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A PARTIAL INTRODUCTION TO FINANCE

PHiLiP PROTTER

ABSTRACT. We present an introduction to mathematical Finance Theory for math-
ematicians. The approach is to start with an abstract setting and then introduce
hypotheses as needed to develop the theory. We present the basics of European call
and put options, and we show the connection between American put options and
backwards stochastic differential equations.

I. Introduction.

We will discuss the modeling of the stock market or more generally “securities”,
as well as the modeling of interest rates. We will be primarily interested in Financial
Derivatives: that is, random variables (representing “contingent claims”) that are
“derived”, or come from, the underlying security price. These claims can be thought
of as “portfolio insurance.” Indeed, Hans Biithlmann of ETH-Zurich has jokingly
characterized actuaries into three types (instead of the usual two):

(1) Life Insurance Actuaries (the first kind);
(2) Property and Casualty Actuaries (the second kind);
(3) Portfolio Insurance Actuaries (Actuaries of the Third Kind).

The three kinds of Actuarial Science use different (albeit overlapping) proba-
bilistic theories. The first kind uses classical probability theory, going back to
J. Bernoulli and Ch. Huygens (see [S]| for a nice history of classical probability
through 1827, the year of the death of Laplace). The second kind involves the Ruin
Theory of Cramer-Lundberg and its extensions (this uses martingale theory as well
as Large Deviations; see the excellent new book [EKM]). The third kind of insur-
ance — that which interests us here — uses the theory of stochastic integration
(“It6 calculus”).

II. Introduction to Options and Arbitrage.

Let X = (X;)o<t<T represent the price process of a risky asset (e.g., the price of
a stock, a commodity such as “pork bellies,” a currency exchange rate, etc.). The
present is often thought of as time ¢ = 0; one is interested in the price at time T in
the future which is unknown, and thus Xz constitutes a “risk”. (For example, if an
American company contracts at time ¢ = 0 to deliver machine parts to Germany
at time T', then the unknown price of Euros at time T (in dollars) constitutes a
risk for that company.) In order to reduce this risk, one uses “ options”: one can
purchase — at time £ = 0 — the right to buy Euros at a maximum price at time
T. This is one example of an option, called a call option.
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2 PHILIP PROTTER

A call option with strike price K at time 7' can be represented mathematically

H(w) = (Xr(w) - K)*

where 7 = max(z,0). Analogously a put option with strike price K at time T is
H(w) = (K — Xr(w))™,

and this corresponds to the right to sell the security at a minimum price K at time
T.

These are two simple examples, often called European call options and
European put options. They are clearly related, and we have

Xr—K=(Xr—K)* - (K - Xp)*.

We can also use these two simple options as building blocks for more complicated

ones. For example if
H =max(K, Xr)

then
H:XT+(K—XT)+=K+(XT—K)+.

More generally if f: R, — Ry is convex we can use the well known representation

W f@) = 10+ 1,0+ [ " (@ — y)* uldy)

where f’, () is the right continuous version of the derivative of f, and p is a measure
on R with g = f”, where the derivative is in the generalized function sense. In this

case if
H = f(XT)

is our contingent claim, then H is a mixture of European call options, using (1):
o0
H = £(0) + f4(0)Xr + / (X7 — K)* p(dK).
0

Another standard type of option is an American option. For the options discussed
so far, the contingent claim is a random variable of the form H = f(Xr), that is,
a function of the value of X at one fixed and prescribed time 7. One can also
consider options of the form

H=F(X)r
=F(Xs;0<s<T)

which are functionals of the paths of X. For example if X has cadlag paths (cadlag
is a French acronym for “right continuous with left limits”) then F: D — R, , where
D is the space of functions z: [0, T] — R, which are right continuous with left limits.
An American option is a simple example of such an option. An American call option
allows the holder to buy the security at a striking price K not only at time 7" (as
is the case for a European call option), but at any time between times ¢ = 0 and
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time T'. Deciding when to exercise such an option is complicated. A strategy for
exercising an American option can be represented mathematically by a stopping
rule 7. (That is, if (F;)s>0 is the underlying filtration of X then {7 < ¢} € F; for
each t, 0 <t < T.) For a given 7, the claim is then

H(w) = (Xry (@) — K)*.
We now turn to the pricing of options. Let H be a random variable in Fp

representing a contingent claim. Let V; be its value (or price) at time ¢. What then
is Vp?

iFrom a traditional point of view, classical probability tells us that
(2) Vo = E{H}.

One could discount for the time value of money (inflation) and assuming a fixed
interest rate r one would have

) vo—5{ 2}

1+r

instead of (2). For simplicity we will take » = 0 and then show why the obvious
price given in (2) does not work (!). For simplicity we consider a binary example.
At time t = 0, 1 Euro = $1.15. We assume at time ¢ = T the Euro will be worth
either $0.75 or $1.45; the probability it goes up to $1.45 is p and the probability it

goes down is 1 — p.
$

1.45

$1.15

0.75

t=0 t=1

Let the option have exercise price K =$1.15, for a European call. That is,
H = (X7r—%1.15)", where X = (X;)o<t<r is the price of one Euro in U.S. dollars.
The Huygens—Bernoulli price of H is then

E{H} = (1.45 — 1.15)p = (0.30)p.
For example if p = 1/2 we get V5 = 0.15.

The Black-Scholes method! to calculate the option price however is quite dif-
ferent. We first replace p with a new probability p* that makes the security price

1The “Black-Scholes method” dates back to the fundamental and seminal article [BS] of 1973,
where partial differential equations were used; the ideas implicit in that (and subsequent) articles
are now referred to as the Black-Scholes methods. M. S. Scholes and R. Merton received the Nobel
prize in economics for [BS] and related work (F. Black died prematurely and was not able to share
in the prize.)
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X = (Xi)t=o,r a martingale. Since this is a two step process, we need only to
choose p* so that X has constant expectation. Since Xo = 1.15, we need

E*{Xr} = 1.45p* + (1 — p*)0.75 = 1.15.

Solving for p* gives
pt=4/7.

We get now

6
(4) Vo = E*{H} =(0.30)p* = 3 = 0.17.
The change from p to p* seems arbitrary. But there is an economics argument to
justify it; this is where the economics concept of the absence of arbitrage opportu-
nities changes the usual intuition dating back to the 16th and 17th centuries.

Suppose for example at time ¢ = 0 you sell the option, giving the buyer of the
option the right to purchase 1 Euro at time T for $1.15. He then gives you the
price w(H) of the option. Again we assume r = 0, so there is no cost to borrow
money. You can then follow a strategy to prepare for the contingent claim you sold,
as follows (calculations are to two decimal places):

Action at time ¢t =0 Result

Sell the option at price w(H) +7(H)
9

Borrow $ %8 4-$0.32

Buy ; Euros at $1.15 —0.49

The balance at time ¢ = 0 is #(H) — 0.17
At time T there are two possibilities:

(i) The Euro has risen:

Option is exercised —0.30
Sell ; Euros at 1.45 4-0.62
Pay back loan —0.32

0

(ii) The Euro has fallen:

Option is worthless 0
Sell g Euros at 0.75 +0.32
Pay back loan —0.32

0

Since the balance at time T is zero in both cases, we should have the balance at
time 0 also be 0; therefore we must have w(H) = 0.17. Indeed any price other than
w(H) = 0.17 would allow either the option seller or buyer to make a sure profit
without any risk: this is called an arbitrage opportunity in economics, and it is a
standard assumption that such opportunities do not exist. (Of course if they were
to exist, market forces would quickly eliminate them.)
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Thus we see that — at least in the case of this simple example — that the “no
arbitrage price” of the contingent claim H is not E{H }, but rather must be E*{H},
since otherwise there would be an opportunity to make a profit without taking any
risk. We emphasize that this is contrary to our standard intuition, since P is the
probability measure governing the true laws of chance of the security, while P* is
an artificial construct.

