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Abstract

Empirical Bayes tests for testing Hy : § < 6, against H; : § > 0, in some continuous
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that [, |8]dG(8) < oo, we construct the empirical Bayes test and show that its regret goes
to zero with a convergence rate of order o(n_1+m]LT5). The applications of our result to
N(6,1) and the general exponential family distributions are given as corollaries.
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§ 1 Introduction

Since the empirical Bayes approach was introduced by Robbins (1956, 1964), it has
become a powerful tool when situations involve sequences of similar and independent
statistical problems. In these situations, the independent component problems in the
sequence are formulated as the Bayes statistical decision problems involving a common,
unknown prior distribution over the parameter space. The accumulated observations -
and present observations are used to construct the decision rule at each stage and so a
sequence of empirical Bayes decision rule is formed as observations continue. If the em-
pirical Bayes rule is constructed such that the risk for the nth decision problem converges
to the Bayes risk which would have been obtained if the prior distribution were known
and the Bayes rule with respect to this prior distribution were used, the empirical Bayes
rule is said to be asymptotically optimal (a.0.). Among a.o. empirical Bayes rules, the
convergence rate is used to measure their performances.

The detailed structure we consider in this paper is as follows: An observation X is
obtained from a distribution with density

f(z]0) = c(8)exp{bz}h(z), —o<La<zr<f< oo, (1.1)

where h(z) is continuous, positive for z € (a, 8), 8 is the value of the parameter, which
is regarded as the value of a random variable © having unknown distribution G on the
parameter space {2 C {6 : ¢(d) > 0}. The observation X may be thought of as the value
of a sufficient statistic based on several i.i.d observations.
The hypotheses Hy : § < 6 is to be tested against H; : @ > 6y, where 8, € §, under
the linear loss
1(0, a) = (1,(00 — 9)1[9500] + (1 - a)(0 - 90).[[9>90], (12)

where a = 0 or 1 according to taking action in favor of Hy or H; respectively.

A decision rule §(z) is the probability of accepting H; when X = z is observed. That
is 0(z) = P{ accepting H1|X = z}. R(G, ) is used to denote the Bayes risk of the test
& when G is the prior distribution. Then R(G,4) = [, [P 1(8, 6(x)) f (z|0)dzdG ().

We consider only prior G such that E|©| < oo to ensure that the risk is always finite.
To find Bayes test, rewrite R(G, ) as

R(G,6) = Cg+ / / 8)c(8)e®h(x)dzdG (6) (1.3)
~ Co+ / 5(z)] / (80 — 0)c(6)e**dG(6)]h(z)dz
= Cot [ 5@)ltbas(e) — vola) @)z
= Co+ / §(2)W (2)h(z)dz

= Co+ / 2)[8o — do(z)lac (5)h(z)dz,



where
Ce = fﬂ(e - HO)I[0>00]dG(0)’
ag(z) = fo c(0)e™dG(0),
Ya(z) = fo 0c(8)e?dG(0),
w(z) = a(z) — Ye(z),
¢c(z) = Yo(z)/ac(z).

Here, ag(z) and t(z) are well defined since it is easy to verify that ag(z) < co and
Ya(z) < oo for z € (o, B). From (1.3), a Bayes test d¢ is clearly given by

1 if w(z) <0
() :{ 0 if w(z)>0

or, equivalently

_[1if ge(z) =8
‘SG(”’)“{ 0 if ¢z(x)<92.

and the Bayes risk is

R(G,06) = Co + [ ? 5o(2)w(z)h(z)dz.

o4

The trivial cases are expected to be excluded, so we assume that
llmgbg(l') < by < hmd)(;'(l') (14)
zla =18

A consequence of (1.4) is that ¢g(x) is strictly increasing and there exists the unique
point by (critical value) such that ¢g(by) = 6y, da(z) < O for z < by, and ¢g(z) >
for z > by. Therefore, the Bayes test 6 can be simply represented as

_ 1 if .’L’Zbo,
JG(””)_{O if < b.

In the empirical Bayes context, a sequence of problems having the above structure
occurs but G(6) is not known. The only thing we can obtain are the past n indepen-
dent observations X;, Xs,---, X, _and the present observation X. We need to make the
decision at present based on (X, Xn) where X, = (X1, Xa, -+, Xp). Let 6,(X, Xn) be a
empirical Bayes test, i.e., 6,(X, X,) is the probability of accepting H, when X and X,
are observed. The risk related to 6, is E[R(G, §|X,,)], where R(G, 6|X,,) is the risk of 4,
given X,,. R(G,48,) — R(G, d¢) is often called the regret of d,, and is used as a measure
of performance of the empirical Bayes test of §,,.

In the literature, Johns and -Van Ryzin (1972) constructed empirical Bayes test for
the above problem and studied the rate of convergence for its associated regret. Van
Houwelingen (1976) improved Johns and Van Ryzin’s result and showed that the empir-
ical Bayes test there has a convergence rate of order O(n="/(+3) log?n), where r > 1
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is an integer, associated with the moment requirement that E[|©|"*!] < co. Note that if
r is small, this convergence rate is still slow.

