) =

S|

n

Vii(z),
j=1
foreachi=1, ---, k, and z € (0, 7].

We call the next step as a localization of the Bayes test. Examining the
Bayes selection rule ¢, one will be more likely to take action a; = 1 if the
observation of X; = z; is relatively large and take action a; = 0 if it is
relatively small. By knowing this, we want to find two numbers B, and L,
such that we select m; as good if we observe z; > L, and exclude it as bad

if z; < B,,. Here both B, and L, depend on n. This could be understood

as follows. As n increases, we have more information from the accumulated
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data, and we should adapt new B,, and L,, so that our decision can be made

more precisely.

Certainly, the exact form of f(z|f) and the distribution G affect the choice
of By, and L. Since we have no knowledge about G except that f§° 0,dG(6;) <
oo fori=1, -+ k, we rely on.f(:r|0) itself.

If limg o A(z) > 0, let B, = 0 and L, = Gylogn/3. If lim, o A(z) = 0, let
H, and L, be the two sequences of poéitive numbers such that H,elr/%o =
n'/® and H, — oo, L, — oo as n — oco. For example, H, = n'/* and
L, = 6ylogn/12. Then define B, = inf{z < 1: h(z) < 1/H,}. It follows
that B, — 0 since H,, — 0 as n — oo.

According to what we mentioned at the beginning of this section, we pro-
pose the following empirical Bayes procedure: For each 7 = 1, ---, k, and

Zi,

1 if (z;> L) or (B, <z; < L} and Wy(z;) <0),
(23) bz = ( ) or ( (z:) <0)
> 0),

0 if (2; < By) or (Bn < a; < L, and Wpy(z;) > 0)

where L} = L, if 7 = oo and L} = L, A1y if 7 = 79 < oo. This empirical
Bayes procedure says that, at stage n + 1, if the present observation z; from
m; is relatively big or small, a decision will be made based on z; only. If it is
not too small or too big, we have to resort to past data information and use

Wyi(z), the estimator of w;(z), to make the decision.

§3 Asymptotic Optimality of §,(Z)

In this section, the asymptotic behavior of &, is investigated. We derive

the regret Bayes risk first. From (1.2) and (1.3), the Bayes risk of dg is
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R(G,b¢) = =F_ | Ri(G, 6g;) with
RZ(G, 5Gi) = /OT 5G2(f)’wl($z)h($z)d$1 —|— Tz

From (1.7) and (1.8), the Bayes risk of 6,(%) is R(G,6,) = XF; Ri(G, )
with

T

Ri(G, 6,i) = /0 B8 (3)|w; (i) h(w:) da; + T

Thus, the regret Bayes risk of §,, is

5 5 k
i=1
and R;(G, ) — Ri(G, dg;) can be written as
(3.2) Ri(G,0n:) — R(G,6c3)
L Ly
- / P(Wi(z) < 0)wi(@) ey oyh(@)de + / P(Wii(2) > 0)ws(2) s (o) <oy h(@)de
B, B

Under the assumption [§° 62dG;(0) < oo, we have [{° |w;(z)|h(z)dz < oo
from the inequality

/OT |wi(z)|h(z)dz < by /OT a;(z)h(z)dz + /OT Pi(z)h(z)dz < Oy /000 0dG;(0) + /000 62dG;(6).

Since W, (z) is a consistent estimator of w;(z), P(Wy(z) < 0) — 0 if
wi(z) > 0, and P(Wy;(z) > 0) — 0 if w;(z) < 0. Applying the dominated
convergence theorem, we have R(G, 0n;) — R(Gj,d¢;) = o(1). Thus we have

the following theorem.

Theorem 3.1 Assume that [{°0°dG;(6) < oo for each i = 1,2,--- k.

Then by, as defined by (2.8), is asymptotically optimal.

Besides the asymptotic optimality, the convergence rate of an empirical
Bayes procedure is also an important factor to be considered when the pro-
cedure is applied. The following discussion shows that the procedure on

achieves the rate O(n™1).
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From now on, we consider only those members of the family f(z|f) in
which limgy, A(z) > 0 and h(z) is bounded from below for any inner closed
subset of (0, 7].

These members belong to one of the following cases:

Case 1. limgs, M > 0 and limgo h(z) > 0.

Case 2. limgy, =3 h(g”) > 0 and limg)o h(z) = 0.

Case 3. limgy, = h2) — 0 and lim, w0 h(z) >

Case 4. limgp, = he) — ¢ and lim, o h(z) = 0.

The main result about the convergence rate of &, for the various cases is

given in the following Theorem 3.2 and Corollary 3.3.