This simple binary example can do more than illustrate the idea of using lack
of arbitrage to determine to a price. We can also use it to approximate some
continuous models. We let the time interval become small (At), and we let the
binomial model already described become a recombinant tree, which moves up or
down to a neighboring node at each time “tick” At. By taking Af small enough,
for a time “tick” of interest of length say §, we can have the price go to 2™ possible
values for a given n, by choosing At small enough. Thus for example if a continuous
time process follows Geometric Brownian motion:

dSt = O'StdBt + ,U,Stdt

(as is often assumed in practice), then if the security price process S has value
St = s, then it will move up or down at the next tick At to

sexp(uAt + oV At) if up
sexp(uAt — oV At)  if down

with p being the probability of going up or down (here take p = %) Thus for a
time ¢, if n = %, we get

2X,—n
S; = Sp exp (,ut—l—cr\/i <T)) )

where X,, counts the number of jumps up. Next using the absence of arbitrage one
changes p from % to p*, getting p* approximately equal to

)

o

III1. Basic Definitions.

A. The Price Process.

We let S = (S;)¢>0 be a semimartingale® which will be the price process of a
risky security. A trading strategy is a predictable process H = (Hz);>0; its economic
interpretation is that at time ¢ one holds an amount H; of the asset. Often one
has in concrete situations that H is continuous or at least cadlag or caglad (left
continuous with right limits). (Indeed, it is difficult to imagine a practical trading

*One definition of a semimartingale is a process S that has a decomposition S = M + A, with
M alocal martingale and A an adapted process with cadlag paths of finite variation on compacts.
See [P] for all information regarding semimartingales.
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strategy with pathological path irregularities.) In the case H is adapted and caglad,
then

n—o0
t;€wm[0,t]

t
(1) / HydS, = lm Y H,A;S
0

where 70, ¢] is a sequence of partitions of [0, ¢] with mesh tending to 0 as n — oo;
A;S = 8S;, ., — S;; and with convergence in u.c.p. (uniform in time on compacts
and converging in probability). Thus inspired by (1) we let

t
G, = H.,dS;
0+

and G is called the (financial) gain process generated by H.

B. Interest Rates.

Let r be a fixed rate of interest. If one invests D dollars at rate r for one year,
at the end of the year one has D + rD = D(1 + r). If interest is paid at n evenly
spaced times during the year and compounded, then at the end of the year one

n
has D(l + I) . This leads us to the notion of an interest rate r compounded
n
continuously:
n
lim D(l + 1) = De"
n—o0 n

or, for a fraction ¢ of the year, one has $§ De™ after ¢ units of time for an interest
rate r compounded continuously. We define

R(t) = De™,
then R satisfies the ODE (ODE abbreviates Ordinary Differential Equation)
(2) dR(t) = rR(t)dt; R(0)=D.

Using the ODE(2) as a basis for interest rates, one can treat a variable interest rate
7r(t) as follows: (r(¢) can be random: that is 7(t) = r(t,w)):
(3) dR(t) =r(t)R(t)dt; R(0)=D

¢

and solving yields R(t) = Dexp ( / r(s)ds). We think of the interest rate process
0

R(t) as the price of a risk—free bond.
C. Portfolios.

We will assume as given a risky asset with price process S and a risk—free bond
with price process R. Let (a):>0 and (by)i>0 be our ¢rading strategies for the
security and the bond, respectively.

We call our holdings of S and R our portfolio.
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Definition. The value at time t of a portfolio (a,b) is:

(4) Vt(a, b) = atSt -+ bth.

Now we have our first problem. Later we will want to change probabilities so
that V' = (Vi(a,d))s>0 is a martingale. One usually takes the right continuous
versions of martingales, so we will want the right side of (4) to be at least cadlag.
Typically this is not a real problem. Even if the process a has no regularity, one
can always choose b in such a way that V;(a,b) is cadlag.

Let us next define two sigma algebras on the product space Ry x 2. We recall we
are given an underlying probability space (2, F, (F¢)¢>0, P). We assume Fs C Fy

if s < t; Fo contains all the P-null sets of F; and also that (| Fs; = Fip = F; by
s>t
hypothesis. This last property is called the right continuity of the filtration. (With

these hypotheses, one knows that every martingale has a version which is cadlag,
one of the most important consequences of the hypotheses,)

Definition. Let L denote the space of left continuous processes whose paths have
right limits (caglad), and which are adapted: that is, H; € F;, for ¢ > 0. The
predictable o-algebra P on Ry x 2 is

P=o{H:Hel}.
That is P is the smallest o-algebra that makes all of . measurable.
Definition. The optional g-algebra O on R, x €2 is
O = o{H : H is cadlag and adapted}.

In general we have P C O; in the case where B = (B;)¢>, is a standard Wiener
process (or “Brownian motion”), and F? = o(By; s < t) and Fy = F2 VN where N
are the P-null sets of F, then we have O = P. In general O and P are not equal.
Indeed if they are equal, then every stopping time is predictable: that is, there are no
totally inaccessible stopping times.2 Since the jump times of (reasonable) Markov
processes are totally inaccessible, any model which contains a Markov process with
jumps (such as a Poisson Process) will have P C O.

2A totally inaccessible stopping time is a stopping time that comes with no advance warning:
it is a complete surprise. A stopping time T is totally inaccessible if whenever there exists a

[o o]
sequence of non-decreasing stopping times (Sn)n>1 with A = [ {Sn < T}, then
- n=1

P({w:limS, =T}NA)=0.

A stopping time T is predictable if there exists a non-decreasing sequence of stopping times (Sn)n>1
as above with
P{w:limS, =T}NA)=1.

Note that the probabilities above need not be only 0 or 1; thus there are in general stopping times
which are neither predictable nor totally inaccessible.
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The predictable o-algebra P is important because it is the natural o-field for
which stochastic integrals are defined. In the special case of Brownian motion one
can use the optional o-algebra (since they are the same). There is a third o-algebra
which is often used, known as the progressively measurable sets, and denoted .
One has, in general, that P C O C 7; however in practice one gains very little by
assuming a process is w-measurable instead of optional, if - as is the case here —
one assumes that the filtration (F:):;>o is right continuous (that is Fy = F, all
t > 0). The reason is that the primary use of 7 is to show that adapted, right
continuous processes are m-measurable; but they are already optional if (F;)¢>¢ is
right continuous. Thus there are essentially no “naturally occuring” examples of
progressively measurable processes that are not already optional. An example of
such a process, however, is the indicator function 1g(t), where G is described as
follows: let Z = {(t,w) : Bi(w) = 0}. (B is standard Brownian motion.) Then Z is
a perfect (and closed) set on Ry for almost all w. For fixed w, the complement is
an open set and hence a countable union of open intervals. G(w) denotes the left
end-points of these open intervals. One can then show (using the Markov property
of B and P. A. Meyer’s section theorems) that G is progressively measurable but
not optional, In this case note that 1g(t) is zero except for countably many ¢ for

each w, hence /1g(s)dBS = 0.