Karunamuni and Yang (1995) considered this problem under a new setting. They
assumed that there exist two known constants Cy, Cs, a < C; < Cy < § such that

Cy < by < Ch. (1.5)

Then they constructed the empirical Bayes test such that it achieves a rate of conver-
gence of order O(n=2/(r+3)) if F[|©"*!] < oo for some 7 > 1. With (1.5) only, Liang
(1999) constructed an empirical Bayes test for the positive exponential family and proved
that the regret of the empirical Bayes test there converges to zero with a rate of order
O(n~*/(*1)), where s is an arbitrarily prespecified positive integer. Later, Gupta and
Li (1999) generalized Liang’s result to the general continuous exponential family. They
showed that, under (1.5) and without the restriction E[|©|"*] < co, the empirical Bayes
test can be constructed such that its regret has a rate of convergence of order o(n=1*¢),
where € > 0 is any prespecified number.

It should be pointed out that the improved rate is because of assumption (1.5).
To apply the result in Gupta and Li (1999), one needs to know more about the prior
distribution G. For example, even if we know that 6 is bounded, C; and C, required in
(1.5) may not be obtainable. So to find a better empirical Bayes test in the asymptotic
sense without assumption (1.5) is still an interesting problem.

In this paper we deal with those exponential distributions in which, for some constants
1> 0, By >0 and B, >0,

e it Q8] > By,

For these distributions, we are able to construct the empirical Bayes test such that
the convergence rate of its regret is of order o(n_l+m), which is clearly faster than
o(n~'*¢). This result not only gets rid of the restriction (1.5), but also improves the
previous convergence rates.

One application of our result is for X ~ N (6, 1) (see Corollary 3.6). For N(6,1), the
only necessary condition we need is that E[|©|] < oo. This condition guarantees that
the risk of Bayes decision rules is finite and is quite generally used in Bayes analysis. So
our result can be applied in most situations. As for the convergence rate, our result is
quite strong, since o(n‘”w) is much closer to O(n~!), which has been thought of as
the best possible convergence rate for the empirical Bayes rules (see Singh (1979) ).

For the general exponential family, we know that ¢(6) is a continuous function on the
natural space {6 : ¢(d) > 0}. So if Q is an inner closed subset of {# : c(6) > 0}, then
(1.6) is satisfied and our result holds (see Corollary 3.7). If we know 6 € [0y, 62) C {8 :
c(0) > 0}, where 6; and 6oz are known or unknown constants, then (1.6) is met. So our
result can be applied. But in both cases of Corollary 3.6 and Corollary 3.7, we may not
be able to find C} and C; required in (1.5).
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Karunamuni (1996) has claimed that he found the optimal convergence rates of the
empirical Bayes tests for N(6, 1) and ezp(f). From our result, one can see that the result
for N(#,1) in Karunamuni (1996) is not correct, since we can have a much faster rate
than his optimal rate. In fact, his result for ezp() is also not correct according to our
investigation.

The paper is organized as follows: §1 gives the introduction; §2 constructs the em-
pirical Bayes test d,; §3 proves that the empirical Bayes test has a convergence rate of
order o(n~ 1+m) Two specific results are given as corollaries; §4 proves the lemmas
stated in §3; §5 gives a few comments about possible improvements of our result. Last,
we attach an appendix about the existence of the kernel functions used in §2.

§ 2 Construction of Empirical Bayes Tests

We use the kernel method to construct the empirical Bayes test. The kernel method
has been used by many authors over the years. The method here is a little different from
the previous ones. We use a sequence of kernel functions instead of the single one.

For each 1 = 0,1 and m = 1,2, -+, let K;,,(y) be a Borel-measurable function such
that Kim(y) vanishes outside the internal [0, 1], and for Ky, (y)

1 1 if 57=0
] _ ?
and for Ky,,(y)
1 0 if 7=0,23,---,m
j _ )y “y 0 b ?
/OyKlm(y)dy—{ 1 if j=1. 22)

For fixed m, the construction of bounded K, (y) is well-known (see Stijnen (1985) ).
When m varies, the bound of Kj,(y) is a function of m. We denote this function as
B(m). The construction of empirical Bayes test and the convergence rate of its regret
depend clearly on B(m). The best result we obtained about B(m) is that K, (y) can
be constructed such that |K;m(y)] < (m + 1)28™*! (see Appendix).

For any z € (a, ), define

= — ZKOv /h( i) (2.3)

and

¥n( ,wz Z

where u = u(n) = n~Y/8lglogn and ¢y = vn = 16[—°g§5ﬁ] 1, here [z] means the integer
part of z. Let Wy (z) = pan(z) — Yn(z). Wy(z) is an asymptotlcally unbiased estimator
of w(z)(see Lemma 3.2).

