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Abstract

Suppose A is a finite set equipped with a probability measure P and let M be a “mass”
function on A. We give a probabilistic characterization of the most efficient way in which
A™ can be almost-covered using spheres of a fixed radius. An almost-covering is a subset
C,, of A", such that the union of the spheres centered at the points of C, has probability
close to one with respect to the product measure P". An efficient covering is one with small
mass M™(C,); n is typically large. With different choices for M and the geometry on A
our results give various corollaries as special cases, including Shannon’s data compression
theorem, a version of Stein’s lemma (in hypothesis testing), and a new converse to some
measure concentration inequalities on discrete spaces. Under mild conditions, we generalize
our results to abstract spaces and non-product measures.
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1 Introduction

Suppose A is a finite set and let P a probability measure on A (more general probability spaces
are considered later). Assume that the distance p(z,y) between two points = and y in A is
measured by a fixed p: AXA — [0,00), and for each n > 1 define a coordinate-wise distance
function p, on the product space A™ by

1 n
pn(2T,97) = EZP(%Z/@'), (1)
i=1
for z¥ = (z1,22,...,2n) and ¥7 = (y1,Y2,...,Yn) in A™.

Given a D > 0, we want to “almost” cover A™ using a finite number of balls B(y}, D), where
B(yf, D) ={z1 € A" : pa(aT,y7) < D} (2)

is the (closed) ball of radius D centered at y7 € A™. For our purposes, an “almost covering” is
a subset C C A", such that the union of the balls of radius D centered at the points of C' have
large P"-probability, that is,

P™([C],) isclose to 1, (3)
where [C], is the D-blowup of C

Clo = | BGP,D) = {5} : pa(a?,u?) <D for some 7 € C}.
yrel
More specifically, given a “mass function” M : A — (0,00), we are interested in covering A™
efficiently, namely, finding sets C that satisfy (3) and also have small mass

MMC)= Y M™yP) =) J[w)
yrel

yreC i=1
One way to state our main question of interest is as follows:

If the sets {Cy, ; n > 1} asymptotically cover A™, that is,
(%) P ([Crlp) =1 asn — oo,
how small can their masses M™(Cy) be?

Question (*) is partly motivated by the fact that several classical questions can be easily restated
in this form. Three such examples are presented below, and in the remainder of the paper (x) is
addressed and answered in some detail. In particular, it is shown that M™(C,) typically grows
(or decays) exponentially in n, and an explicit lower bound, valid for all finite n, is given for
the exponent (1/n)log M™(C,) of the mass of an arbitrary C,. [Throughout the paper, ‘log’
denotes the natural logarithm.] Moreover, a sequence of sets C,, asymptotically achieving this




lower bound is exhibited, showing that it is best possible. These extremal sets are constructed
probabilistically; each C,, consists of a collection of points yJ* generated by taking independent
and identically distributed (IID) samples from a suitable (non-product) measure on A™.

EXAMPLE 1. (MEASURE CONCENTRATION ON THE BINARY CUBE) Take A = {0, 1} so that
A™ is the n-dimensional binary cube, and let P™ be a product probability measure on A™. Write
pn for the normalized Hamming distance

n
pn(aﬂllay?) = %Zﬂ{wi#yi}’ x?)y? €A™ (4)
i=1
If A™ is given the usual nearest-neighbor graph structure (two points are connected if and only
if they differ in exactly one coordinate), then p,(z7,y7) is simply the graph distance between
z7 and yT', normalized by n.

A well-known measure concentration inequality for subsets C, of A™ states that, for any
D >0,

. e—nD?/2
PM([Crlp) 21— P(C) ()

[See, for example, Proposition 2.1.1 in the comprehensive account by Talagrand [?], or Theo-
rem 3.5 in the review paper by McDiarmid [?], and the references therein.] Roughly speaking,
(5) says that “if Cy, is not too small, [Cy], is almost everything.” In particular, it implies that
for any sequence of sets Cp, C A™ and any D > 0,

if lim inf%log P™(C,) >—-D?%/2, then P™([Cu],)— 1. (6)
n—od

A natural question to ask is whether there is a converse to the above statement: If P*([Cy],) —
1, how small can the probabilities of the C,, be? Taking M = P, this reduces to question
(x) above. In this context (*) can be thought of as the opposite of the usual isoperimetric
problem. We are looking for sets with the “largest possible boundary;” sets C, whose D-
blowups (asymptotically) cover the entire space, but whose volumes P"(Cy,) are as small as
possible. A precise answer to this problem is given in Corollary 3 of the next section.

EXAMPLE 2. (DATA COMPRESSION) Let A be a finite alphabet so that A™ consists of all
possible messages of length n from A, and assume that messages are generated by a random
“source” of distribution P™ on A™. A “code” for these messages consists of a codebook C,, C A"
and an encoder ¢, : A™ — C),. If we think of p,(z7,y?) as the “distortion” between a message
z7 and its reproduction 37, then for any given codebook Cy, the best choice for the encoder is
clearly the map ¢, taking each z7 to the y7 in C, which minimizes the distortion p,(z7,y7).
Hence finding good codes is the same as finding good codebooks. More specifically, if D > 0 is
the maximum amount of distortion we are Willihg to tolerate, then a sequence of good codebooks
{Cy} is one with the following properties:




(a) The probability of encoding a message with distortion exceeding D is asymptotically neg-
ligible:
P™([Cnlp) — 1.

(b) Good compression is achieved, that is, the sizes |Cy| of the codebooks are small.

What is the best achievable compression performance? That is, if the codebooks {C,} satisfy
(a), how small can their sizes be? Shannon’s classical source coding theorem (cf. Shannon [?7],
Berger [?]) answers this question. In our notation, taking M = 1 reduces this question to a
special case of (x), and in Corollary 2 in the next section we recover Shannon’s theorem as a
special case of Theorems 1 and 2.

ExaMPLE 3. (HYPOTHESIS TESTING) Let A be a finite set and P;, P2 be two probability
distributions on A. Suppose that the null hypothesis that a sample X7 = (X1, Xs,...,X,) of n
independent observations comes from P, is to be tested against the simple alternative hypothesis
that XT' comes from P,. A test between these two hypotheses can be thought of as a decision
region Cp, C A™: If X € C, we declare that X* ~ P[*, otherwise we declare X7 ~ P}'. The
two probabilities of error associated with this test are

on=PP(CS) and  f = P}(Cu). (7)

A good test has these two probabilities vanishing as fast as possible, and we may ask, if o, — 0,
how fast can 3, decay to zero? Taking p to be Hamming distance, D =0, P = P, and M = P,
this reduces to our original question (*). In Corollary 1 in the next section we answer this
question by deducing a version of Stein’s lemma from Theorems 1 and 2.

The rest of the paper is organized as follows. In Section 2, Theorems 1 and 2 provide an
answer to question (x). In the remarks and corollaries following Theorem 2 we discuss and
interpret this answer, and we present various applications along the lines of the three examples
above. Theorem 1 is proved in Section 2 and Theorem 2 is proved in Section 3. In Section 4
we consider the same problem in a much more general setting. We let A be an abstract space,
and instead of product measures P™ we consider the n-dimensional marginals P, of a stationary
measure P on AY. In Theorems 3 and 4 we give analogs of Theorems 1 and 2, which hold
essentially as long as the spaces (A™, P,,) can be almost-covered by countably many p,-balls.
Although the results of Section 2 are essentially subsumed by Theorems 3 and 4, it is possible
to give simple, elementary proofs for the special case treated in Theorems 1 and 2, so we give
separate proofs for these results first. The more general Theorems 3 and 4 are proved in Section 5,
and the Appendix contains the proofs of various technical steps needed along the way.