t
Finally we note that if a = (as)s>0 is progressively measurable, then / asdBs =
0

t B
/ a,dB,, where a is the predictable projection of a.3
0

Let us now recall a few details of stochastic integration. Let S be a (cadlag)
semimartingale, and let H be cadlag and adapted, or alternatively H € L. Let
H_ = (H;_)s>0 denote the left continuous version of H. (If H € L, then of
course H = H_.) Let n™[0,t] be a sequence of finite partitions of [0,¢] with
lim mesh(n™) = 0. We then have:

n—ro0

Theorem. H cddlig, adapted or H € L. Then

t
nli—)rgo Z Hti(StiH - Sti) :/0 H, _dS;,
t;€nn[0,t]

with convergence uniform in s on [0,t] in probability.
We remark that it is crucial that we sample H at the left endpoint of the interval

[t;,tiy+1]. Were we to sample at, say, the right endpoint or the midpoint, then the
sums would not converge in general (they converge for example if the quadratic

3Let H be a bounded, measurable process. (H need not be adapted.) The predictable projection
of H is the unique predictable process H such that

Hr = E{H|Fr_} as.on {T < oo}

for all predictable stopping times T. Here Fr— = o{AN{t < T}; A € Ft} V Fo. For a proof of
the existence and uniqueness of H see [P, p.119].
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covariation process [H,S] exists); in cases where they do converge, the limit is in
general different. Thus while the above theorem gives a pleasing “limit as Riemann
sums” interpretation to a stochastic integral, it is not at all a perfect analogy.

The basic idea of Theorem 1 can be extended to bounded predictable processes
in a method analogous to the definition of the Lebesgue integral for real-valued
functions. Note that

t
Z Hy, (Sti+1 - Stz) = / HgdS,
t;€nn[0,t] O+

where H® = > Hy 1, +,,) which is in I; thus these “simple” processes are the
building blocks, and since o (L) = P, it is unreasonable to expect to go beyond P
when defining the stochastic integral.

There is, of course, a maximal space of integrable processes; without describing

it, we define:

Definition. For a semimartingale S we let L(S) denote the space of predictable
processes a, where a is integrable with respect to S.

We are now ready for a key definition.

Definition. A strategy (a,b) is called self-financing if a € L(S), b is optional and
be L(R), and

t t
(1) atSt 4+ bth = a()So -+ boRo +/ asts +/ bsts
0 0
forallt > 0,

Note that the equality (1) above implies that a.S: + b R: is cadlag. We also
remark that it is reasonable that a be predictable: a is the trader’s holdings at
time ¢, and this is based on information obtained at times strictly before £, but not
t itself.

We remark that we are assuming we have only one risky asset, for simplicity.

The next concept is of fundamental importance. An arbitrage opportunity is the
chance to make a profit without risk. One way to model that mathematically is as
follows: '

Definition. A model is arbitrage free if there does not exist a self-financing strat-
egy (a,b) such that Vp(a,b) =0, Vr(a,b) >0, and P(Vr(a,b) > 0) > 0.

D. Equivalent Martingale Measures.

Let S = (St)o<t<T be our risky asset price process, which we are assuming is a
semimartingale. Let
St = So+ M; + A

be the semimartingale decomposition of S; M is a local martingale and A is an
adapted cadlag process of finite variation on compacts. We are working on a fixed
and given filtered probability space (2, F, (F¢)¢>0, P).
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Definition. A model is good if there exists an equivalent** probability measure Q
such that S is a @-local martingale.

We remark that a price process S can easily not be “good”. Indeed, if Z = Z—g

and Z; = Ep{Z|F:}, then the Meyer—Girsanov theorem gives the @ decomposition
of S by:

St = (Mt _/0 Zis d[Z7M]s)

+ (Ao + /0 Zi d[Z, M],).

t
1
In order for S to be a ()—local martingale we need* to have A; = /
0
M], hence a nec-

The Kunita-Watanabe inequality implies that d[Z, M] << d[M
essary condition for a model to be good is that

dA; << d[M,M]; a.s.

Note that this implies in particular in the Brownian case that if M; = / 0:dB;,

¢
then A must of necessity be of the form A; = / vs02ds for some process 7.
0

E. The Fundamental Theorem of Asset Pricing.

In Section IT we saw that with the “No Arbitrage” assumption, at least in the
case of a very simple example, we needed to change from the “true” underlying
probability measure P, to an equivalent one P*, and the price of a contingent claim
H was not E{H} as one might expect, but rather E*{H}. The idea that led to
this price was to find a probability P* that gave the price process X a constant
expectation.

In continuous time a sufficient condition for the price process S = (S¢)¢>o0 to
have constant expectation is that it be a martingale. That is, if S is a martin-
gale then the function ¢ — E{S;} is constant. Actually this property is not far
from characterizing martingales. A classic theorem from martingale theory is the
following (cf, eg, [P]):

Theorem. Let S = (Si)i>0 be cdadlig and suppose E{S.} = E{So} for any
bounded stopping time T (and of course E{|S;|} < o). Then S is a martingale.

That is, if we require constant expectation at stopping times (instead of only at
fixed times), then S is a martingale. Thus the general idea is the following.

**Q is equivalent to P if @) and P have the same sets of probability zero.
*At least in the case of continuous paths
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Folk Theorem. Let S be a price process on a given space (Q, F, (F;)i>o0, P). Then
there is an absence of arbitrage opportunities if and only if there exists a probability
P*, equivalent to P, such that S is a martingale under P*.

Before stating a more rigorous theorem (our version is due to Delbaen and
Schachermeyer [DS]), let us examine a needed hypothesis. We need to avoid prob-
lems that arise from the classical doubling strategy. Here a player bets $1 at a
fair bet. If he wins, he stops. If he loses he next bets $2. Whenever he wins, he
stops, and his profit is $1. If he continues to lose, he continues to play, each time
doubling his bet. This strategy leads to a certain gain of $1 without risk. However
the player needs to be able to tolerate arbitrarily large losses before he might gain
his certain profit. Of course no one has such infinite resources to play such a game.
Mathematically one can eliminate this type of problem by requiring trading strate-
gies to give martingales that are bounded below by a constant. This leads to the
next definition.

Definition. Let o > 0, and let S be a semimartingale. A predictable trading
t

strategy 0 is a-admissible if 6y = 0, / 0,dS; > —a, allt > 0. 0 is called admissible

0
if there exists « > 0 such that 6 is a-admissible.

Before we make more definitions, let us recall the basic idea. Suppose 0 is
admissible, self-financing, with 8pSp = 0 and 67Sr > 0. Assume we can neglect
the bond or “numeraire” process, so that self-financing reduces to

T
O7ST = 0950 +/ 0,dS;.
0

Then if P* exists such that / 0:dS; is a martingale, we have

T
E*{QTST} =0+ E*{/ Hsts}
0

t
In general / 8sdS; is only a local martingale; if we know that it is a true martingale
0

then E*{fg 0:dSs} = 0, whence E*{07Sr} = 0, and since 757 > 0 we deduce
O7ST = 0, P* a.s., and since P* is equivalent to P, we have 0757 = 0 a. s. (dP)

as well. This implies no arbitrage exists. The technical part of this argument is
t

to show 0,dS, is a P* true martingale, and not just a local martingale. The
g g

0
converse is typically harder: that is, that no arbitrage implies P* exists. The
converse is proved using a version of the Hahn-Banach theorem.
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Following Delbaen and Schachermeyer, we make a sequence of definitions:
o0
Ko = { / 0sdSs| 0 is admissible and
0

t
lim 0,dS; exists a.s.}

t—00 0

Cy = {all functions dominated by elements of K}

=Ky — L°+, where Lg_ are positive, finite random variables.
K =KoNL>®
C=CyNL™
C = the closure of C under L.