=) /h(X), (2.4)



Next we take some steps to localize h(z). Let L, = loglogn, h(a+) = limg,, h(z)
and h(B—) = limg4g h(z). Choose any v € (a, 8). Define

max{o <z <7:h(z) < 57}V (e+ 2) V(=L,) if h(a+) =0,
Cin = { (a+ 1)V (-L,) if 0 < h(a+) < 0o, (2.5)
max{a <z <7y:h(z) > L.}V (a+2)V (=L, if h{a+) = oo,
and
{ (min{y <z < B: h(z) < lo;n} —u)A(B—Z)A L, if h(B-) =0,
Con=9q (B-L)AL, if 0 < h(8—) < o0, (2.6)
min{y <z <B:h(z) > L.} A (B-L)AL, if h(B-) = 0.

Since L, — 00 as n — 00, C1, — a, and Cy, — . And so by will fall in [Cin, Cay) for
n > Ny, there Ny is some integer.
The direct consequence of (2.5) and (2.6) is

C2n - Cln < 2Ln (27)
Other consequences are
, 1
Cin <5< Can +u h(z) > logn (28)
and
max  h(z) < Ly, (2.9)

ClnSxSCWL
for large value of n. Without loss of generality, assume that (2.8) and (2.9) are true for
n > Np. .
Now we propose an empirical Bayes test d,(z, X,,) by

5 — L if (x> Cy) or (Cip <z < Cop and W, (z) < 0),
"0 if (z<Chy)or (Ciy <7 < Cyy and Wiy(z) > 0).

The conditional Bayes risk of the empirical Bayes test 4, is:
— B
R(G,6:/%a) = Ca+ [ 8a(z)w(2)h(z)dz.

In the following discussion of this paper, we consider the case n > N, without further
mention. Note that w(z) > 0 if x € [Cy, bo); w(z) < 0 if z € [by, Can). Then the
conditional regret can be expressed as,

R(G,6,|X,) - R(G,6) = /a ﬂ(an—a)w(x)h(g;)dz

= ; I[Wn(w)so]w(x)h(x)dw

1n

Can
+ [ Iw,@alo(@) h@)ds
0
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and the regret becomes

R(G,6) - R(G,5) = [ " P(Wa() < 0)w(z)h(z)ds (2.10)

Cln

Con
+ / P(Wi(z) > 0)|w(x)|h(z)dz.

bo

§3 Asymptotic Optimality of §,(z)

In this section, we shall investigate the asymptotic optimality of §,(z). Clearly, the
convergence rate of R(G, d,) — R(G,d¢) depends on the properties of w(z) and W, (z),
and depends on the inequality used to estimate P(W,(z) < 0) and P(W,(z) > 0). The
more information about w(z) and W, (z) is obtained, the more accurate rate we can get.
So we will dig out a few properties of w(z) and W,(z). That is a few lemmas, whose
proofs are left to §4. Then we state a well-known inequality about the non-uniform
estimation of the distance between the normal distribution and the distribution of a sum
of i.i.d random variables. After that, our main result and two corollaries are given. The
final part in this section is the proof of the main result.

Note that ag(z) < oo for z € (e,8). So ag(z) is infinitely differentiable and so
is Ya(z) since ¢Yg(z) = ag(z). Then we know that w(z) is infinitely differentiable
and the analytic properties of w(z) can be investigated. The following property of
w(z) plays an important role in the estimation of [ P(W,(z) < 0)w(z)h(z)dz and
S P(Wa(z) > 0)w(z)h(z)ds.

Lemma 3.1 There exist A; >0, Ay >0, B> 0, ¢, ¢y such that o < ¢; < by < ¢z <
B, and for all z € [c1, ),
—w'(z) > AT, (3.1)

for all z € [Chy, c1] U [c2, Cap) and n > Ny, and where N1(> Ny) is some integer,

|w(z)| > Ag(logn)~5. (3.2)

Now we consider W, (z). Note that

ot
3

Wi(z) = bpan(z) — hn(z) = - > Vu(X;, ),

where X X
90 KO'U(_H) 1 Klv(ﬂ)
Vo Xiz)=—=x —>—u 2~ W\ u J
( J -'L') u % h(X]) U2 % h(XJ)



For fixed » and z, V,(X;,z) are i.i.d. random variables. So the classical results about
the sum of i.i.d random variables can be used. But a little moment information about
Wy (z) is necessarily to investigate first. We have two lemmas for that purpose. Both
are direct results of computations.

The first lemma also shows that W, (z) is an asymptotically unbiased and consistent
estimator of w(z). That is the basis of the construction of the Bayes rule 6, (z).

Lemma 3.2 Let wy(z) = E[V,(X;,z)]. Then we have
wy(z) = w(z) + u’d,(z), (3.3)

where dn(x) is some function of z such that |[u’d,(z)| < 5z for all © € [Cin, Cop] and
n > Ny, and where No(> Ny) is some integer.