2 The Discrete 1.1.D. Case

Let A be a finite set and P be a probability measure on A. Fix a p: AxA — [0, 00), for each
n 2 1let pp be the corresponding coordinate-wise distance function on A™ defined as in (1), and
let M : A — (0,00) be a positive mass function on A. We assume, without loss of generality,
that P(a) > 0 for all a € A, and also that for each a € A there exists a b € A with p(a,b) = 0
(otherwise we may consider the distance function o'(z,y) = [p(x,y) — min,e4 p(z, z)] instead).
Let {X,} denote a sequence of IID random variables with distribution P, and write P = PN for
the product measure on AN equipped with the usual o-algebra generated by finite-dimensional
cylinders. We write Xij for vectors of random variables (X;, X;41, ... , X;), 1 <i<j< o0, and
similarly a:f = (i, Tig1, .. ., 25) € AT~ for realizations of these random variables.

Next we define the rate function R(D) that will provide the lower bound on the exponent of
the mass of an arbitrary C,, C A™. For D > 0 and @ a probability measure on A, let

IPQD)= _int  HW|PxQ) ®

where H(u|v) denotes the relative entropy between two discrete probability mass functions W
and v on a finite set S,

H(ulw) = 3 pls)og 203,

seS
and where M(P,Q, D) consists of all probability measures W on A x A such that Wx, the
first marginal of W, is equal to P, Wy, the second marginal, is Q, and Ewlp(X,Y)] < D if
M(P,Q, D) is empty, we let I(P,Q, D) = co. The rate function R(D) is defined by

R(D) = R(D; P, M) = inf {I(P,Q, D) + Eqllog M(¥ )]} (9)

where the infimum is over all probability distributions @ on A. Recalling the definition of
the mutual information between two random variables, R(D) can equivalently be written in a
more information-theoretic way. If (X,Y’) are random variables (or random vectors) with joint
distribution W and corresponding marginals Wx and Wy, then the mutual information between
X and Y is defined as

I(X;Y)= HW|Wx x Wy).

Combining the two infima in (8) and (9) we can write

R(D) {I(X;Y) + Ellog M(Y)]} (10)

= inf
(X,Y): X~P, Ep(X,Y)<D

where the infimum is taken over all jointly distributed random variables (X,Y) such that X has
distribution P and Ep(X,Y) < D. For any z} € A" and C,, C A", write

pn{z7,Cr) = min pn(:c’f,y?)-
YT ECH
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In the following two Theorems we answer question (*) stated in the Introduction. Theorem 1
contains a lower bound (valid for all finite n) on the mass of an arbitrary C, C A", and Theorem 2
shows that this bound is asymptotically tight.

THEOREM 1. Let Cp, C A™ be arbitrary and write D = Epn|[pn(XT,Cp)]. Then

~ log M™(Cy) > R(D).

THEOREM 2. Assume that p(z,y) =0 if and only if x =y. For any D > 0 and any ¢ > 0
there is a sequence of sets {Cyr} such that:

(4) %log M™(Cp) <R(D)+e€  foralln>1
(12) pn(XT,Cr) <D eventually, P — a.s.

REMARK 1. Part (ii) of Theorem 2 says that I|g,) (XT') — 0 with probability one, so by
Fatou’s lemma, P™ ([Cy],) — 1. jFrom this and (¢) it is easy to deduce the following alternative

version of Theorem 2 (see the Appendix for a proof): For any D > 0 there is a sequence of sets
{Cy} such that:

(@) lim sup %bg M™(Cy) < R(D)

n—oo

(i) P*([Cr]p) — 1, and
(i) lim sup Epn[on(XP,C] < D

n—oo

REMARK 2. As will become evident from the proof of Theorem 2, the additional assumption
on p is only made for the sake of simplicity, and it is not necessary for the validity of the result.
In particular, it allows us to give a unified argument for the cases D =0 and D > 0.

Theorem 1 is proved at the end of this section, and Theorem 2 is proved in Section 3.
Although the proof of Theorem 2 is somewhat technical, the idea behind the construction of the
extremal sets Cj, is simple: Suppose Q* is a probability measure on A achieving the infimum in
the definition of R(D), so that

R(D) = I(P,Q*, D) + Ege[log M(Y)] £ I* + L*.

Write QF for the product measure (Q*)", and let @n be the measure obtained by conditioning
Q} to the set of points y7 € A™ whose empirical measures are uniformly close to Q*. Then
let C,, consist of approximately e™” points y? drawn IID from @n Each point in the support
of Qn has mass M™(y7) ~ ¢"L" and C, contains about e®” of them, so M™(C,) is close to
el enl” = ¢nR(D) The main technical content of the proof is therefore to prove (ii), namely,

that e™" points indeed suffice to almost cover A™ within distance D.




The above construction also provides a nice interpretation for R(D). If we had started
with a different measure Q in place of Q*, we would have ended up with sets C;, of size ~
exp(nI(P,Q, D)), consisting of points y7 of mass M™(y7) ~ exp(nEq(log M(Y))), and the total
mass of C}, would be

M™(Cy) = exp{n[I(P,Q, D) + Eq(log M(Y))]}.

By optimizing over the choice of @ in (9) we are balancing the tradeoff between the size and the
weight of the set C),, between a few heavy points and many light ones.

It is also worth noting that the extremal sets C,, above were constructed by taking samples
yT from the non-product measure @n Unlike in Shannon’s proof of the data compression
theorem, here we cannot get away by simply using the product measure @Q},. This is because
we are not just interested in how many points y7 are needed to almost cover A™, but also we
need control their masses M™(y7). Since exponentially many y7’s are required to cover A", if
they are generated from @} then there are bound to be some atypically heavy ones, and this
drastically increases the total mass M™(C,). Therefore, by restricting @}, to be supported on
the set of y7 € A™ whose empirical measures are uniformly close to Q*, we are ensuring that
the masses of the y7 will be essentially constant, and all approximately equal to enl”,

Next we derive corollaries from Theorems 1 and 2, along the lines of the examples in the
Introduction. First, in the context of hypothesis testing, let P;, P, be two probability distribu-
tions on A with all positive probabilities. Suppose that the null hypothesis that X7 ~ Pl is
to be tested against the alternative X ~ Pg'. Given a test with an associated decision region
C, C A™, the two probabilities of error o, and S, of this test are defined as in (7). In the
notation of this section, let p, be Hamming distance as in (4), P = P, and M = P,. Note that
here

Epp[oa(X7, Cu)] < Bep llog (XP)] = PR(CE),
and define, in the notation of (9), the error exponent
g(a) = —R(a; P, P), a€l0,1].

Noting that €(0) = H(P;||P,), from Theorems 1 and 2 and Remark 1 we obtain the following
version of Stein’s lemma (see Chernoff [?], Bahadur [?], or Theorem 12.8.1 in Cover and Thomas

[7D)-

COROLLARY 1. (HypoTHESIS TESTING) Let a = an = P}CE) and B = B = P3(Cy) be
the two types of error probabilities associated with an arbitrary sequence of tests {Cp}.

(i) Foralln>1, 82> e~ ne(a),
(%) If o — 0, then

lim inf — 10g,8n > —H(P1”P2)

1
n—oo N




(iii) There exists a sequence of decision regions Cy, with associated tests whose error probabilities
achieve a, — 0 and (1/n)log B, — —H(P1||P2), as n — co.