Theorem 3.2 Assume that [$°6%dGi(0) < oo fori =1, ---, k, and the
Bayes rule dg is non-degenerate. In Case 8 and Case 4, we also assume that

S 0%c(0)dG;(0) < oo fori=1, -, k. Then

(3.3) R(G,6,) — R(G,ég) = O(n™1).

Proof. The proof is given in Section 5.

In Case 3 and Case 4, the assumptions [° §2dG;(0) < co and [ 6*c(6)dG;(9) <
oo can be simplified into [$° 83dG;(6) < co. So we have the following corol-

lary.

Corollary 3.3 In Case 8 and Case 4, if [® 6%dGi(6) < oo fori=1, .-,

k, and the Bayes rule 6¢ is non-degenerate, then

(3.4) R(G,6,) — R(G,bg) = O(n™%).
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Proof. If 7 = 19 < o0, then lim,,_,, h—(fl > 0. It says that 7 = oo in Case

3 and Case 4. Note that 6c(9) = 0[f$° exp(—z/0)h(z)dz]™* and for 6 > 1,

e} oo 2
(3.5) 61 / e~ */%n(z)dz = / e Y/0n(yh)dy > 6_2/ h(y8)dy > e—z[rtn>i{1 h(t)].
0 0 1 2

It follows that 6c(6) is bounded for § > 1. Thus f$° 62dG;() < oo implies
both [§° 82dG;(6) < oo and [° 8*c(0)dG;(0) < oco. Then (3.4) follows (3.3).

From Theorem 3.2, one sees a rate of order O(n~!) is obtained under a
(quite) weak condition. If §5 is non-degenerate, we only require [$° 62dG;(6) <
oo in Case 1 and Case 2. The assumption [° #2dG;(6) < oo guarantees the
existence of the Bayes rule. This assumption is natural and not very stingent.

In Case 3 and Case 4, we require one moment condition, [ 82dG;(0) < oo.

The applications of our results to a few typical distributions are presented
in the following section. It includes the construction of §, and the statement

of convergence rate for each distribution there.

§ 4 Examples and Results

We select a few distributions as examples. Our results certainly work for

most lifetime distributions since most of them satisfy lim,_, h(z) > 0.

Example 4.1 (exp (0)-family). Consider the exponential populations hav-

ing density

1
(41) f(fl?zlez) = é'-e—l'i/ez‘7 >0, 6, >0, :=1,---,k.

i

Here h(z) = 1. This family belongs to Case 3. Take B, =0, L, = 6ylogn/3
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and construct &, as
1 if (x;> Ly) or (0 < z; < L, and Wy;(z;) < 0),
0 if (0<z; <L, and Wy(z;) > 0).

Then applying Corollary 3.3, we have the following.

Result 4.1 If X; has density f(x;|0;) given in (4.1), [$°03dG;(9) < oo
for alli =1, ---, k, and the Bayes rule dg is non-degenerate, then &,, as

constructed in (4.2), has a rate of convergence of order O(n1)..

Example 4.2 (Gamma (0, s)-family with known s > 1 ). Consider the

gamma populations having density

zi1

(4.3) f(z)6;) = We_xi/9i7 2, >0, ;>0 i=1--- k.

Here h(z) = z*~!. This family belongs to Case 2. Let H, = n!/4 and
Ly, = 0ylogn/12. Then B, = n~ Y=l Construct 4, as:

1 if (z; > Ly) or (B, < z; < Ly, and Wy;(z;) < 0),
0 if (z; < By) or (B, < z; < L, and Wy,(z;) > 0).

Then applying Theorem 3.2, we have the following.

Result 4.2 If X; has density f(x;|0;) given in (4.8), [$°0%dG;(9) < oo
foralli =1, ---, k, and the Bayes rule dg is non-degenerate, then &,, as

constructed in (4.4), has a rate of convergence of order O(n™1).

Example 4.3 (Truncated Gamma (0, s)-family with known s > 1 ). Con-

sider the gamma populations having density
(4.5)  fl(wil6:) = c(6))zi e ™/, ;€ (0,m), 6;>0, i=1,---,k.

Here h(z) = z*~!. This family belongs to Case 2. Let B, = n'/* and
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L, =6ylogn/12. Then B, = n~/[AG-D1 Construct &, as:
(4.6)
6.i(:) 1 if (z; > Ly,)or (B, <z <L, A7 and Wy(z;) <0),
ni\Ti) =
> 0).

)

0 if (z; < Bp)or (B, <z; < L, A1 and Wyi(z;)

Then applying Theorem 3.2, we have the following.