Let Zjn(z) = Vo(Xj, %) — wy(z). Then EZj,(z) = 0. And

Lemma 3.3 There is an integer N3(> N) such that for all n > N3 and all z €
[OlnaC2n]; | ( )|3
1 E\Z;(z 1
2 — 2 n

We see that W, (z) is not an unbiased estimator of w(z). w(z) > 0 cannot guarantee
that wy(z) > 0 and w(z) < 0 cannot guarantee that w,(z) < 0. (To see this, look at
the expression of d,(z) in (4.10). ) This sign difference between wy,(z) and w(z) causes
some trouble for us later. So we introduce the following lemma.

Lemma 3.4 For all n> N, and z € [Cin, Cay),

w(z) > % — w(z) > %w(m), (3.5)
and 1 1
w(z) < 7 = wy,(z) < Ew(a:) (3.6)

Note that Z;,(z) are i.i.d random variables for fixed n and z. For large n, the central
limit theorem tells us that #ﬁ > i1 Zjn is close to N(0, 1) in distribution. Furthermore,
we have the following non-uniform estimation of the difference between the normal dis-
tribution and the distribution of the sum of i.i.d random variables. This result can be
found in Petrov (1975, pp125) or Michel (1981). Michel proved A < 30.54 in his paper.



Result Let Xy,X,,--+, X, be i.i.d random variables, EX; = 0, EX? = 0% > 0,
E|X1|® < co. Then for all x

p
|Fa(z) — ¥(z)| < Am- (3.7)

Here ¥U(x) is the c.d.f. of N(0,1), F,(x) and p are given by

1 n E|X1|3
<z =
ov/n i P ol

Now, we are ready to introduce our main result:

Theorem 3.5 Suppose [, |0|dG(0) < 0o and (1.4) is assumed. If (1.6) is true, then
we have, as n — oo,

lim (n'~ et )[R(G, 6,) — R(G, 8)] = 0. (3.8)

n—00

Before proving it, we state two corollaries of Theorem 3.5. For N(6,1), (1.6) holds
naturally. So we have the following lemma.

Corollary 3.6 For X ~ N(0,1), if Jo|0|dG(6) < oo and (1.4) is assumed, then 6,
has a rate of convergence of order o(n_1+l°sllosn).

For the general exponential family distributions, we know ¢(6) is a continuous func-
tion. So we have the following lemma.

Corollary 3.7 Suppose X has density (1.1) and (1.4) is true. If Q is an inner closed
subset of the natural parameter space {0 : c(6) > 0}, then &, has a rate of convergence

1
of order o(n™ T Tgiosn ),

For N(6,1), the only necessary condition we need is that [, |8|dG(8) < oo. This
condition guarantees that the risk of Bayes decision rules is finite and is quite generally
used in Bayes analysis. So our result can be applied in most situations. As for the
convergence rate, our result is quite strong, since o(n‘HW) is much closer to O(n™1),
which has been thought of as the best possible convergence rate for the empirical Bayes
rules. Karunamuni (1996) claimed that the optimal minimax rate of empirical Bayes
rule for N(0,1) is O(n=2—1/@r+1)) ' > 1. From our result, one can see that the regret
of é, has the convergence rate of order o(n‘”m) even in his minimax setting. So
his minimax rate result for N(f,1) is not correct. For the general exponential family
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distributions, c(f) is a continuous function. If we know 6 € [f1,602] C {0 : c(6) > 0},
where 6y; and 6y, are known or unknown constants, then we can apply Corollary 3.7 and
construct an empirical Bayes test such that its regret converges to zero with a rate of
order o(n_1+ﬁll°?ﬁ).

Proof of Theorem 3.5. From (2.10),

bo

R(G,6,) ~R(G.6) = [ P(Wa(®) < 0w(@)h(@)fpcuimyeids
C2n

[, PWal) > 0lw(@) @)1 cuw<nde

bo
<
* P(W,(z) < 0)w w(2)h(2) jw(e)> 1 4o

+ / PWa(@) > 0)[w(z) [h(@) [y (o)< 2y
= I+II+1IT+1V.

We decompose R(G, 6 n) — R(G, ) into four parts and estimate each part separately. In
case of 0 < w(z) < \/—, P(Wy,(z) < 0) converges quite slowly. We will use the property
of w(z) to estimate the bound of Part I. We use a similar method in Part II. In case of
w(z) > ﬁ, we depend mainly on the estimation of P(W,(z) < 0) to obtain a bound of
Part III. Similarly, we estimate the bound of Part IV.