In the case of data compression, we have random “data” X7 generated by some product
distribution P®. Given a “single-letter distortion measure” p, and a maximum allowable dis-
tortion level D > 0, our objective is to find “good codebooks” C,,. As discussed in Example 2
above, good codebooks are those that that asymptotically cover A™, i.e., P*"([Cyr],) — 1, and
whose sizes |Cy,| are relatively small. In our notation, if we take M(-) = 1, then M™(Cy,) = |Cy|
and the rate function R(D) (from (9) or (10)) reduces to Shannon’s rate-distortion function

RS(D) = igf We./\/ill(llg,Q,D)H(W”PXQ)
inf I(X;Y).
(X,)Y): X~P, Ep(X,Y)<D
;From Theorems 1 and 2 and Remark 1 we recover Shannon’s source coding theorem (see
Shannon [?], Berger [?]).

COROLLARY 2. (DATA COMPRESSION) For any n > 1, if the average distortion achieved by
a codebook Cy, is D = Epn|pn(XT,Cy)], then

%log Cyl > Rs(D).

Moreover, for any D > 0, there is a sequence of codebooks {Cp} such that Epn[pn(XT,Cpn)] — D,
the codebooks Cy, asymptotically cover A™, P*([Cy],) — 1, and

lim —log|Cy| = Re(D).

n—oo N

In view of the above discussion, Theorems 1 and 2 in their general form can be thought
of as the solution to a generalized data compression problem, where, instead of asking for the
smallest possible codebooks, we ask for the “minimal weight codebooks” that can be used for
compression within distortion D.

Finally, in the context of measure concentration, taking M = P and writing Rc(D) for the
concentration exponent R(D; P, P), we get:

CoOROLLARY 3. (CONVERSE MEASURE CONCENTRATION) Let {C,} be arbitrary sets.
(i) For anyn > 1, if D = Epn[pn(X},Cr)], then P*(C,) > enfc(D),
(i) If P™([Cp]p) — 1, then .
lim inf - log P"(Cy) > Rc (D).

(¢13) There is a sequence of sets {Cy} such that P™([Cy],) — 1 and (1/n)log P*(C,) — Rc(D),

as n — 0.




In particular, in the case of the binary cube, part (i¢) of the corollary provides a precise
converse to the measure concentration statement in (6). Although the concentration exponent
Rc(D) = R(D; P, P) is not as explicit as the exponent —D?/2 in (6), Ro(D) is a well-behaved
function and it is easy to evaluate it numerically. For example, Figure 1 shows the graph of
Rc(D) in the case of the binary cube, with P being the Bernoulli measure with P(1) = 0.4.
Various easily checked properties of R(D) = R(D; P, M) are stated in the next Lemma; proof
outlines are given in the Appendix.

-1 1 ! ] ! 1 1 L L !

Figure 1: Graph of the function Rc(D) = R(D; P, P) for 0 < D < 1, in the case of the binary
cube A" = {0,1}", with P(1) = 0.4.

LEMMA 1.(7) The infima in the definitions of R(D) and I(P,Q, D) in (9) and (8) are in fact
minima.
(i1) R(D) is finite for all D > 0, it is nonincreasing and convez in D, and therefore also

continuous.

(i9i) For fized P and Q, I(P,Q, D) is nonincreasing and convex in D, and therefore it is
continuous except possibly at the point D =inf{D >0 : I(P,Q,D) < co}.

(iv) If the random variables X7 = (Xi,...,Xy) are IID, then for any random vector Y
jointly distributed with X7:

n
IXZYP) 2 ) (X3 Y5).
=1

(v) If we let Ryin = min{log M (y) : y € A} and

Dax = Dinax(P) = min{Ep[p(X,y)] : y such that log M (y) = Rmin},

8




then
= R orD>D
> Rmin  for 0 < D < Dpypx.
Next we prove Theorem 1. It is perhaps somewhat surprising that the proof is very short
and completely elementary: It only relies on two applications of Jensen’s inequality and on the
convexity of R(D).

Proof of Theorem 1: Given an arbitrary Cy, let ¢, : A™ — C,, be a function mapping each
z7 € A™ to the closest y7 in Ch, i.e., pn(2T], #(z7)) = pn(2}, Cp). For XT ~ P™ let YT* = ¢ (XT),
write @y for the distribution of Y, and Wy, (z7,y}) = P"(z})Ic, (y}) for the joint distribution
of (XI',Y{"). Then

Ew,[pn(XT, Y1) = D (11)

and by Jensen’s inequality,

log M™(Cn) = log { 3 (Qn( )]g:((y?)) )}

eChp
M™(y?)
> Qn(y7) log -
L @i)os G
W(17y1) n n n
= Wi (27,97 ) log ————— n log M™ (Y.
2 o8 Gy 2, Q0D g M)

By the definition of mutual information this equals
I(XT; Y1) + EqQ, [log M™(Y7")],

which, by Lemma 1 (v), is bounded below by

n

> [I(Xi;Ya) + Eg,llog M(Y;)]].

i=1

Finally, by the definition of R(D) and its convexity this is bounded below by

zn:R(EWn[p(Xi,Y >nR< ZEWn (X:,Y:) ) = nR(D)
i=1

where the last equality follows from (11). O




3 Proof of Theorem 2.

Let P, D > 0 be fixed, and € > 0 be given. By Lemma 1 (i) we can pick @* and W* in the
definition of R(D) and I(P,Q*, D), respectively, such that

R(D) = H(W*||Px Q") + Eg+[log M(Y)] £ I* + L*.

For n > 1, write @;, for the product measure (Q*)", and for y" € A™ let

n
> o
i=1

denote the empirical measure of y". Pick § > 0 (to be chosen later) and define, for each n > 1,

Py =

S|

the set of “good” strings
Grn={yt €A™ : Pp(®) <Q*(b)+6, Vac A}

(if G,, as defined above is empty — this may only happen for finitely many n — simply let G,
consist of a single vector (a,a,...,a), with a € A chosen so that log M (a) = Rpin). Also, let
@n be the measure Q7 conditioned on G,:
5 QnFNGn)
F)= ;
For n > 1, let {Y (i) = (Y1(¢),Y2(¢),...,Yn(4)) ; © > 1} be an IID sequence of random vectors
Y (i) ~ On, and define C,, as the collection of the first ™" +¢/2) of them:

Fc A™

Cn={Y(i) : 1<i<eM™+e/2)

By the definition of G, any y € G,, has

1 » * *
ElogM"(y{‘) = gPy?(b) logM(®)<L*+4¢ <;logM(b)) < L*+¢/2,

by choosing § > 0 appropriately small. Therefore,

M™C,) < eI +e/2) on(L*+e/2) . on(R(D)+e)

and (i) of the Theorem is satisfied. Let X7 be IID random variables with distribution P. To
verify (i7) we will show that

iy < eMITHe/2) eventually, PxQ — a.s. (12)
where ip, is the index of the first Y (z) that matches X} within p,-distance D,
in =inf{i > 1 : pp(XT,Y7") < D},

10




and Q = HnZI(@n)N. Recall the notation B(z7, D) = {y7 € A™ : pp(z¥,y}) < D}. For (12) it
suffices to prove the following two statements

lim sup = log [in Bu(B(XT, D))] <0 ExQ-as (13)
n—oo N
. 1 AN n *
h,{&g}f - log Qn(B(XT,D)) > -I" P—as. (14)

Proving (14) is the main technical part of the proof and it will be done last. Assuming it holds,
we will first establish (13). For m > 1 let Gy, = {2z} € A™ : Qn(B(X™,D)) > 0 Vn > m},
and note that by (14), P (Upn>1Gm) = 1. For any z{° € Gp,, conditional on X7 = 27, i, is a
geometric(py,) random variable with p, = Qn(B(z™, D)). So for € > 0 arbitrary

!
eﬁTL

Pr{%log [Zn@n(B(X{‘,D))} > ¢ X{l _ x?} < (1 _pn)ﬁ—l

and for all n large enough (independent of z7) this is bounded above by

e'n—1

[a—pti]” <o,

uniformly over 7 € G,,. Since the above right-hand side is summable over n, by the Borel-
Cantelli lemma and the fact that ¢ > 0 was arbitrary we get (13) for P-almost all 2$° € Gpy,.
But since P (Up,>1Gr,) = 1, this proves (13).