Definition. A semimartingale price process S satisfies

(i) the No Arbitrage condition if C' N LS = {0} (this corresponds to no chance of
making a profit with risk);

(ii) the No Free Lunch with Vanishing Risk condition (NFLVR) if CNL = {0}.

Clearly condition (ii) implies condition (i). Condition (i) is slightly too restrictive
to imply the existence of an equivalent martingale measure P*. (One can construct
a trading strategy of Hy(w) = 1{[0,1)\@x} (f,w), which means one sells before each
rational time and buys back immediately after it; combining H with a specially
constructed cadlag semimartingale shows that (i) does not imply the existence of
P* - see [DS, p.511].)

Let us examine then condition (ii). If NFLVR is not satisfied then there exists
an fo € LY, fo #0, and also a sequence f, € C such that lim f, = fo a. s, such
n—00

that for each n, f, > fo— £. In particular f, > —=X. This is almost the same as an
absence of arbitrage, as the risk of the trading strategies becomes arbitrary small.

Fundamental Theorem. Let S be a bounded semimartingale. There exists an
equivalent martingale measure P* for S if and only if S satisfies NFLVR.

Proof. Let us assume we have NFLVR. Since S satisfies the no arbitrage property
we have C N LY = {0}. However one can use the property NFLVR to show C is
weak closed in L (that is, it is closed in o (L', L*)), and hence there will exist
a probability P* equivalent to P with E*{f} < 0, all f in C. (This is the Kreps-
Yan separation theorem - essentially the Hahn-Banach theorem). For each s < t,
B € Fs, a € R, we deduce a(S; — Ss)lp € C, since S is bounded. Therefore
E*{(S; — Ss)1p} =0, and S is a martingale under P*.

For the converse, note that NFLVR remains unchanged with an equivalent prob-
ability, so without loss of generality we may assume S is a Martingale under P

¢
itself. If @ is admissible, then ( / 93d53> is a local martingale, hence it is a su-
0 £>0

permartingale. Since E{0ySp} = 0, we have as well E{/ 0:dSs} < E{0:S0} = 0.
0
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This implies that for any f € C, we have E{f} < 0. Therefore it is true as well for
f € C, the closure of C' in L*™. Thus we conclude C N LY = {0}. O

Corollary. Let S be a locally bounded semimartingale. There is an equivalent local
martingale measure P* for S if and only if S satisfies NFLVR.

We refer to [DS, p.479] for the proof of the corollary. Examples show that in
general P* can make S only a local martingale, not a martingale. We also note
that any semimartingale with continuous paths is locally bounded.

F. Normalizing the Bond Price.

Our Portfolio as described in II1.C consi;sts of

V}(a, b) = Cl,tSt + bth

t
where (a, b) are trading strategies, S is the risky security price, and R; = D exp( / rsds)
0

is the price of a risk-free bond. The process R is often called a numeraire. One
often takes D = 1 and then R; represents the time value of money. One can then

1 t
deflate future monetary values by multiplying by B = exp (— / Tsds). Let us
t 0

write Y; = th and we shall refer to the process Y; as a deflator. By multiplying

Sand Rby Y = %—, we can effectively reduce the situation to the case where the
price of a risk free bond is constant and equal to one. The next theorem allows us
to do that.

Theorem (Numeraire Invariance). Let (a,b) be a strategy for (S,R). Let Y =
%. Then (a,b) is self-financing for (S, R) if and only if (a,b) is self-financing for
(Y'S,1).

t t
Proof. Let Z = / a.dSs + / bsdRs. Then using integration by parts we have
0

0
(since Y is continuous and of finite variation)
d(Y:Z:) = YidZ, + Z,dY,
¢ ¢
= Y;a:dS; + YibdR, + (/ asdSs + / bsdR;)dY;
0 0

= at(Y}dSt + Std}ft) + bt(}ftht + th}ft)
= atd(YS)t + btd(YR)t

and since YR = % R =1, this is
= G:td(YS)t

since dY R = 0 because Y R is constant. Therefore

t t
atSt + bth = 0,080 + b() + / asts + / bsts
0 0
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if and only if

1 ¢ 1
atESt + b = apSo + bo +/0 asd(ES)s.

The Numeraire Invariance Theorem allows us to assume R = 1 without loss of
generality. Note that one can check as well that there is no arbitrage for (a,b) with
(S, R) if and only if there is no arbitrage for (a,b) with (% 5,1). By renormalizing,
we no longer write (% S, 1), but simply S.

G. Redundant Claims.

Let us assume given a security price process S, and as we have seen in Section

F we take R; = 1 without loss of generality. Let F? = o(S,;7 < t) and let

Fy = F2 VN where NV are the null sets of F and F = \/F?, under P, defined on
¢

(Q, F, P). Finally we take F; = (| F,;’. A contingent claim on S is then a random
u>t
variable H € Fr, for some fixed time T. One goal of Finance Theory is to show

there exists a trading strategy (a,b) that one can use either to obtain H at time T,
or to come as close as possible - in an appropriate sense - to obtaining H.

Definition. Let S be the price process of a risky security and let R be the price
process of a risk free bond (numeraire). A contingent claim H € Fr is said to be
redundant if there exists a strategy (a,b) such that

T T
H = agSo + boRo + / asdSs + / bsdR;.
0 0

1
Let us normalize S by writing M = R S, then H will still be redundant under M

and hence we have (taking Ry = 1):

T
H:a0M0+bo+/ asdM,.
0

Next note that if P* is any equivalent martingale measure making M a martin-
gale, we then have

T
E*{H} = E*{a0M0+b0}+E*{/ ades}
0

provided all expectations exist,

= E*{aoM() + bo} + 0.

Theorem. Let H be a redundant contingent claim such that there exists an equiv-
alent martingale measure P* with H € L*(M). (See the second definition following
for a definition of L*(M)). Then the no arbitrage price of H must be E*{H}.

Proof. First we note that the quantity E*{H?} is the same for every equivalent
martingale measure. Indeed if @1 and ()2 are both equivalent martingale measures,
then

T
Fo,{H} = Eo,{aoMo + bo} + Bo{ / aydM,}.
0
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T
But EQI{/ asdM;} =0, and Eg,{aoMp + bo} = aoMp + b, since we assume ayo,

0
My, and by are known at time 0 and thus without loss of generality are taken to be
constants.

Next suppose one offers a price 7 > E*{H} = agMy + bp. Then one follows the
strategy a = (as)s>0 and (we are ignoring transaction costs) at time T' one has H
to present to the purchaser of the option. One thus has a sure profit (that is, risk
free) of m — (agMp + bo) > 0. This is an arbitrage opportunity. On the other hand
if one can buy the claim H at a price 7 < agMp + bg, analogously at time T' one
will have achieved a risk-free profit of (agMo + bg) — w. O

Definition. If H is a redundant claim, then there exists (a, b) such that

T
H = agMy + by +/ asdMs;
0

the strategy a is said to replicate the claim H.