Part L. Since A(z) < Ly, for © € [C1n, Con] and 0 < w(z) < =, we have

L, fto
< ﬁ/clln I[O<w(z)§ﬁ]dx'

From (3.1), mingejey, cijufer,Con] [W(2)| > A2(logn) 8. So there exists an integer Ny(>
N3) such that as n > Ny v/nminge(c,, c1jujer,czn] [w(2)] > 1. Tt follows that {Cy, < z <

Con * lw(z)| < 2=} C [e1, ¢a)- Thus & Tiocufeyc 2142 = e Tio<u(m)< 3107 Using (3.2),

bo bo , w(e1) Al
. I[0<,w(z)sﬁ]d$ S —Al /01 I[0<1U(w)5ﬁ]w (.’L')d.'L' S Al_/() I[0<y< 1 ]dy < — \/’,_l
Thus AL
I<—==" (3.9)
n
Part II. Similar to Part I, we can have, as n > Ny,
AL
II < ln (3.10)

Part III. We use (3.5), (3.7) and (3.4) to estimate P(W,(z) < O)I[w(m)>%] first.
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/Ny (z)

= Zijn < — Iw z)>-L

1/n02 ]gl ’ on(z) () e > el
. Vinw(z)

< Z n S~y N> 4

,/naz( =1 on(7) v
E|Zjn|?
< oY@, ol
= 200(2) © " m(1+ | - Y203 foter> 3

924  E|Z|
< B(—ivnus jn ,

1 24

One can see why we need Lemma 3.4 and apply it in the first equality above. If we
applied (3.7) to P(Wy(z) < 0) without substituting w,(z) with w(z), then we would
have m in the second part of the last inequality above. Since w,(z) is 0 for some

z € {z : w(z) > 0}, the bound of P(W,(x) < 0) would be infinite. Another benefit of
Lemma 3.4 is that we can handle w(z) easier than w,(z) after the substitution. Applying
the inequality above, we have

b
11 < /C " P(Wa(z) < 0) oy 0 (@) R(2)dz
1n

/Cln (——\/— w(z))w(z)h(z)dz + 24 > 2w (@)h(z)dz

Cin nu3'w($) [w(=)

= [ o) + [ @(~3 V() w(a)h()ds

Cin

+/b° 2Ah( \dz

Cin ’I’Lu
= 1L+ 111+ 111;.

Here fg‘;n ®(—ivnubw(z))w(z)h(z)dz is decomposed into two parts. The reason is that
®(—1vnubw(z)) goes to zero very slowly if w(z) is relatively small. So we have to
separate it into [§ ®(—ZvnuSw(z))w(z)h(z)dz and fb" ®(—1vnubw(z))w(z)h(z)dz.
If z € [Cha, 1], w(:v) > As(logn)~B from (3.2). Then

IIn < /Cm (——\/—(logn) BYw(z)h(z)dz

_ <I>(—-—\/n_ué(logn)_3) / " w(@)h(z)dz

Cin
A
< GZ>(——2z uS(logn)~ / |w(z)|h(z)
Since vnub(logn)=2 = (nn—slosslosn)%(logn)‘B , there exists an integer Ns(> N,) such
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that for n > Ny, ®(—42+/nus(logn)~F) < L and

=

Vv

IA
3|

, (3.11)

where Ay = [? |w(z)|h(z)dz < [ ag(@)h(z)dz + [P |Yo(z)|h(z)ds < 1+ E|O| < oo.
As for Part Illy, noting h(z) < L, for £ € [¢1, c;] and making change of variable y =

(o),

b
I, < ~AL [ 0<I>(—%\/nuﬁw(x))w(m)w'(w)d:r (3.12)
4A,L, [3Vnutu(a)
4A,L, [
< —
< /0 ®(—y)ydy
_ 2A4L,
 nus

Consider I113 now. Since by — C1, < 2L, and h(z) < L, for z € [Ci,, Cay], we have

A 4AL2
111 = 22 [* ho)de < H25n

nu® Jor, nud

(3.13)

Combining (3.11), (3.12) and (3.13), we obtain that when n > Nj,

A 2
<=4 ZAIf” + 4AL;.
n nu nu

Since u3L2 = n~ Foslesw (loglogn)? — 0, we can find some integer Ng(> Nj) such that,
for n > N,

I < 4A1’;.“". (3.14)
nu

Part IV. Similar to P(W,(z) < O)I[w(m)>%], we have

PWa(2) > 0)Iju(z)<-

2A I
nud|w(z)| PE<-7E

1
1—@(5vVnudlu(z)]) +
Then as in Part III,

CZn
v < /b " P(Wa(2) > 0) ey g lw(e) h(2)ds

< [ - 2 vVasiu(E) iw(@)h)ds

c2
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+ [(1- eV @lh@d+ [ 2@

4A, L, [3VmeSlw(e)| 4AL2

< [ SG V(@) o + S22 [ 1 - B(y)lydy + "
Ay  2AL, 4AL2
S — + 6 + 3

nu nu
where the last inequality holds for n > N5. And as n > N,
4A,L,
v < 4k (3.15)

nub
From (3.9), (3.10), (3.14) and (3.15), we get

2A;:L, n 8A:L,

R(G,d,) - R(G,6) < =% —

Asn— 00, n loglogn X =2 L = n 1oslosn X M%l— — 0. Thus

B8Toglogn

lim n1_1°511°5” [R(G, 6’n) - R(Ga 5)] =0.

n—>00

The proof is completed.