Next we turn to the proof of (14). Since, by the law of large numbers, @;(Gn) — 1, as
n — 00, (14) is equivalent to

' 1
lim inf - log@Qr, (B(XT,D)NGy) > —I" P—as. (15)
n—oo
Choose and fix one of the (almost all) realizations 2{° of IP for which
151? (a) — P(a), forallac A.

Let ¢; € (0,4) arbitrary, and choose and fix IV large enough so that

[szll(a) — P(a)| < e1P(a) forallac A, n> N. (16)
Let a1, as,...,an denote the elements of A, write ng =0,
n; = n]szrlw(ai), i=1,2,...,m

and N; = ngonk, j=0,1,...,m. For n > N, writing Y{* = (Y1,Y2,...,Yy) for a vector of
random variables with distribution @}, we have that @}, (B(z7, D) N Gyp) equals

1 1 <&
ng = 5 Y;) < = < QF
Qn{n;p(x“n)_z) and nZ]I{yl_b}_Q (b) + 6, VbeA}

i=1

11




m N; m N;
. n; 1 < n; 1 : .
:Qn{ gz— E p(ai,Y;) < D and —— E Liv,=p) <@ (b) + 6, VbEA}

=1 " MoN o1 N
where we have used the fact that the Y; are IID (and hence exchangeable) to rewrite z7 as
consisting of n; ai’s followed ny as’s, and so on. Let v; = P(a;) > pca W*(blas)p(as, b) for
i=1,2,...,m. Recalling that, by the choice of W*, >, v; = Ew+p(X,Y) < D, and that Q* is
the Y-marginal of W*, the above probability is bounded below by

& * n; 1 o n; 1 e "
ani {;;;L‘i ;P(aian) <7 and e ;H{Yj=b} < P(a;)[W*(bla;) + 4], Vbe A} :

Writing I'; = v /[P(a1)(1+€1)], i = 1,2,...,m and using (16), this is in turn bounded below by

m * 1 L 1 g W*(b|ai)+5
EQ’M {n_zjz::lp(amy.;) < Fz and E;Hﬂ/ﬂ:b} < _1__'_—__%_1_____, Vbe A

f[ {Pynz c F} (17)

where Fj; is the collection of probability mass functions ¢} on A,

W*(bla;) + 6

R = Fie) = {Q : Bolp(os, V)] <Ts and Q@) < 18

, VbeA}.

We will apply Sanov’s theorem to each one of the terms in (17). Consider two cases: If I'; > 0
then F; is the closure on its interior (in the Euclidean topology), so by Sanov’s theorem

lim nf —10g @}, { Py € Fi} > - int H(QIQ) (18)

74— 00

(see Theorem 2.1.10 and Exercise 2.1. 16 in Dembo and Zeitouni [?]). If I'; = 0 then «; = 0 and
this can only happen if W*(:|a;) = I(,,}(-), in which case F; = {d,,} and

—1ogcz* {Pyps € B} = 108Q" (@) = —H(6a,11Q")

o (18) still holds in this case. Combining the above steps (note that each n; — 0o as n — o),

n—oo M

s 1 * [
hﬁr_:g}lf - log @y, (B(z7,D)NG,) > lim 1nf — log {H Qr, {Pynz € F }

= hmmfZPxn az)—logQ { nleF}

n—so

v

- ; P(a;) inf H(QIQ"),
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and this holds for P-almost any z{°. Rewriting the ith infimum above as the infimum over
conditional measures W(-|a;) € F;, yields

e « . x
hﬂg}f Eloan (B(XT,D)NGy) > — Welrl}‘f(el)H(WHPxQ ) P—as.

where F(e;) = {W : Wx =P and W(-|a;) € Fi(e1), Vi=1,2,...,m}. Finally, since ¢; was
arbitrary we can let it decrease to 0 to obtain

el X . . "
lim inf ” log @}, (B(XT,D)NG,) > lim sup[— Wé%f(ﬂ) HW|PxQ")]

n—0o0 €110
(@) . *
= f H(W|P
wiko (W]PxQ")]
®
—I* P—as.

This gives (15) and completes the proof, once we justify steps (a) and (b). Step (b) follows upon
noticing that W* € F(0) and recalling that H(W*||PxQ*) = I*. Step (a) follows from the fact
that H(W||P xQ*) is continuous over those W that are absolutely continuous with respect to
PxQ*, and from the observation in Lemma 2 below (verified in the Appendix). O

LEMMA 2. For all €1 > 0 small enough there exist Q; € Fi(e1) such that H(Q;]|Q*) < oo, for
1 <i < m. Therefore, for all e1 > 0 small enough the exists W € F(e1) with H(W||PxQ*) < oo.

Note that, in the above proof, a somewhat stronger result than the one given in Theorem 2
is established: It is not just demonstrated that there exist sets C, achieving (i) and (i), but
that (almost) any sequence of sets C,, generated by taking approximately e®" IID samples from
Q,, will satisfy (3) and (i2).

We also mention that Bucklew [?] used Sanov’s theorem to prove the direct part of Shannon’s
data compression theorem. The proof of Theorem 2 above is different in that it involves a less
direct application of Sanov’s theorem to the sequence of non-product measures @n, and the
conclusions obtained are also somewhat stronger (pointwise rather than L' bounds). Similarly,
in the proof of Theorem 4, the Gértner-Ellis theorem from large deviations is applied in a manner
which parallels the approach taken in Bucklew [?].

4 The General Case

Let A be a Polish space (namely, a complete, separable metric space) equipped with its associated
Borel 0-algebra A, and let P be a probability measure on (AN, .AN). Also let (fl, A) be a (possibly
different) Polish space. Given a nonnegative measurable function p : A x A- [0, 00), define the
coordinate-wise disance measures p,, : A" x A" — [0,00) as in (1). [The reason for considering
A as possibly different from ‘A is motivated by the data compression scenario described in the
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Introduction. In practice it is often the case that original data take values in a large alphabet
A (for example, Gaussian data have A = R), whereas “compressed” data take values in a much
smaller alphabet (for example, Gaussian data on a computer are typically quantized to the finite
alphabet A consisting of all double precision reals).]