Result 4.3 If X; has density f(zi|6;) given in (4.5), [$°0%dG;(f) < oo
for alli =1, ---, k, and the Bayes rule d¢ is non-degenerate, then &,, as

constructed in (4.6), has a rate of convergence of order O(n™1).

Example 4.4 (A population having the density with infinite many discon-
tinuities ). Consider the exponential populations having density
(4.7)

f($z|9z) = C(ei)e_mi/@ Z(l -+ ]-)-[[l<fb‘¢fl+1]a z; >0, 6; >0, i=1,---,k.
=0

Here h(z) = Z24(I + 1)Iy<p<i+1)- This family belongs to Case 1. Take
B, =0, L, = ylogn/3 and construct &, as

1 if (.’EZ > Ln) or (O <z; <L, and Wm(:zsz) < 0),
Then applying Theorem 3.2, we have the following
Result 4.4 If X; has density f(zi|6;) given in (4.7), [$°0*dG;(0) < oo

foralli =1, ---, k, and the Bayes rule dg is non-degenerate, then 6, as

constructed in (4.8), has a rate of convergence of order O(n™1).

Remark. Gupta and Liang (1999) considered the same selection problem

for the gamma population (4.3). In that paper, an empirical Bayes rule was
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constructed as
0 if Wy(z;) > 0.

Opi(Ti) =

The convergence rate of S:L is affected by the tail probability of the underlying
distributions. In our paper, we cut the interval (0, co) into three parts (0, By,),
[Bn, L] and (Ly,o0) by localizing the Bayes test. Then we construct the
empirical Bayes rule as (4.4). So the influence of the tail probability of the
underlying distributions is controlled and a rate of O(n™!) is obtained under

quite weak conditions as shown in Result 4.2.

§ 5 Proof of Theorem 3.2

The ideas of the proof are similar to those in Gupta and Li (1999). The
main idea is to use a classic result about the non-uniform estimation of the
difference between the normal distribution and the distribution of the sum

of 1.i.d. random variables.

Recall that 8¢ is non-degenerate. That is,
(5.1) liﬂ)lgbi(a:) < b < li%n@-(:z;), i=1,---,k,

Then G must be non-degenerate and ¢;(z) must be strictly increasing. There-
fore there exists a point b; such that ¢;(b;) = 6y, ¢;(x) > 0 for z > b; and
di(z) < 0 for z < by. Since we consider the asymptotic behavior of b, WE
assume b; € (B, L}) for i =1, - - -, k without loss of generality.

We prove (3.3) only for 7 = 0co. The proof is similar if 7 = 75 < 0.

Lemma 5.1 For each i =1, ---, k, wi(b;) < 0 and further there is a
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neighborhood of b;, denoted by N (b;, €;), such that N(b;,€;) C (Bn, Ly) and

= i !
(5.2) A; pin |w;(z)| > 0.

Denote by = b; — €;, bip = b; +€;. Then for all z € [B,, b;] U [bss, Ly),
(5.3) |wi(z)| > Me tr/%,

where M; = €;4; [§° 0c(0)dG(6)/ J§° 6c(8)eb2/dG;(6) > 0.

Proof. For z > 0, the derivative of w;(z) exists and can be expressed as

wi(z) =~ [ ec(6)dGi(0) + [ 0e7=/°c(0)dGi(6).

2

Under (5.1), G is non-degenerate. From Jensen’s inequality, we see that for

x>0
J§° 0e=%/9¢(0)dG;(8)  J$° 6%e*/P¢(0)dGy(6)
J§° e72/%c(0)dGi(8) ~ J§° 0e==/Pc(9)dG;(6)
Plugging b; for z in the above inequality, we have
J§° 0e%/9c(0)dG;(0)
J§° ebilPc(6)dGy(6)

This implies that w;(b;) < 0.

< 6.

Note that w;(z) is continuous in (0,00). We can find an ¢-neighborhood

of b;, denoted by N (b;, ;) such that N(b;,¢;) C (By, Ly,) and
A;= min |wi(z)] > 0.
z€N (b;,€;)

Then (5.2) is proved. On the other hand, rewrite w;(z) as
wi(z) = oi(z)[00 — ¢i(z))-

For x € [By, by], noting ¢;(z) is strictly increasing in z, 6y — ¢;(z) > 6y —
¢z(bzl) For z _<_ Ln,

ai(z) > | °° 6c(9)e"/°dGi(6) > e™2/* | °° 0c(6)dG;(6).
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Thus

Similarly, for z € [b, Ly),
[wi@)] 2 [9:(biz) — Gole™™* [~ 6c(6)dGi(8),

Using (5.2) and the mean value theorem, we have w;(b;) > A;e;. Then
Oo— i (bi1) > Aie;/0(bs1). Similarly, ¢(bia) —00 > Ase;/vi(bia) > Asei /o (bin).
Since Ozi(bﬂ) Z Oél(bm) Then for m; = €iAi f@? 9dGz(9)/al(bzl), (53) holds.