§ 4 Proofs of Lemmas
Proof of Lemma 3.1 We know that w(z) is infinite differentiable. And
— 0z _ 2 Oz
%) = b, /Q 0c(6)e?dG (6) /Q 0%c(6)e®dG (6). (4.1)

If fo0c(0)e™dG(6) = 0, then w'(by) = — f, 62c(0)e®dG(8) < 0. If [, fc(0)e®dG(0) >
0, then

Jo 62c(0)e™dG(8)  fo 0c(0)efdG (6)
Jo 0c(0)ePdG(6) ~ [, c(0)dG (6)

6%¢(6)efP0dG(8)
Thus w'(by) = [, 0c(6)e®dG (8)[6, — j};oc(o)eobode)

= 90.

] <0. If [, 0c(9)e®™dG () < 0, then

Ja 0e(B)e™*dG(6) _ o 0c(8)e"0dG(0)

Ja 0c(6)efodG(6) Jo c(0)efdG(6) = bo.

6%c(6)ef0dG(6
Thus w'(by) = [, 0c(6)e® dG(6)[6, — ff‘; €c((0))e%0 dG((o))] < 0. Now we have proved that
w'(by) < O. (4.2)
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Next, we prove that there exist ¢z and ¢4 such that o < ¢z < by < ¢4 <  and w(z) is
strictly monotone in (o, ¢3) and (c4, 8). Taking the derivative of w'(z), we have

"(z) = 6 /Q 6%c(6)e*2dG (6) / 05c(6)e?dG (6).

And w"(z) can be written as

Jo 03c(0)e?dG(0)
fa 020(9)6"sz(0)]'

/ 62c(6)e**dG(6)[6y —

Note that, under (1.4),

Jo c(0)e’™dG(8),, [ 0*c(0)e?*dG(0) o, 62c(0)e?*dG(0) — [f, 8°c(0)e?*dG(6)]?
[fQ 920(9)6'9sz(9)] B [f 6%c(0)e=dG(0)]?

Thus w"(z) is strictly decreasing and has at most one sign change in (c, §).

If w"(x) has no sign change, we have that w'(z) > 0 for all z € (o, 8) or w'(z) < 0
for all z € (a,3). Then we can choose any point from (c, by) as ¢z and any point from
(bo, B) as c4.

If w"(x) has one sign change, let by be the change point. Since w”(z) is strictly
decreasing, w"(z) > 0 for z € (o, b)) and w"(z) < 0 for z € (by,8). Then w'(z) is
strictly increasing in (o, b2) and strictly decreasing in (bs, 3). So w'(z) has at most one
sign change in (o, by) and at most one sign change in (by, 8).

Consider the case of (a,b;). If w'(z) has no sign change in («, b;), we can choose any
point in (a,bs A bo) as cs. If w'(x) has one sign change in (o, b;), let by; be the change
point. Then we can choose any point in (a, b1y Abg) as c3. So @ < ¢3 < by and w'(x) has
no sign change in (a, c3).

Consider the case of (bs, ). If w'(z) has no sign change in (b, 8), we can choose any
point in (by V by, B) as cs. If w'(z) has one sign change in (by, 3), let byy be the change
point. Then we can choose any point in (by V b2, 3) as ¢s. Thus by < ¢4 < 8 and w'(z)
has no sign change in (c4, 3).

So we have proved that w(z) is strictly monotone in z € («, ¢3) and = € (cq4, 8), where
a < c3 < by <cy < B. Without loss of generality, assume Ci, < ¢z < ¢4 < Coy, for all
n > Ny. Then

> 0.

|w(2)] = min{w(Cin), |w(Can)|, w(cs), [w(ea)|}- (4.3)

min
z€[Cln,c3]U[c4,C2n]
From (4.1), we see that w'(z) is continuous. Then we can find ¢; and ¢, such that
c3 < ¢ <bp < ¢y <y, and for any z € [¢1, ¢,

(@) > %[—w’(bo)] = A7 (4.4)

Note that w(z) > 0 for x € [c3,b0); w(z) < 0 for z € (by, cq]. Then

G =1 min, w(@)| Al min ()] >0

14



Obviously,
o Bin o [0(@)] = minfw(Cin), [0 (Cn)} A G (45)

Let B be a positive constant such that Jape<51 4G(8) # 0. From (2.5), we know |Cy,| <
loglogn. Then -

w(Cin) > [fo = go(er)] | c(O)eIo1dG(6)
> [0~ galen)] [ e(B)e 08 Emac (o)
> [bo=dole)] |, c(6)logn)™dG(0)
2 [t~ de(co)llogn)™ [ c(0)dG(6).

Similarly, [w(Csn)| 2 [fa(c2) — 6o](logn)~2 foyg<p c(6)dG(0). Let Ay = min{[fy —
dc(c1)), [palcz) — B} x Jogsi<p) €(0)dG(0) > 0. Thus, there exists an integer Ny (> Np)
such that for n > Ny, As(logn)=® < (; and

| > Ay(logn) ™. 4.6
ze[clnyrcll]..]lLIJl[Cl,Czn] Iw(m)l - 2( Og n) ( )

This completes the proof of Lemma 3.1.