Let {X,} be a sequence of random variables distributed according to IP, and for each n > 1
write P, for the n-dimensional marginal of P. We say that P is a stationary measure if X7
has the same distribution as X{T,f , for any n, k. Let M : A — (0,00) be a measurable “mass”
function on A. To avoid uninteresting technicalities, we will assume throughout that M is
bounded away from zero, M (y) > M, for some constant M, > 0 and all y € A. Next we define
the natural analogs of the rate functions I(P,@,D) and R(D). Forn > 1, D > 0 and @, 2
probability measure on (A", A"), let

In(PrQu D) = inf  H(Wal Pox Q) (19)

where H(u||v) denotes the relative entropy between two probability measures u and v

[dplog %, when exists
00, otherwise

H(plv) = {

and where M, (P, Qn, D) consists of all probability measures Wy, on (A" x A, A" x A™) such
that Wy, x, the first marginal of Wy, is equal to Py, the second marginal W,y is Qn, and
[ pn AWy, < D; if Mp(Pn,Qn, D) is empty, let In(Pp, Qn, D) = 0o. Then R, (D) is defined by

Rn(D) = Rn(D; PnyM) = lélf {In(PnmeD) + EQn [lOg Mn(Yln)]} ) (20)

where the infimum is over all probability measures @, on (/1", A™). Note that since I,(Py, Qn, D)
is nonnegative and M is bounded away from zero, R, (D) is always well-defined. Recall also that
the mutual information between two random vectors X{ and Y{* with joint distribution W, and
corresponding marginals P, and Qy, is defined by I(X7;Y7*) = H(W,||PnxQxr), so that R,(D)
can alternatively be written in a form analogous to (10) in the discrete case:

Rn(D) {I(XT;YT") + Eflog M™(Y1")]} .

= inf
(XPYP): XD~Pp, Epn(XJ,YP)ED

Finally, the rate function R(D) is defined by

R(D) = lim ~R,(D)

n—ooon

whenever the limit exists. Next we state some simple properties of R(D), proved in the Ap-
pendix.
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LEMMA 3.(3) For each n > 1, Ry(D) is nonincreasing and convez in D > 0, and therefore
also continuous at all D except possibly at the point

D(n)

min

= inf{D >0 : R,(D) < +oo}.

(i1) If R(D) exzists then it is nonincreasing and convez in D > 0, and therefore also contin-
uwous at all D except possibly at the point

Duyin = inf{D >0 : R(D) < +oo}.
(i%3) If P is a stationary measure, then

1 1
R(D) = lim —Rn(D) = inf = Rn(D)

n—oo N,

and Dyin = inf, D).,
(iv) The mutual information I(X};Y") is convez in the marginal distribution P, of XT', for

a fized conditional distribution of YI" given XT.

Next we state analogs of Theorems 1 and 2 in the general case. As before, we are interested
in sets Cj, that have large blowups but small masses, but since the mass function M is bounded

away from zero we may restrict our attention to finite sets Cf,.

THEOREM 3. Let Cp, C A™ be an arbitrary finite set and write D = Ep,_ [pp(X},Cr)]. Then
log M™(C) > Ra(D). (21)
If P is a stationary measure, then for alln > 1
log M™(Cy) > nR(D).

As will become apparent from the proof its proof (at the end of this section), Theorem 3
remains true in great generality. The exact same proof works for arbitrary (non-product) positive
mass functions M, in place of M™, and arbitrary distance measures p,, not necessarily of the
form in (1). Moreover, as long as R,(D) is well-defined, the assumption that M is bounded
away from zero is unnecessary. In that case we can also consider countably infinite sets Cy, and
(21) remains valid as long as R,(D) is continuous in D (see Lemma 3).

In the special case when PP is a product measure it is not hard to check that R,(D) = nR(D)
for all n > 1, so we can recover Theorem 1 from Theorem 3.

For Theorem 4 some additional assumptions are needed. We will assume that the functions
" p and log M are bounded, i.e., that there exist constants pmax = 0 and Lpnax < oo such that
p(2,Y) < pmax and |log M(y)| € Lmax, for all z € A, y € A. For k > 1, we say that P is
stationary (respectively, ergodic) in k-blocks if the process {)?,(zk) ;n>0}= {Xf:,;ill)k ; n >0}
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is stationary (resp. ergodic). If P is stationary then it is stationary in k-blocks for every k. But
an ergodic measure P may not be ergodic in k-blocks. For the second part of the Theorem we
will assume that IP is ergodic in blocks, that is, that it is ergodic in k-blocks for all £ > 1. Also,
since R(D) = oo for D below Dy, we restrict our attention to the case D > Dyn. Theorem 4
is proved in the next section.

THEOREM 4. Assume that the functions p and log M are bounded, and that P is a stationary
ergodic measure. For any D > Dy and any € > 0, there is a sequence of sets {Cpn} such that:

(4) %log M™C,) <R(D)+e¢ foralln>1
(i%) P.([Cn]p) — 1 asn — oo.

If, moreover, P is ergodic in blocks, there are sets {Cyp} that satisfy (i) and

(#41) on(XT,Cr) <D eventually, P — a.s.

REMARK 3. A corresponding version of the asymptotic form of Theorems 1 and 2 given
in Remark 1 of the previous section can also be derived here, and it holds for every stationary
ergodic P.

REMARK 4. The assumptions on the boundedness of p and log M are made for the purpose of
technical convenience, and can probably be relaxed to appropriate moment conditions. Similarly,
the assumption that M™ is a product measure can be relaxed to include sequences of measures
M, that have rapid mixing properties. Finally, the assumption that PP is ergodic in blocks is not
as severe as it may sound. For example, it is easy to see that any weakly mixing measure (in
the ergodic-theoretic sense — see Petersen [?]) is ergodic in blocks.

Proof of Theorem & Given an arbitrary C, let ¢, : A® — C, be defined as in the
proof of Theorem 1. For X} ~ P, define Y{* = ¢,(X]), write @y, for the (discrete) distri-
bution of Y{?, and W, (dz?, dy?) = Pn(dz})lc, (y7) for the joint distribution of (X7, Y7"). Then
Ew, [pn(X],Y{™)] = D, and by Jensen’s inequality applied as in the discrete case
M"(yT)

Qn(y?)

log M™(Cr) > > Qa(y})log
'y‘fecn

AWn (2T, 97)
= AW, (27, y7) lo ”—-“-1—+§; ™ log M™(Y
/ (z7,v7) log (B, % Qy) y?echn(?h) g M™(YT")

= I(X;Y") + Eg, [log M™(YT")].

By the definition of R,(D), this is bounded below by R, (D). The second part follows immedi-
ately from the fact that R,(D) > nR(D), by Lemma 3 (i1). O

16




5 Proof of Theorem 4

The proof of the Theorem is given in 3 steps. First we assume that P is ergodic in blocks, and
for any D > Dr(xii)n we construct sets Cy, satisfying (¢) and (i4¢) with R;(D) in place of R(D). In
the second step (still assuming P is ergodic in blocks), for each D > Dpin we construct sets Cy,
satisfying (i) and (éi7). In Step 3 we drop the assumption of the ergodicity in blocks, and for
any D > Dp, we construct sets C), satisfying (z) and (47).