Corollary. If H is a redundant claim, then one can replicate H in a self-financing
manner with initial capital equal to E*{H}, where P* is any equivalent martingale
measure for the normalized price process M.

It is tempting to consider markets where all contingent claims are redundant.
Unfortunately this is too large a space of random variables; we wish to restrict
ourselves to claims that have good integrability properties.

Let us fix an equivalent martingale P*, so that M is a martingale (or even a
local martingale) under P*.

We need to recall some details of stochastic integration. If X is a semimartingale,
let 7™[0,t] denote a sequence of partitions of [0,¢] with li_>m mesh(n™) = 0. We
n—oo
then have
(*) lim E (th‘+1 - Xti)z = [Xa X]t

n—r00
t;exn[0,t]

with convergence in u. c. p. (uniform in s on compact time intervals, and in
probability). The process ¢ — [X, X];(w) is cadlag, adapted, and nondecreasing. If
X, Y are two semimartingales, then

1
[X,Y]: = 5{[X +Y, X +Y]: — [X, X]: — [Y, Y]}
which is a type of polarization identity. Moreover

nlgﬁlo Z (Xti+1 - Xti)(Yti+1 -Y,) =X, Y]
t;emm[0,t]

where convergence is again in u. c. p. The process [X, Y] is cadlag, adapted, and has
paths of finite variation on compacts. Since X is in general only cadlag, [X, X] will
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also be only cadlag, but since it is non-decreasing it has a path by path Lebesgue
decomposition into a continuous part and a jump part:

(**) X, X]e = [X, XJg + Y ALX, X],
s<t

where A[X, X]s = [X,X]s — [X, X]s—, the jump at time s. We observe that it
follows from (*) that
A[X, X], = (AX,)?,

hence (**) can be written

X, X[ = [X,X)— 3 (AX)
0<s<t

The process [X, X]¢ arises in It6’s formula, which for a cadlag semimartingale X
has the form:

Theorem. Let X be a semimartingale and let f be C2. Then

£06) = £X0)+ [ Fxeax+ 5 [, X
+ Z {f(Xs) - f(Xs—) - f,(Xs—)AXs}'

0<s<t

We now return to Finance. Recall P* is an equivalent local martingale mea-
sure for M. We consider all self-financing strategies (a,b) such that the pro-

i 1/2
cess ( / aZd[M, M| s) is locally integrable: that means that there exists a
0

sequence of stopping times (T,,)n>1 which can be taken T, < T4, a. s. , such
that lim T,, > T a. s. and
71— 00

Tn
E* (/ aZd[M, M]s)l/z} < 00, each Ty,. Let £L*(M) denote the class of such
0

strategies, under P*.
Definition. A market model (M, L*(M),P*) is complete if every claim H €

LY(Fr,dP*) is redundant for £*(M). That is for any H € L'(Fr,dP*), there
exists a strategy (a,b) with a € £*(M) such that

T
H=a0M0+bo+/ asdMs.
0
In essence, then, a complete market is one for which every claim is redundant.

We note that in Probability Theory a martingale M is said to have the predictable
representation property if for any H € L?(Fr) one has

T
H=E{H}+ / aydM,
0
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for some predictable a € L(M). This is of course ezactly the property of market
completeness. Martingales with predictable representation are well studied and this
theory can usefully be applied to Finance. Unfortunately having the predictable
representation property is rather delicate, and few martingales process this prop-
erty. Examples include Brownian motion, the Compensated Poisson process (but
not mixtures of the two nor even the difference of two Poisson processes), and the
Azéma martingales. (One can consult [DP] for more on the Azéma martingales.)

Most models are therefore not complete, and most practitioners believe the actual
financial world being modeled is not complete. We have the following result:

Theorem. There is a unique P* such that M is a local martingale only if the
market is complete.

This theorem is a trivial consequence of Dellacherie’s approach to Martingale
Representation: if there is a unique probability making a process M a local mar-
tingale, then M must have the martingale representation property. The theory
has been completely resolved in the work of Jacod and Yor. To give an example
of what can happen, let M? be the set of equivalent probabilities making M an
L%-martingale. Then M has the predictable representation property (and hence
market completeness) for every extremal element of M2 If M? = {P*}, only
one element, then of course P* is extremal. (See [P, p. 152]). Indeed P* is in
fact unique in the proto-typical example of Brownian motion; since many diffusions
can be constructed as pathwise functionals of Brownian motion they inherit the
completeness of the Brownian model.

Note that if H is a redundant claim, then the no arbitrage price of H is E*{H},
for any equivalent martingale measure P*. (If H is redundant then we have seen
the quantity E*{H?} is the same under every P*.) However, if the market is not
complete, then

(i) there will arise non-redundant claims
(ii) there will be more than one equivalent martingale measure P*.

We now have the conundrum: if H is non-redundant, what is the no arbitrage
price of H? We can no longer argue that it is E*{H}, because there are many such
values!

The absence of this conundrum is a large part of the appeal of complete markets.

Finally let us note that when H is redundant there is always a replication strategy
a. However, when H is non-redundant it cannot be replicated; in this event we do
the best we can in some appropriate sense (for example expected squared error
loss), and we call the strategy we follow a hedging strategy. See for example [FS]
and [JMP] for results about hedging strategies.

H. Finding a Replication Strategy.

It is rare that we can actually “explicitly” compute a replication strategy, and
rarer still that we can explicitly compute a hedging strategy. However, there are
simple cases where miracles happen; and when there are no miracles, then we can
often approximate hedging strategies accurately using numerical techniques.
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A standard, and relatively simple, type of contingent claim is one which has the
form .

H = f(St)

where S is the price of the risky security. The two most important examples (already
discussed in Section II) are

(i) The European call option: Here f(z) = (z — K)* for a constant K, so the
contingent claim is H = (St — K)*. K is referred to as the strike price and
T is the expiration time. In words, the European call option gives the holder
the right to buy one unit of the security at the price K at time T. Thus the
(random) value of the option at time T is (St — K)™.

(ii) The European put option: Here f(z) = (K — z)*. This option gives the holder
the right to sell one unit of the security at time T at price K. Hence the (random)
value of the option at time T is (K — St)™.

The European call and put options are clearly related. Indeed we have
(S — K)* — (K — S7)* = Sr — K.

An important difference between the two is that (K — ST)* is a bounded random
variable with values in [0, K], while (S — K)* is in general an unbounded random
variable.

To illustrate the ideas involved, let us take R; = 1 by a change of the numeraire,
and let us suppose that H = f(Sr) is a redundant claim. The value of the claim
is, we recall,

¢
V, = E*{f(Sr)|F:} = aoSo + bo + / 0548,
0
We now make a series of hypotheses in order to obtain an easier analysis:
Hypothesis 1. S is a Markov process under P*.

Under hypothesis 1 we have: 7
Vi = E*{f(Sr)|F:} = E*{f(S1)|S:}-
But measure theory tells us that there exists a function ¢(t, ), for each ¢, such that
E*{f(S7)|S:} = (2, St).
Hypothesis 2. o(t,z)is C! int an& C?in z.