Proof of Lemma 3.2 Using Taylor expansion, (2.1) and (2.2), a straight-forward
computation shows that

KOU()—{':U_J)
[W] (4.7)
p Ko(52)
= /Q/a —Wc(e)e"’ h(y)dydG (0)
= [ " Kou(t)c(0)e™= e dtdG(9)
= [ @[ Kou(t)e™dilac (o)
i 1 KOv t tvuveveOut*
= /Q c(6)e’[1 + /0 () - dt|dG(6)
- /ﬂ c(8)e?dG(6) + u® /Q 6vc(6)e’] /0 ' w—dﬂda(e)),
where 0 < t* = t*(0,u,t,v) < 1. Also,
Klv(}_(f—z)
E[W] (4.8)

15



ﬁKlv(y;_m) Y
L] iy (0 hy)dydG(6)

[0

= %/Q/Ol K1, (t)c(0) e e dtd G (8)
_ % [ e " Koo (£)e?de)dG ()

_ 1 . 1K1(t)tv+1uv+1911+160ut**
= - /Q c(6)e% uf + /0 o dt)dG (6)

K tv-{—l Gut**
_ 0z v v+1 0a: 1
- /Q 0c(6)e®dG (6) + u /n 9 [ / TG )

where 0 < t** = ¢*(0, u,t,v) < 1. From (4.7) and (4.8), we get that
EVo(X;, )] = w(z) + v’dy(2), (4.9)
where
do(z) = 6, / ) el / 1 —wdt]dG(e) (4.10)
/ 6 +1c(6)e] / Kl” tm ™ 4G (0).

Recalling that |K;,(t)| < (v +1)28"+! for i = 0,1,

(v + 1)%8v+
(v+1)

1
/ Ko (t)tve? dt < el < (v +1)8"H el
0

and
(v + 1)%8v+!

— e[0| < (’U + 1)8v+le|0|_

1
/ Kl'u (t)tv+160ut“ dt S
0
It follows that

v+1)|0 “8”"'1 6)elfl(l=l+1)
o [ RO

|dn dG(0)

+/w+nwwwwwmwww
Q (v+1)!

. VRV v+1gv+1
Since 108" < €81l and % < e*%l we have

dG(0).

|, ()] < (8l60] + 1)(v + 1) /Q c(8)e10=+9 4 (g).

For x € [Cin, Canl, |z| < L,. Now, without loss of generality, we assume |z| + 9 < 2L,.
And note that (1.6) is assumed. Then, for z € [Cip, Cay),

/Q c(8)e=1+9 4G (6)
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IA

/Q c(8)e2E¥14G (6)
/ e—|0|1+n62Ln|0]dG(9) + BleZBoLn
Q

IA

IA

L) 0 (6) + elfICLa=leN 4G () + B, e2LnPo

/ﬂ[|9|S(2Ln)1/"] /Q[|'9|>(2Ln)1/”]
e(2loglogm) ™D 4 9 | B (logm)2Bo.

IA

Since u = n~s@eken and v = 16[135'%@] — 1, we have v + 1 < 8loglogn and

log 1
1] oglogm, ; » 17
uU =n 8log log n < n~*n8loglogn ,

As n — oo, \/nu®(v + 1)e@lsloe) ™D _y 6 and \/mu? (v + 1) (logn)2Be — 0. Thus
V(v + 1) / c(8)e=+94G(9) = 0.
Q

So we can find an Ny(> N;) such that for n > N, u?|d,(z)| < ﬁ
Proof of Lemma 3.3 Note that for ¢ = 0 or 1, |K;,(¢)] < (v + 1)28"*1 if 0 <
t <1 and |Kiy()] = 0if ¢ < 0ort > 1 Then X&) < IS Tocy<oru. For
T € [Cin, Con), 7,2 + u] C [Cip,Con + u]. From (2.8), we have h(y) > (logn)~! for
y € [Cin, Con+u]. Thus, for any y € (o, 8), IK’Z((};” < (v+1)?8"*lognif x € [Cip, Conl.

Since u(v+1)28"!logn < n”eke= (log n)888+1(81oglog n)?, u(v+1)28"*'logn — 0 as
n — 0o0. Then

|%MCM%% 0 (4.11)
uniformly for any y € (a, 8). On the other hand,
u /ﬂ c(0)e2dG(0) < w /ﬂ c(8)e®*ldG ()
< u/ﬂe‘MH"e'g'L"dG(G) + B ePoln
< no oS T Ly B (logm) ),
— 0.

as n — oo. Similarly,

u /Q 0c(6)e?dG (6) — 0.

It follows that, as n — oo,
u[w(z) + v dn ()] 1c,,<o<Crn] = 0. (4.12)
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From (4.11) and (4.12), we see that, as n — oo,

Koo(22)  uKy,(E2) ,
Y - “ - n I 2<Cs
h(y) h(y) wwn(7)| 10y, <o<Can] — 0

|00’U,2

uniformly for y € (a, 8). So there exists an Ny(> N3) such that for alln > Ny, y € (a, §),
KO'U(%) _ 'U'Klv(%) 3

o ~ W wn(2)| i1 << < 1. 413
% k) )Y @) icisascu) < (4.13)
Koo(4) _ Kiy(A7)
Recall Zj,(z) = Va(Xj, 7) — wa(z) = 6 wh(X) | wRR(%) wn(T).