5.1 Step 1:

Let P and D > DY be fixed, and let an arbitrary ¢ > 0 be given. By Lemma 3 we can choose

min
a D' € (Dmin, D) such that Ry(D’) < R1(D)+¢/8 and a probability measure @* on (A, A) such
that

I + L* £ 1,(P,,Q*, D) + Eg[log M(Y)] < Ry(D) + ¢/8 < Ry(D) + ¢/4. (22)
Also we can pick a W* € M;(P, @*, D’) such that
HW*|PxQ") < I* +¢/4. (23)
As in the proof of Theorem 2, for n > 1, write Q% for the product measure (Q*)", and define

- 1
n= Ayt e Ar 0 25 log M(y:) < L* .
H {yleA nZog () <L +e/4}

i=1

Let Q,, be the measure Q* conditioned on My, Qn(F) = Q4(F N'Hp)/Q%(Hy), for F e A™
For each n > 1, let {Y (i) = (Y1(4), Y2(3),...,Yn(d)) ; 4 > 1} be IID random vectors Y (i) ~ Qn,
and define

Cp={Y(E) : 1<i< ™/

By the definition of H,, any y? € G, has M™(y}) < eML™+¢/4) 50 by (22)
Mn(cn) < en(I"‘+e/2)en(L*+e/4) < en(R1(D)+e)
and (i) of the Theorem is satisfied with R;(D) in place of R(D). Let X{* be a random vector

with distribution P,, and, as in the proof of Theorem 2, let %,, be the index of the first Y (¢) that
matches X7 within p,-distance D. To verify (¢4} we will show that

in < e™I"F/2)  eventually, PxQ — a.s.

where Q = Hn21(én)N, and this will follow from the following two statements:

lim sup 1 log [z’n Qn(B(XP, D))] <0 PxQ-as. (24)
n—oo T
lim inf % log On(B(XT, D)) > —(I" + ¢/4) P—as. (25)
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The proof of (24) is exactly the same as the proof of (13) in the proof of Theorem 2. To prove
(25), first note that by the law of large numbers Q% (H,) — 1, as n — o0, so (25) is equivalent
to

1
lim inf p log@Qr (B(XT,D)NHyp) 2 —~(I*+€/4) P—as. (26)
n—oo
Let Y1,Y5,... be IID random variables with common distribution Q*. For any realization z9°

of P, define the random vectors &; and Z, by

1 n
4=

Also let Ap(A) be the log-moment generating function of Zy,
An(X) =1og B [e®Zm)] | X = (A, do) € R,

where (-,-) denotes the usual inner product in R2. Then for P-almost any z$°, by the ergodic
theorem,

1 1 n

—_— — — Ei: ()‘)g’t)

nAn(n)\) - log £ [e 1 ]
_ 1 S A1 p(@i,Y)+Aa log M(Y)
= - ;—1 log Eg+ [e }

~ Ep, {1og Eg- [em(xﬂﬂz log M <Y>] } (27)

where X and Y above are independent random variables with distributions P, and Q*, respec-
tively. Next we will need the following lemma. Its proof is a simple application of the dominated
convergence theorem, using the boundedness of p and log M.

LEMMA 4. For k > 1 and probability measures u and v on (A¥, A¥) and (A, AF), respec-
tively, define

Ao = 18] [ [osw (raputatioh) + g los a4 5 ) | o) } dutah,

for A = (A1, \2) € R%2. Then A, , is convez, finite, and differentiable for all A € R2.
Hy

.From Lemma 4 we have that the limiting expression in (27), which equals Ap, g-, is finite
and differentiable everywhere. Therefore we can apply the Gartner-Ellis theorem (Theorem 2.3.6
in Dembo and Zeitouni [?]) to the sequence of random vectors Z,, along P-almost any z9°, to
get

A . 1 * n 1 . 1 s * __
llTILIi)golf p log Q;, (B(zT,D) NHy) = h,{ll&lf p logPr(Z, € F) > zuelf?A (2) P—as. (28)
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where F = {z = (21,22) € R? : 21 < D, 22 < L* + ¢/4} and

Ap, o+ (2) = sup[(A,z2) — Ap g+ (N)]
AER?

is the Fenchel-Legendre transform of Ap, g«(A). Recall our choice of W* in (23). Then for any
bounded measurable function ¢ : A — R and any fixed z € A,

HW*(12)Q*()) > / $(y)dW™(y]z) — log / S dQ* ()

(see, e.g., Lemma 6.2.13 in Dembo and Zeitouni [?]). Fixing z € A and A € R? for a moment,
take ¢(y) = A\1p(x,y) + A2 log M (y), and integrate both sides dPy(z) to get

HW|PixQ") 2 MEw=(p) + Mo Eg-[log M(Y)] — Ap; o+ (A)-
Taking the supremum over all A € R? and recalling (23) this becomes
I +e/4> HW*|PLxQ") > Ap, o+ (D", L7)
where D* = [ pdW* < D' < D, so
I"+e/d> zilelg‘A*th* (2).

Combining this with the bound (28) yields (26) as required, and completes the proof of this
step.

5.2 Step 2:

Let P and D > Dy, be fixed, and an arbitrary € > 0 be given. By Lemma 3 we can pick k > 1
large enough so that D® < D and (1/k)R(D) < R(D) + ¢/8. This step consists of essentially

min

repeating the argument of Step 1 along blocks of length k. Choose a D' € (Dfr'fi)n, D) such that
1 1
ERk(D,) < £ Bi(D) +¢/16, (29)

and a probability measure QF on (flk,/ik) achieving

N

Ie(Pe, QL D) + %EQ; llog M¥ (V)] < —};Rk(D’), (30)
so that

If + L}, < R(D) + ¢/4. (31)
Also pick a W € Mg(Fg,Q3, D') such that

LH(W;[Pex QR < I + /4. (32)
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For any n > 1 write n = mk + r for integers m > 0 and 0 < r < k, and define

Hup = {y?eﬁn : ZlogM yz)<Lk+€/4}

z—l

Write Q;’k for the measure

II Qz} x [Q%lr,

i=1

where [Q], denotes the restriction of @ to (AT .AT), and let Qn k. be the measure @}, , condi-
tioned on Hy k. For each n > 1, let {Y(¢) = (Y1(4),Y2(4),...,Yn(4)) ; i > 1} be IID random
vectors Y (2) ~ @n, and let C,, consist of the first e®Ti+¢/2) of them. As before, by the definitions
of Hyx and Cy, and using (31), it easily follows that

%log M™C,) < R(D) + ¢

so (1) of the Theorem is satisfied. Let Y1,Ys,...,Y, be distributed according to Q:‘L,k’ and note
that the random vectors ch_tl)k are [ID with distribution @}, (fori =0,1,...,m—1). Therefore,

as n — 00, by the law of large numbers we have that with probability 1:

L
N (33)

1 m k
SS ogM) < (T = Z log M*(Y}))
i=1
Following the same steps as before, to verify (ii¢) it suffices to show that
1 -~
lim inf —T—L-log Qnip(B(XT,D)) > —(I; +€¢/4) P—as.
n—Cco

and, in view of (33), this reduces to

1
lim inf = log Qn i (B(XT,D)NHng) 2 —(If +¢/4) P-as. (34)
For an arbitrary realization z$° from P and with Y as above, consider blocks of length k. For
1=0,1,...,m— 1, we write
}"}(k) . Y(i+1)k and :E( Yy (H-l)k

i T Tik+1 'Lk+1

so that the probability Qy, ; (B(XT, D) N'Hy) can be written as

n

N mk
Qn,k{< ) ZP (Y(ka 1k))+ pT(Yn 10T g r+1) <D .

mk i & "
and <7>E1_20k1 Mk(Y( ))—}- logM(Y T+1)<Lk+e/4}
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Since we assume p(z,y) < Pmax and |log M(y)| < Lyax forallz € A, y € A, then for all n large
enough (uniformly in z5°) the above probability is bounded below by

om ] 12 50 ) 1351 N
(@) {h—;pkm ,%;Y) < D' +¢/8 and gg—,;logM(Yi )< Li+e¢/85.