This completes the proof of Lemma, 5.1.

Next lemma deals with the bounds of the moments of W,;(x).

In Case 1 and Case 3, mingcgz<oo A(z) > 0. Let S, = 1/ minpcy<oo h(z).
In Case 2 and Case 4, Let S, = H, V [1/ minj<z<oo A(z)]. Then h(z) > S,
for x > B, in all four cases. Recall L, = fylogn/3 in Case 1 ans Case 3
and H,elr/%o = nl/3 in Case 2 and Case 4. Then we have S,eln/f ~ nl/3 as
n — oo in all four cases.

In Case 3 and Case 4, we know [ 6%c(6)dG;(f) < oo and let C; =
S 04c(0)dG;(6).

Without loss of generality, we assume h(z) > z for z > 1 in Case 1 and

Case 2.

Lemma 5.2 Let oZ(z) = E[(Vij(z) — wi(z))?] and vi(z) = E[|Vj(z) -
w;(z)|3]. Then for z € [B,, L],

[25, (6 + 1) + 1] for Case 1 and Case 2,

54) oo <
Sa[(60 + 1)2a;(z) +2(6p + 1)C;]  for Case 8 and Case 4,
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and

3[2Sn (60 + 1) + 113 + 3|w;i(z)]? for Case 1 and Case 2,

(6.5) (=) <
9S52[(62 + 6)ai(z) + 6C;] + 3|w;y(z)|®  for Case 8 and Case 4 .

For x € [bi1, bio], there ezist two constants Ciy; > 0 and Ciy > 0 such that

5.6 ) <Ch <G
For z € [By, bi1) U [big, Ly, and large n
(5.7) n®3lwi(z)|/|oi(2)] > 1.

Proof. Consider z € [B,, L,]. Note that h(z) > S;!. In Case 1 and Case
2,ifz > 1, h(z) > z. Then

Vis ()| < Jix; 20100/ P(X;) + Iix,24)(00 + & — X;)/h(X;) < 6pSn + 1.
If z > 1, it can be shown that |V;(z)| < 25,(6p + 1) + 1. Thus
oi () < E[[Vyj(2)"] < [28(60 + 1) + 1.
For «;(z), using |a + b|*> < 3a|® + 3|b|?, we have
Yi(w) < 3E[|[Vij()l’] + 3Jwi()* < 3[28a(f0 + 1) + 1]° + Juwi(z)[*
In Case 3 and Case 4, a simple calculation shows that
0%(z) < Sal6u(x) + 200wi(x) +2 [ 8°c(8)e~*/?dGi(6)).

By breaking the interval (0, co) into (0, 1) and [1, 00), we have
J§° 63c(0)e™*/%dG;(0) < C; + ay(z) and ¥;(z) < C; + o;(z). Thus

a3(z) < Su[(Bo + 1)%ai(x) + 2(6o + 1)Ci].
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Similarly,

Now consider z € [b;1, bi2]. It is easy to see that

2(z) < % = CZ in Case 1 and Case 2
o;(z) < i1
l (9°+1)m1£i§,)+f((§§’ The = C2 in Case 3 and Case 4
and
() < [%]3 + 3maxy, <z<p, [Wi(2)[? = Ci,  in Case 1 and Case 2
Yi\T) S

(93+6)a1(b11)+601
[mingp,,; A(z)]”

Then (5.6) holds. Next we prove (5.7). From (5.3), |w;(z)| > M;e~Lr/% for
z € [By, bi1] U [big, Ly]. In Case 1 and Case 2,
I wl( ) Me—Ln/90 n/6o

+ 3maxy, <z<h, |Wi(z)]? = Ci, in Case 3 and Case 4

S—l —-L
(@) 2 28t 11 e

In Case 3 and Case 4

om( )= ST (80 + 1)7on(w) + 2(00 + 1)Coflon(@) P12
It is easy to see that |90 — ¢i(x)| > min{|6y — ¢ (bi1)|, |00 — Hi(bi2)|}. We know
from the proof of Lemma 5.1 that o;(z) > e=%/% (72 0c(6)dG;(). Then

= O(n=%/9).

57}/2[(90 + 1)2/6\4,;(:13) + 2((90 + 1)Ci/[az-(a:)]2]1/2 ~ 5711/261'"/0.