B2 = [ [ ) K;j;’,(ij—;)—wn(w)]zc(me”yh(y)dyda(e)

= / [ 0w K"” - 2Bl - st @) e(0)e his)ayac0)

u6
Also,

Bzn@l = [ [ oot - T P emmaic)

- E/ [ |00u2K°v(*’%””)_uKlvw;—w)_uswn(x)|3c(0>60yh(y)dde(0>

h(y)
< L[ [ew K"”( - 2Bl @)l hwavac (o),
= @0’ n ().

The proof is completed.

Proof of Lemma 3.4 From lemma, 3.2, we have that [u”d,(z)| < 5= for all o €
[C1n, Cos] and n > N,. If w(z) >

\/‘,
Vrwn(z) = Al (@) + uda(z)] = vAw(z) + Viud,(z) > 1 — % _ % >0
and
wE)
dn(7) Vnw(z) + /nud,(z)
Vow(z) —1+1
Vnw(z)—1+1
< 2.
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Then (3.5) is proved. (3.6) can be proved in a similar way.

§ 5 A Few Comments

From §4, we see that Lemma 3.2 and Lemma 3.3 depend strongly on B(m). Now
we use the result that B(m) = (m + 1)28™*1. In the appendix, we use the polynomial
functions as kernels. For us, the only things we need for those kernels are their common
compact supports, (2,1) and (2.2). So if we can find some kernels such that B(m)
is smaller than (m + 1)28™*! significantly, then our result can be much improved. If
Kim(y) can be constructed such that B(m) < C, for some constant C, then our result
can be improved to

ne[R(G, 6,) — R(G, )] — 0, (5.1)

where €, can be any prespecified positive sequence such that €, — 0 as n — co. The
proof of this is almost similar to the proof of Theorem 3.5. Then (5.1) tells us that we
can construct the empirical Bayes test such that it has the convergence rate as close to
O(n™') as possible. So the problem to find the empirical Bayes test such that its regret
converges to zero with a rate as close to O(n™!) as possible is reduced to find the kernels
such that B(m) is as small as possible.

Appendix

We will prove that K;n(y), used in §2, can be chosen properly such that B(m) =
(m +1)?8™*1. Fix m for a moment. For i = 0, let

Kon(y) = amY™ + Gmay™ -+ ap, 0Ly <1
omi¥) =1 o, otherwise.

For ¢+ =1, let

Bny™ + b1 y™ 4k by, fO0<y<1
0, otherwise.

Kum(y) = {

We treat Kon(y) first. (2.1) implies

am Am—1 - —
m+1 + am + + ao =1
Am_ m—1 PP a9 —
m+2 + m+1 + + 2 0
_Qm Om—-1 . B —
2m+1 + 2m + + m+1 0.

19



Using Cramer’s rule, we have, for 0 < s < m,

1
mii-l 1 1
m+2 0 2
1 1
a, = — gl (1) m+l 'l dety
3
m1 =T 1| dety
L .. 1 1
m—+2 5+2 2
_1 .. 1 N
2m+1 s+m-+1 m+1

where det, is the numerator of a; and det; is the denominator of a;. A simple calculation

shows that
[m!(m —1)!---21]3

dety = (m+1)!(m+2)!- - (2m + 1)!
and
dot. — SO @) (m — 1l(m — 2)!- 2P (s + m + 1)!
2 m+2)!m+3)!---Cm+DI(s+Dlsl(m—s)!
Thus
(=) M st 4 1) (m 4 5 + 1))
b = (s + Dlsl(m — s)! '
And . . .
m-+ S+ m m + m
i (")) e (22)0)
If m = 21,

4 +1) (2
<
|m-M+D@+J(J

(41 4 1)!
hur

Using Stirling’s formula (27)2n™2e™™ < n! < 2(27)7n"+3e~" in above inequality and
g
then simplifying it, we have
|a'3| _<.. 26l+3 S 8m+1.

al+3)\ (20 +1
Jos| - < (2l+2)<2l+2)<l+1>
(41 + 3)!
@+ 00+ D0

Ifm=20+1,
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By Stirling’s formula, we can get

As for Ky, (y), (2.2) implies

|as| < 1261+6 < 8m+1'
s

ik =0
mt ey =
- by
2rl;z+1+ S +"'+Eb-|O-T =0.
Then, for 0 < s < m,
1
i 1 1
m+2 2
b, — _%m1+1 (1) mg | _ (G m 4 2) (s + m + 1))
T e } (m — 1)!s!(s + 2)sl(m — s)!
m+2 s+2 2
1 1 1
2m+1 s+m+1 m+1
Thus 5 0 .
Gs s+ 2

So we prove that, for i = 0,1
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