Now we are in the same situation as in the previous step, with the IID random variables T’i(k) in
place of the Y;, the ergodic process {)?fk)} in place of {X;}, and D'+¢/8 in place of D. Repeating
the same argument as in Step 1 and invoking Lemma 4 and the Gértner-Ellis theorem,

1
lim inf - log Q, . (B(XT, D) NHyg) > — Af(z1,22) P—as. (35)

inf
21<D'+¢€/8, z2<L}+¢/8
where, in the notation of Lemma 4, Aj(2) is the Fenchel-Legendre transform of Ap, qr(}).
Recall our choice of W} in (32) and write D} = [ ppdW < D’. Then by an application of
Lemma 6.2.13 from Dembo and Zeitouni [?] together with (32) we get that

£3 1 * * * * *
I +e/4> '];H(Wk | Pex Q%) > Ap(D*, L),

and this together with (35) proves (34), concluding this step.

5.3 Step 3:

In this part we invoke the ergodic decomposition theorem to remove the assumption that P is
ergodic in blocks. Although somewhat more delicate, the following argument is very similar to
Berger’s proof of the abstract coding theorem; see pp. 278-281 in Berger [?].

As in Step 2, let P and D > Dy, be fixed, and let an € > 0 be given. Pick & > 1 large
enough so that Dr(fi)n < D and $Ry(D) < R(D) + ¢/8, and pick D' € (Dgci)n, D) such that (29)
holds. Also choose Qf and W as in Step 2 so that (30), (31) and (32) all hold.

Let Q = (AF)N, F = (AF)N, and note that there is a natural 1-1 correspondence between

sets in F € AN and sets in F € (A¥)N: Writing 7; = xz(g_ll)k,

F={FP : z° € F}. (36)
Let u be the stationary measure on (£, F) describing the distribution of the “blocked” process
{)?z =X fg_i)k ; 1 > 0}, where, since k is fixed throughout the rest of the proof, we have dropped

the superscript in X i(k). Although p may not be ergodic, from the ergodic decomposition theorem
we get the following information (see pp. 278-279 in Berger [?]).
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LEMMA 5. There is an integer k' dividing k, and probability measures y;, i =0,1,...,k' — 1
on (Q,F) with the following properties:

() n= (/)T

(i1} Each u; is stationary and ergodic.

(i41) For each i, let P®) denote the measure on (AN, AN) induced by p; (in the notation of
(36)):

PO(F) = wi(F), Fe AV

Then P = (1/k") Zf/:f)l PO, and each P® is stationary in k' -blocks and ergodic in k'-blocks.

(iv) For each 0 < i < K and j > 0, the distribution that P®) induces on the process
{Xjin;n>1}is [p(i+j mod k')

For each ¢ =0,1,...,k'— 1, let u;1 denote the first-order marginal of u; and write R(D]i) =
Ry(D; ps 1, M ) for the first-order rate function of the measure u;, with respect to the distortion
measure pg, and with mass function M = M*. Since Wy chosen as above has its A¥_marginal
equal to P we can write it as W) = V' o Py where V;*(:|X]) denote the regular conditional
probability distributions. Write P,Si) for the k-dimensional marginals of the measures P(), and
define probability measures W,Ei) on (A"x A", A"x A™) by Wéi) =V oP,gi). Let D; = [ pg de(i)
so that by Lemma 5 (ii3),

k-1

1

o > D= /p,c AWy < D' (37)
=0

Similarly, writing Qg) for the flk—marginal of W,gi) and applying Lemma 5 (i4¢),

k'—1
1 : *
7> [Toedrt ) daf v = [ 1og M*(uk) aQitel) (38)
=0
and using the convexity of mutual information from Lemma 3 (iv),
= o '
7 o HWIIPD Q) < HWE | PoxQp). (39)
i=0

For N > 1 large enough we can use result of Step 1 to get N-dimensional sets B; that almost-
cover (Ak)N with respect to u;. Specifically, consider IV large enough so that

max{pmax; Lmaxa 1

| )
= < min{e/8, (D — D')/2}). (40)

For any such N, by the result of Step 1 we can choose sets B; C (flk)N such that, for each i,

i (1B, )
M" (B;)

Y

1—en, whereey — 0as N — oo, and (41)

exp{ N (R(Di]i) + ¢/8)}. (42)

A
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Now choose and fix an arbitrary y* € A, and for n = K/ (Nk + 1) define new sets B} C A" by

k' —1

B: = H [Bi+j mod k/ X{y*}] )
=0

where [] denotes the cartesian product. Then, by (40), for any =7,

p-p 1k i(kN+1)+kN
pn(27, BY) < 9 + 7 Z PEN (x;(kN+1)+1 aBi—i-jmodk’) )
=0

so by a simple union bound,

() k-1

. a " ,
P& ([B;]D) 2 1- Z [1 — plitimodk ) ([Bi+jmodk']n)]
=0
o o, R
@ -y [r-m(Bis,) |
j=0
Q1 Wen, (43)

where we used (37) in (a), Lemma 5 (iv) in (b), and (41) in (c). Also, using the definition of B}
and the bounds (40) and (42),

-1
1 o logM(YY) | 1 1.
~log M"(B}) < g M(T) | Ly |:—‘10gMN(Bi+jmodk’)]

= ThN+1 T &< kN
151
< st 3 [ZEROD) )
=0

but from the definition of R(D|j) and (39) and (38) this is

k-1
1 . 1 1 N A1 ;
~log M™(B]) < /At > [EH(WAS”MP,S” <)+ ¢ [ log M) aQf wh)
.\ =0
< LI+ Li+e/2
< R(D)+ 3¢/4, (44)

where the last inequality follows from (31). So in (43) and (44) we have shown that, for all
i=0,1,... K -1,

PO ([Bf],) > 1-—k'ey and (45)
%1ogM"(B;”) < R(D) +3¢/d. (46)




Finally we define sets C,, C A" by

;From the last two bounds above and (40), the sets Cp, have

log &'/
n

%log M™C,) < 8% | R(D)+3¢/4 < R(D) + ¢,

and by Lemma 5 (4it),

k-1 k-1
1 , 1 .
P ([Cnlp) = o Z Pl (ICnlp) 2 W Z P (Bflp) 2 1—e,
where €, = k'ey when n=k'(Nk+1).
In short, we have shown that for any D > Dpy, and any € > 0, there exist (fixed) integers
k, k' and Ny such that:

There is a sequence of sets Cp,, for n = k'(Nk + 1), N > Ny, satisfying:
(+) (1/n)log M™(Cyr) < R(D) +¢€ for all n, and
P, ([Cn]p) — 1 asn — oo.