Thus |w;(z)/oim ()| = O(S; Y 2eLnl%) = O(SL/2n~1/3).

This completes the proof of Lemma 5.2.

Note that Vj;(z) are i.i.d random variables for fixed z. For large n, the
central limit theorem tells us that >7_;[V;;(z) — wi(x)]/[0i(z)+/n] is close to
N(0,1) in distribution. Furthermore, we have the following non-uniform esti-

mation of the difference between the normal distribution and the distribution
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of the sum of i.i.d random variables. This result can be found in Petrov (1975,

pp125) or Michel (1981). Michel proved A < 30.54 in his paper.

Fact Let X1, X3, -+, X, be i.i.d random variables, EX; = 0, EX? = 0% >
0, E|X1|® < 0o. Then for all x

0
5- Fn - @ < A .
(5.5) ) — 8(0)| < A=l
Here ®(z) is the c.d.f. of N(0,1), F,,(z) and p are given by
1 n E|X1|3
Fo(2) = P(—= " X; < z), - .
@ =P EyX <), o-Tn

Now, we are ready to prove our main result.
Proof of Theorem 3.2 It suffices to prove R;(G,by;) — Ri(G,d¢;) =
O(n™1). Rewrite P(W,;(z) < 0) as

L S V() — wi(a)] < — YD)y

noi(z) j=1 oi(z)

_VAlwi(a)] A7)
P(Wyi(z) < 0) < 0:() )+ Vn(oi(z) + /nlwi(z)])®
Similarly,
PWai(z) > 0) < 1= ®(= =) + s T @) )

Plugging above two inequalities in (3.2), we obtain

R,(G,6,i) — Ri(G, bci)
= [t Au@) () h(a) de

s ole) V) + T
e el Az wi(z)|h(z)dx
b S ) + v e

Il
~
+ &
~
~
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From (5.5), (5.6), (5.7) and (5.8), we see that w;(z), oZ(z) and ~;(z) have

different behavior for different z. So we decompose I into four parts.

I < /Bb @(—M)wi(x)h(x)da:—l— / bi@(—M)wi(@")h(x)dm

- O’Z(ZB) O-Z(x)
i1 A%( Jwi(z)h(z ) A% z)w;(z)h(z)
S A o o) Ll e s e

= Il+[2+]3+.[4.

Consider I first. According to (5.7), as n is large, w;(z)/oin(z) > n~%/8 for
x € [By, bi1], It follows that +/nw;(z)/o;(z) > n'/8. Then applying it to Iy,
we have

L < ®(n~18) /B” wi(z)h(z)dz = O(n™Y).
For I, since z € [b;1, b;], h(z) is bounded and o;(z) < Cj,. Thus

I, < [ max h(z)] | b o(-YMi2)y ) da

b <z<b; Cis
To prove I, = O(n™1), it is sufficient to prove fbb;l & (—+/nw;(z)/Cis)wi(z)dz =
O(n™1). Using (5.2)

/bi ®(—+/nw;(z)/Cip)w;(z)d
= A /11 \/_wl /Cw)wz( )w (:U)dx

C? \/_g.(b :
A b 2(y)ydy

= O(n™h).

<

Next we consider I3. From (5.3), |w;(x)| > M;e /% for x € [B,,by]. In

Case 1 and Case 2, applying (5.5), we have
/bﬂ 3[28, (60 + 1) + 1]3 + 3|w;(z)]3

B.  +/n(oi(z) + /n|wi(z)|3)

3[2Sn 00 +1) 4+ 1]3 b1 3 rba
= n2]E/[13e—3L)n/9o /Bn w;(z)h(z)dz + ﬁ/Bn w;(z)h(z)dx

= O(n™)

I; <

w;(z)h(z)dz
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In Case 3 and Case 4, using (5.5) again,

. 952[(62 | | ()3
ho< [y AR S O (o)
Br Vn(oi(z) + v/nlwi(z))
952(65+6) o 5452C;  rba
= n2Mpe2Ln/% /Bn o (z)h(z)dz + n2M3e—3Ln/% /Bn _wi(x)h(x)dﬂf +
3 rba
— 5 w;(z)h(z)dz
= O(n™)

For z € [b;,ba], 7i(z) < Cjir and w;(z) > Mie~I~/% from (5.6) and (5.3).
Then

A<A@M W@h) AC, ‘ﬁm@m@wzomﬂ.

<
b /n(03(z) + /nlw;i(z)])® ~ n2MPe3Ln/0 Jb,
Thus we have I = O(n™!). Similarly we can prove IT = O(n™!). Then the

proof is complete.
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