We now use Itd’s formula:
Vi = E*{f(S1)|F:} = o(t, St)

t
— (0, 50) + / o (5, Ss_)dS,s
0

¢ t
n / go's(s,Ss—)dS—i-% / as(8,55-)d[S, SIS
0 0

+ ) {05, 86) + (s, Ss=) — @l (5, 55— ) AS, ).

0<s<t
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Hypothesis 3. S has continuous paths. With hypothesis 3 It6’s formula simplifies:

t
Vi=plt,5) = 90,50 + | (5,545,
(1) t ° 1 i
+ [, 8)ds+ 5 [ ohals 515,51,
0 0

Since V is a P* martingale, the right side of (1) must also be a P* martingale. This
is true if

¢ 1 [t
(2) / ©(s,8s)ds + 5/ ol (s,85)d[S, S]s = 0.
0 0
There is not much chance of this happening without the next hypothesis:
Hypothesis 4. [S,S]; = [ h(s, Ss)?ds.

We then get that (2) certainly holds if ¢ is the solution of the partial differential
equation:

1 23290 Oy .
5h(s,x) W(s, z)+ E(s,x) =0

with boundary condition ¢(T,z) = f(z). Note that if we combine Hypotheses 1-
t
4, we have a continuous Markov process with quadratic variation h(s, S’s)zds.

0
An obvious candidate for such a process is the solution of a stochastic differential

equation
dS; = h(s, Ss)dBy + b(s; Sp;r < s)ds,

where B is a standard Wiener process (Brownian motion) under P. S is a continu-

t
ous Markov process under P*, with quadratic variation [S,S]); = [ h(s,S;)%ds as

desired. The quadratic variation is a path property and is unchangoed by changing
to an equivalent probability measure P* (see [P] for example). But what about
the Markov property? Why is S a Markov process under P* when b can be path
dependent?

Here we digress a bit. Let us analyze in more detail P*. Since P* is equivalent
P and Z > 0 a.s. (dP). Let Z; = E{Z|F;}, which is

clearly a martingale. By Girsanov’s theorem (see, eg, [P]) we have that

to P, we can let Z =

3) /0 (s, S.)dB, — /0 t Zisd[z, /0 (r, $,)dB,];

is a P* martingale.

t
Let us suppose that Z; = H,Z,dB;, which is reasonable since we have mar-

0
tingale representation for B and Z is a martingale. We then have that (3) becomes

t t t t
/ h(s, Ss)dBs — / Zizsﬂsh(s,ss)ds: / h(s, S,)dB, — / H,h(s, S,)ds.
0 0 s 0 0
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b(s; Sp;r < 8)

th
AR en we have

If we choose H; =

t ¢
Sy = / h(s,Ss)dBs +/ b(s; Sp;7 < s)ds
0 0

b b(s; Sy < 8)

h(s, Ss)
P* martingale; since [M, M|; = [B, B]; = t, by Lévy’s theorem it is a P*-Brownian
motion (see, e. g. , [P]), and we have

is a martingale under P*; moreover we have M; = B; + / ds is a
0

dsS; = h(t, S;)dM,

and thus S is a Markov process under P* . The last step in this digression is to
show it is possible to construct such a P*! Recall that the stochastic exponential of
a semimartingale X is the solution of the “exponential equation”

dYy =YdXy; Yo=1.

The solution is known in closed form and is given by

1
Y, = exp(X, — 5 [X, X[+ AX,)em 2%
s<t

If X is continuous then

1
Y; = exp(X; — [X, X]y),
2

and it is denoted Y; = £(X):. Recall we wanted dZ; = H,;Z;dB;; we let N, =
—b(t; <t
f(f H,dB;, and we have Z; = £(N);. Then we set Hy = b(t};gr‘,s;r)__ )
s Mt
and let dP* = ZrdP, and we have achieved our goal. Since Z7 > 0 a.s. (dP), we
have that P and P* are equivalent.

as planned

Let us now summarize the foregoing. We assume we have a price process given
by
dS; = h(t, St)dB; + b(t; Sy, < t)dt.

t g0 <
We form P* by dP* = ZdP, where Zr = £(N)r and N; = / b8 Spor < 9) 4

h(S S )
0 y Mg
We let 7 be the (unique) solution of the boundary value problem.

1 5 0% 3] _
(4) Eh(tax) bﬁ(t,x) + %w(tax) =0

and (T, z) = f(x), where ¢ is C2 in z and C! in t. Then
t 3g0
Vi= (P(ta St) = (P(O, SO) + 5‘(3, Ss)dSs
0 A

Thus, under these four rather restrictive hypotheses, we have found our replication

. 0
strategy! It is a; = i(s,Ss). We have also of course found our value process

oz
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Vi = o(t, St), provided we can solve the partial differential equation (4). However
even if we cannot solve it in closed form, we can always approximate ¢ numerically.

Conclusion: It is a convenient hypothesis to assume that the price process S of
our risky asset follows a stochastic differential equation driven by Brownian motion.

Important Comment: Although our price process is assumed to follow the SDE

dS; = h(t, S;)dBy + b(t; Sy, 7 < t)dt,

we see that the PDE (4) does not involve the “drift” coefficient b at all! Thus the
price and the replication strategy do not involve b either. The economic explanation
of this is two fold: first, the drift term b is already reflected in the market price:
it is based on the “fundamentals” of the security; second, what is important is the
degree of risk involved, and this is reflected in the term h.

Remark. Hypothesis (2) is not a benign hypothesis. Since ¢ turns out to be the
solution of a partial differential equation (given in (4)), we are asking for regularity
of the solution. This is typically true when f is smooth (which of course the
canonical example f(z) = (K — z)* is not!). Nevertheless this analysis essentially
works for the cases of European calls and puts as we describe in Section I that
follows.

I. A special Case.

In Section H we saw how it is convenient to assume S verifies a stochastic differ-
ential equation. Let us now assume S follows a linear SDE (= Stochastic Differential
Equation) with constant coefficients:

(1) dSt = O'StdBt + ,U,Stdt; S() =1.
Let X; = 0B; + ut and we have
dSt == Stht; S() =1

so that s
St = 8(X)t = eaBt+(y’_§0 )t.

The process S of (1) is known as geometric Brownian motion and has been used to
study stock prices since at least the 1950’s and the work of P. Samuelson. In this
simple case the solution of the PDE (4) of Section H can be found explicitly, and it
is given by

(2) (,O(IE,t) = \/%/ f(xea'u T_t_%az(T_t))e_%du‘
T J—c0

In the case of a European call option we have f(z) = (z — K)* and in this case we
get

1 z 1,
= lloe g + 57— 1))

~K® (J\/%(log% - %UZ(T - t))) .

o(a,t) =2
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1 # u?
Here ®(2) = — e~ 2 du. In the case of the call option we can also compute
Vv P
—oo

the replication strategy:

(3) ag =@ (a\/%(log% + %JZ(T — t))) .

Third we can compute as well the price of the European call option (here we assume
So = S):
1 T 1
Vo= 0) =28 | —=(log — + =o°T
0 (10("17) ) T (U\/T( OgK + 20 ))
1 T 1
—K® | —=(log— — =o?T) ).
(avT( ®K "2 ))

These formulas, (3) and (4) are the celebrated Black-Scholes option formulas, with
Rt =1.