Since this is essentially an asymptotic result, the restrictions that N > Np and n be of the form
n = k'(Nk + 1) are inessential. Therefore they can be easily dropped to give (+) for alln > 1,
that is, to produce a sequence of sets {C, ; n > 1} satisfying (¢) and (it) of Theorem 4. O
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Appendix

Proof of Remark 1: In view of part (i) of Theorem 2 and the remark that P" ([Cy],) — 1,
for every m > 1 we can choose a sequence of sets {C,(Lm) ; n > 1} such that

%logM”(C’,(Lm)) < R(D)+ —175, for all m,n > 1, and
P ([C5™),)

where N(m) is some fixed sequence of integers, strictly increasing to oo as m — oo. So for
each n > 1 there is a unique m = m(n) such that N(m) < n < N(m + 1). Since {N(m)} is
strictly increasing, the sequence {m(n)} is nondecreasing and m(n) — oo as n — co. Define
Cp = m ™) for all n > 1. ;From the last two bounds,

v

1—%, for all m > 1, n > N(m),

1 - 1
—Z < —_— >
- log M™(C;) < R(D)+ )’ for allm > 1, and
1
n * > — > .
P*([Crlp) = )’ for all n > N(m(n))

But since n is always n > N(m(n)) by definition, and m(n) — oo as n — oo, this proves (¢')
and (#1'). Also, since p is bounded, (i%') immediately follows from (7). O

Proof outline of Lemma 1: For part (¢) it suffices to consider the case I(P,Q, D) < o0, so we
may assume that the set M(P, @, D) is nonempty. Since the marginals of any W € M(P, @, D)
are P and Q, W is absolutely continuous with respect to Px @, so H(W||P x Q) is continuous
over W € M(P,Q, D). Since the sets M(P,Q, D) are compact (in the Euclidean topology),
the infimum in (8) must be achieved. A similar argument works for R(D): Combining the two
infima in its definition,

R(D) = We}fll(fp,p) {HW|Wx xWy) + Ew, [log M(Y)]}, (47)
where M(P, D) = UgM(P,Q, D). Since the sets M(P, D) are compact, the infimum in (47) is
achieved by some W* € M(P, D), and Q* = W5 achieves the infimum in (9).

For part (i%) recall the assumption that for all a € A there is b = b(a) such that p(a,b) = 0.
If we let W(a,b) = P(a)lp—p(a)}, then W € M(P, D) for any D > 0 and from (47), R(D) <
Ew,logM(Y)] < oo for all D > 0. Since the sets M(P, D) are increasing in D, R(D) is
nonincreasing. To see that it is convex, let W € M(P,D;) and W' € M(P,D;) arbitrary.
Given A € [0,1] let N =1 — )\, and write V = AW + XW'. Then V € M(P,AD;1 + X' D3) and
the Y-marginal of V, Vy, is AWy + X'Wy,. Recalling (47) and that relative entropy is jointly
convex in its two arguments,

R(AD; + X' Dy)
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< H(V||Vx xVy) + Ev, [log M(Y)]
< MHEW [Wx xWy) + Ew, [log M(Y)]} + X {HW'|[Wk xW3) + By log M(Y)] }

Taking the infimum over all W € M(P, Dy), W' € M(P, D3), and using (47) shows that R(D)
is convex, and since it is finite for all D > 0 it is also continuous.

The proof of (iii) is essentially identical to that of (ii), using the definition (8) in place of
(47). The only difference is that I(P,Q, D) can be infinite, so its convexity (and the fact that
it is nonincreasing) imply that it is continuous for D > 0 except possibly at D = inf{D >0 :
I(P,Q,D) < o0}.

Part (iv) is a well-known information theoretic fact; see, e.g., Lemma 9.4.2 in Gray [?].

For part (v) let W* achieve the infimum in (47). Since relative entropy is nonnegative we
always have R(D) > Rpin, with equality if and only if W3 is supported on the set A’ = {y €

A : log M(y) = Rmin} and W* = W5 x Wy Clearly, these two conditions are satisfied if and
‘ only if
D > inf{Epy[p(X,Y)] : Q supported on A'},

but the right hand side above is exactly equal to Dpyax. ]

Proof of Lemma 2: If «; = 0 then, as discussed in the proof of Theorem 2, F;(e;) = {d,,} for
all €; and
H(3,,]|Q") = ~1og Q" (ai) < —log P(a;) < oo.

If «; > 0 then there must exist a b* € A, b* # a;, such that W*(b*|a;) > 0. Write dmax for the
maximum of Y, W*(bla;)p(a;j,b) over all j = 1,...,m, and let ppin = min{p(a,b) : a # b}.
For o € (0,1), let

W*(aila;) +a ifb=a;
Qi(b) = { W*(b*|a;) —a ifb=0b*
W*(bla;) otherwise.

Then, for €; small enough to make (6 — €1)Pmin > €1dmax(1 + €1), it is an elementary calculation
to verify that Q; € Fi(e1) and H(Q;||Q*) < oo, as long as « satisfies the following conditions:

a < 1—W*(ai[ai)
a < W*(b%a;)

Qdmax _ o o 0@
Pmin 1+e
Taking W(a;,b) = Q;(b)P(a;) we also have W € F(e1). O

Proof of Lemma 3: Since the sets My, (P, Qy, D) are increasing in D, R, (D) is nonincreasing
in D. Next we claim that relative entropy is jointly convex in its two arguments. Let u, v be two
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probability measures over a Polish space (S,S). In the case when p and v both consist of only
a finite number of atoms, the joint convexity of H(u|lv) is well-known (see, e.g., Theorem 2.7.2
in Cover and Thomas [?]). In general, H(u|v) can be written as

E;
H(ul) = sup S ) o

where the supremum is over all finite measurable partitions of S (see Theorem 2.4.1 in Pinsker
[?]). Therefore H(u|lv) is the pointwise supremum of convex functions, hence itself convex. As
in (47), combining the two infima, R, (D) can equivalently be written as

R(D)=, int . {HWall W xWay) + Eiw, llog M" (V)] } (48)

where My (Py, D) = Ug, Mn(Pn, Qn, D). Using this together with the joint convexity of relative
entropy as in the proof of Lemma 1 (i) shows that R, (D) is convex. Since it is also nonincreasing
and bounded away from —oo, R,(D) is also continuous at all D except possibly at the point

D™ = inf{D >0 : Rn(D) < +o0}.

min
This proves (z). For (i) notice that if R(D) exists then it must also be nonincreasing and convex
in D > 0 since R, (D) is; therefore, it must also be continuous except possibly at Dyin.
For part (ii1), let m,n > 1 arbitrary, and let Wy, € Mpy (P, D) and W, € My (P, D).
Define a probability measure Wipn on (A" x A%, A” x A™) by

Wonbn (d2T47, dyT ™) = Wen(dyP |27 Wa Ay 1T o 1) P(da ™).

Notice that Winin € Mmyn(Pmtn, D), and that, if (X", Y*™™) are random vectors dis-
tributed according to Wp,4r, then Y™ and YWT_Iﬂ" are conditionally independent given X"*".

Therefore,

(a
Rm+n (D) < H(Wm—i-n “Wm+n,X X Wm+n,Y) + EWm+n,Y [log Mm+n(Y1m+n)]

— I(x{n+n; Y1m+n) + EWm+n,Y [log Mm—i—n(Ylm+n)]

®)
< IXTSY) + IEXT Yoit') + Ewy, y log M™ (YT™)] + Ew,, o [log M™(Y{")]

~

where (a) follows from (48) and (b) follows from the conditional independence of Y™ and Y, i
given X" (see, e.g., Lemma 9.4.2 in Gray [?]). So we have shown that Ry, (D) is bounded
above by

H(Wn||Win,x X Winy) + Ew,, , log M™(Y{")] + H(Wn Wy, x xWny) + Ew, y [log M™(¥71")],
and taking the infimum over all Wy, € My, (P, D) and W,, € My (P,, D) yields

Rin(D) < Bp(D) + Ru(D). (49)
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[Note that in the above argument we implicitly assumed that we could find W,,, € My, (P, D)
and W, € My (P,, D); if this was not the case, then either R, (D) or R,(D) would be equal
to +00, and (49) would still trivially hold.] Therefore the sequence {R,(D)} is subadditive and
it follo(w)s that lim,(1/n)R,(D) = inf,(1/n)R,(D). (From this it is immediate that Dmin =
inf, Dr:in.

Part (iv) is a well-known information theoretic fact; see, e.g., Problem 7.4 in Berger [?]. O
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