(4)

These relatively simple, explicit, and easily computable formulas make working
with European call and put options very simple. It is perhaps because of the
beautiful simplicity of this model that security prices are often assumed to follow
geometric Brownian motions even when there is significant evidence that such a
structure poorly models the real markets. Finally note that - as we observed earlier
- the drift coefficient p does not enter into the Black-Scholes formulas.

J. Other options in the Brownian paradigm: a general view.

In Sections H and I we studied contingent claims of the form H = f(St), that
depend only on the final value of the price process. There we showed that the
computation of the price and also the hedging strategy can be obtained by solving
a partial differential equation, provided the price process S is assumed to be Markov
under P*.

Other contingent claims can depend on the values of S between 0 and T'. A look-
back option depends on the entire path of S from 0 to T'. To give an illustration of
how to treat this phenomenon (in terms of calculating both the price and replication
strategy of a look-back option), let us return to the very simple model of Geometric

Brownian motion:
dSt = O'StdBt + ,U;Stdt

Proceeding as in Section H we change to an equivalent probability measure P*
such that Bf = B; + £t is a standard Brownian motion under P*, and now S is a
martingale satisfying:

(1) dSt == O'StdB;;

Let F' be a functional defined on C[0,t], the continuous functions with domain
[0,T]. Then F(u) € R, where u € C[0,T], and let us suppose that F' is Fréchet dif-
ferentiable; let DF denote its Fréchet derivative. Under some technical conditions
on F, if H = F(B*), then one can show

T
(2) H=FE*{H} +/0 P(DF(B*;(t,T]))dB;
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where P(X) denotes the predictable projection of X . (This is often written E*{ X |F,}
in the literature by an abuse of notation. The reason it is an abuse is that for
the process X = (Xi)o<t<T, E*{X¢|F:} is defined for each ¢ a. s. The null set
N; depends on t. Thus E*{X;|F;} does not uniquely define a process, since if

N= J DM, then P(N;) =0 for each ¢, but P(IV) need not be zero. The theory
0<t<T

of predictable projections avoids this problem.) Using (1) we then have a formula

for the hedging strategy:

1

- O'St

If we have H(w) = sup Si(w) = S = F(B*), then we can let 7(B*) denote
0<t<T

p(DF('7 (taT]))'

7

the random time where the trajectory of S attains its maximum on [0,#]. Such an
operation is Fréchet differentiable and

DF(B*,-) = oF(B*)6,(B*),
where 6, denotes the Dirac measure at a.

Let

1
M,;;= m B — -
9t T ust ( u 20“)

with My = My +. Then the Markov property gives

E*{DF(B*, (t, T)|\F:}(B*) = E*{oF(B")1 (0, >3 | Fi} (BY)
= O'StE*{eXp(O'MT._t);MT_t > Mt(B*)}

For a given fixed value of B*, this last expectation depends only on the distribution
of the maximum of a Brownian motion with constant drift. But this distribution
is explicitly known. Thus we obtain an explicit hedging strategy for this look-back
option:

M, o2(T —t) —log ¥+(w) + 30%(T — ¢)
as(w) = (— log ?(w) + — +2> ) ( X o )

—log %t (w) + 30*(T — 1)
Tt

where ®(z) = \/;2_7; | e~ /2dy and ¢(z) = ®'(z).

The value of this look-back option is then:

Vo=E*{H} =S, (“—Z—-T— + 2) i (%aﬁ) + oV TSop (%aﬁ) :

Requiring that the claim be of the form H = F(B*) where F is Fréchet differen-
tiable is very restrictive. One can weaken this hypothesis substantially by requiring
that F' be only Malliavin differentiable. If we let D denote now the Malliavin de-
rivative of F, then equation (2) is still valid. Nevertheless explicit strategies and
prices can be computed only in a few very special cases, and usually only when the
price process S is Geometric Brownian motion.
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IV. American Options.

A. The General View.

We begin with an abstract definition, in the case of a unique equivalent martin-
gale measure.

Definition. We consider given an adapted process U and an expiration time 7.
An American Security is a claim to the payoff U, at a stopping time 7 < T'; the
stopping time 7 is chosen by the holder of the security and is called the ezercise
policy.

We let V; = the price of the security at time t. One wants to find (V;)o<i<T
and especially Vy. Let Vi(7) denote the value of the security at time ¢ if the holder
uses exercise policy 7. Let us further assume (only for simplicity) that R, = 1
Then

(1) Vi(r) = E*{U-|F:}

where of course E* denotes expectation with respect to the equivalent martingale
measure P*.

Let 7(t) = {all stopping times with values in [t, T}.
Definition. A rational exercise policyis a solution to the optimal stopping problem

(2) Vo= sup Vo(r).
T7ET(0)

We want to establish a price for an American security. That is, how much should
one charge to give a buyer the right to purchase U in between [0, 7] at a stopping
rule of his choice?

Suppose first that the supremum in (A2) is achieved. That is, let us assume
there exists a rule 7* such that V§ = Vp(7*), where V' is defined in (A2).

Lemma 1. V{ is a lower bound for the no arbitrage price of our security.
0 Y

Proof. Suppose it is not. Let Vp < V{ be another price. Then one should buy
the security at Vy and use stopping rule 7* to purchase U at time 7*. One then
spends —U,«, which gives an initial payoff of V' = E*{U,«|Fo}; one’s initial profit
is Vy' — Vo > 0. This is an arbitrage opportunity. [

To prove Vg is also an upper bound for the no arbitrage price (and thus finally
equal to the price!), is more difficult.

Definition. A super-replicating trading strategy @ is a self-financing trading strat-
egy 0 such that 6,S; > Uy, all t, 0 <t < T, where S is the price of the underlying
risky security on which the American security is based. (We are again assuming
Rt = 1)
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Lemma 2. Suppose a super replicating strategy 6§ exists, with 0pSy = V. Then
Vi is an upper bound for the no arbitrage price of the American security U.

Proof. If Vo > V{, then one can sell the American security and adapt a super-
replicating trading strategy 6 with 0S5y = V. One then has an initial profit of
Vo — V5 > 0, while we are also able to cover the payment U, asked by the holder
of the security at his exercise time 7, since 8,5, > U,. Thus we have an arbitrage
opportunity. [J

The existence of super-replicating trading strategies can be established using
Snell Envelopes.

Recall that a collection of random variables & is uniformly integrable if

Jim ;g%E{|X|1{|X|>c}} = 0.

A stochastic process Y is of “class D” if the collection H = {Y; : 7 a stopping time}
is uniformly integrable.

Theorem. Let Y be a cadlag, adapted process, Y > 0 a.s., and of “Class D”.
Then there exists a positive cadlag supermartingale Z such that

(i) Z > Y, and for every other positive supermartingale Z' with Z' > Y, also
Z'> Z;

(ii) Z is unique and also belongs to Class D;
(i1i) For any stopping time T

Z, = ess supE{Y,|F,}
v>T

(v also a stopping time).

For a proof consult [DM]. Z is called the Snell Envelope of Y.

One then needs to make some regularity hypotheses on the American security U.
For example if one assumes U is a continuous semimartingale and E*{[U, U]r} < oo,
it is more than enough. One then uses the existence of Snell envelopes to prove:

Theorem. Under regularity assumptions there exists a super-replicating trading
strategy 0 with 0,S; > k for all t for some constant k and such that 0pSy = V. A
rational exercise policy is

™ =inf{t > 0: Z; = U;},
where Z s the Snell Envelope of U under P*.

B. The American Call Option.

Let us here assume that for a price process (St)ogth and a bond process R; = 1,
there exists a unique equivalent martingale measure P* which means that there is
No Arbitrage and the market is complete.
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Definition. An American call option with terminal time T and strike price K
gives the holder the right to buy the security S at any time 7, at price K, between
0 and T

It is of course reasonable to consider the random time 7 where the option is
exercised to be a stopping time, and it is standard to assume that it is then
(Sr — K)*, corresponding to which rule 7 the holder uses.

We note first of all that since the holder of the option is free to choose the rule
7 = T, he or she is always in a better position than the holder of a European
call option, whose worth is (S — K)*. Thus the price of an American call option
should be bounded below by the price of the corresponding European call option.

Following Section IV.A we let
Vi(r) = E"{U|F} = E*{(S; — K)"|F:}

denote the value of our American call option at time ¢ assuming 7 is the exercise
rule. We then have that the price is

1) Ve = sup B*{(S, - K)"}.

0<T<T

We note however that S = (S;)o<¢<7 is a martingale under P*, and since f(x) =
(z — K)T is a convex function we have (S; — K)* is a submartingale under P*;

hence from (1) we have
Vo' = E*{(Sr — K)*}

since t — E*{(S; — K)*1} is an increasing function, and the sup - even for stopping
times - of the expectation of a submartingale is achieved at the terminal time
(this can be easily seen as a trivial consequence of the Doob-Meyer decomposition
theorem). This leads to a surprising result.

Theorem. In a complete market (with no arbitrage) the price of an American
call option with terminal time T and strike price K is the same as the price for a
European call option with the same terminal time and strike price.

Corollary. If the price process S; follows the SDE

dSt = O'StdBt + ,U,Stdt; SO =1
then the price of an American call option with strike price K and terminal time T
is the same as that of the corresponding European call option and is given by the

formula (III.1.4) of Black and Scholes.

We note that while we have seen that the prices of the European and American
call options are the same, we have said nothing about the replication strategies.
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C. Backwards Stochastic Differential Equations and the American Put
Option.

Let ¢ be in L2 and suppose f : Ry x R — R is Lipschitz in space. Then a simple
backwards ordinary differential equation (w by w) is

T
Yiw) = @)+ [ 16 Ya(w)ds.
o Jt
However if ¢ € L%(Fr,dP) and one requires that a solution Y = (¥;)o<s<r be

adapted (that is, Y; € F;), then the equation is no longer simple. For example if
Y; € F; for every t, 0 <t < T, then one has

T
(1) Y, = B{E+ / f(s, Yo)ds| 7.

An equation such as (1) is called a Backwards Stochastic Differential Equation.
Next we write

T t
Y, = B{€ + /0 £(s, Ya)ds| F} /O £(s, Ya)ds

t
- M, - / f(s,Ys)ds
0

T
where M is the martingale E{¢+ / f(s,Ys)ds|F.}. Let us suppose we are solving
0

(1) on the canonical space for Brownian motion. Then we have that the martingale
representation property holds, and hence there exists a predictable Z € £(B) such
that

t
Mt:Mo—I—/ ZsdBg
0

where B is Brownian motion. We then have
T t
Vo~ Yo= MMy~ ( [ 165, %ds- [ f(s,Ys)ds>
0 0

€—Yt=/tTstBs—/tTf(s,1%)ds

or, the equivalent equation:

T T
(2) Y=+ /t £(5,Ys)ds — /t Z,dB,

Thus to find an adapted Y that solves (1) is equivalent to find a pair (Y, Z) with
Y adapted and Z predictable that solve (2).

Now that one has introduced Z, one can consider a more general version of (2)
in the form

t T
(3) Y, =§+/0 f(s,Ys,Zs)ds—/t Z,dB,.
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We next wish to consider a more general equation than (3), however: Backward
Stochastic Differential Equations where the solution Y is forced to stay above an
obstacle. This can be formulated as follows (here we follow [EKPPQ)]):

Y =&+ [ f(s,Ye, Zs)ds + K7 — Ky — [ Z,dB,
(4) Y; > Uy (U is optional)
K is continuous, increasing, adapted, K¢ = 0, and fOT(Yt —U)dK; = 0.

The obstacle process U is given, as are the random variables £ and the function f,
and the unknowns to find are (Y, Z, K). Once again it is Z that makes both Y and
K adapted.

Theorem ([EKPPQ)]). Let f be Lipschitz in (y, z) and assume E{ sup (U;")?} <
0<t<T

0o. Then there exists a unique solution (Y, Z, K) to equation (4).
Two proofs are given in [EKKPQ)]: one uses the Skorohod problem, a priori
estimates and Picard iteration; the other uses a penalization method.

Now let us return to American options. Let S be the price process of a risky
security and let us take Ry = 1. An American put option then takes the form
(K — S;)T where K is a striking price and the exercise rule 7 is a stopping time
with 0 < 7 < T. Thus we should let U; = (K — S;)™, and if X is the Snell envelope
of U, we see from IV.A that a rational exercise policy is

™ =inf{t >0: X; =U}
and that the price is Vg = Vo(7*) = E*{U,«|Fo} = E*{(K — Sr~)1}. Therefore
finding the price of an American put option is related to finding the Snell envelope
of U. Recall that the Snell envelope is a supermartingale such that
X, = ess sup E{U,|F;}
v>T

where v is also a stopping time.

We consider the situation where U; = (K — S;)* and £ = (K — S7)*. We then
have

Theorem ([EKKPQ)]). Let (Y, K, Z) be the solution of (4). Then

Y;= esssup FE {/ f(s, Y5, Zs)ds + Uu|ft} .
t<v<T t
v a stopping time

Proof (Sketch). In this case

T T
Y, =UT+/ f(s,n,zs)ds+KT—Kt—/ Z,dB,,
t t
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hence y y
Y~ Yi== [ f(s.YoZ)ds+ (Ke~K)+ | ZudB,
t t

and since Y; € F; we have

Y;=F {/ f(.S‘,Y;-,Zs)dS +Y, + (Ky - Kt)|ft} >F {/ f(SaY;';Zs)dS + Uul}-t}} .
t t

Next let v =inf{t <u<T:Y,=U,}, withy, =T if Y, > U,, t <u<T. Then

0]
Y;:E{ f(8,Ys,Zs)ds + Y, + K., —Ktl}'t}.
t

Tt
However on [t,7y:) we have Y > U, and thus / (Y, — Us)dKs = 0 implies that
¢
K,_ —K;=0; however K is continuous by assumption, hence K.,, — K; = 0. Thus

(USing Y’Yt = "Yt):
Yt

Y: :E{ f(s,Ys,Zs)ds—i-U,YtL?-'t}

t

and we have the other implication. [J

The next corollary shows that we obtain the price of an American put option
via reflected backwards stochastic differential equations.

Corollary. The American put option has the price Yy, where (Y, K, Z) solves the
reflected obstacle backwards SDE with obstacle Uy = (K — S;)t and where f = 0.

Proof. In this case the previous theorem becomes

Yo= esssup E{U,|F},
o<v<T
v a stopping time

and U, = (K — S,)*. O

This relationship between the American put option and backwards SDEs can be
exploited to price numerically an American put option.

We note that one can generalize these results to American Game Options, using
Forward-Backward Reflected Stochastic Differential Equations, see, eg, [MC].
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