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Abstract

We revisit the problem of interval estimation of a binomial proportion. The erratic
behavior of the coverage probability of the standard Wald confidence interval has previ-
ously been remarked on in the literature (Blyth & Still (1983), Agresti & Coull (1998),
Santner (1998), and others). We begin by showing that the chaotic coverage properties
of the Wald interval are far more persistent than is appreciated. Furthermore, com-
mon textbook prescriptions regarding its safety are misleading and defective in several
respects and cannot be trusted.

This leads us to consideration of alternative intervals. Eight natural alternatives are
presented, each with its motivation and context. Each interval is examined as regards
its coverage probability and its expected length. Based on this analysis, we recommend
the Wilson interval (Wilson (1927)) or the equal tailed Jeffreys prior interval for small
n, and the interval suggested in Agresti and Coull for larger n. The theoretical support
for these recommendations is available in the companion paper Brown, Cai & DasGupta
(1999).

We also explain why the Jeffreys prior interval has appealing coverage properties
while maintaining parsimony in its length.
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1 Introduction

This article revisits one of the most basic and methodologically important problems in sta-
tistical practice, namely, interval estimation of the probability of success in a binomial dis-
tribution. There is a textbook confidence interval for this problem that has acquired nearly
universal acceptance in practice. The interval, of course, is % 2,/ n~Y2(p(1— )2, where
P = X/n is the sample proportion of successes, and z,/3 is the 100(1 — a/2)th percentile of
the standard normal distribution. The interval is easy to present and motivate, and easy to
compute. With the exceptions of the ¢ test, linear regression, and ANOVA, its popularity in
everyday practical statistics is virtually unmatched. The standard interval is known as the
Wald interval as it comes from the Wald large sample test for the binomial case.

So at first glance, one may think that the problem is too simple, and has a clear and
present solution. In fact, the problem is a difficult one, with unanticipated complexities. It
is widely recognized that the actual coverage probability of the standard interval is poor for
p near 0 or 1. In fact, even at the level of introductory statistics texts, the standard interval
is often presented with the caveat that it should be used only when n - min(p, 1 — p) is at
least 5 (or 10). Examination of the popular texts reveals that the qualifications with which
the standard interval is presented are varied, but they all reflect the concern about poor
coverage when p is near the boundaries.

In a series of interesting recent articles, it has also been pointed out that the coverage
properties of the standard interval can be erratically poor even if p is not near the boundaries;
see, for instance, Vollset (1993), Santner (1998), and Agresti & Coull (1998). Slightly older
literature includes Ghosh (1979), Cressie (1980), and Blyth & Still (1983). Agresti & Coull
(1998), particularly consider the nominal 95% case, and show the erratic and poor behavior
of the standard interval’s coverage probability for small n even when p is not near the
boundaries. See their Figure 4 for the cases n = 5 and 10.

We will show in this article that the eccentric behavior of the standard interval’s coverage
probability is far deeper than has been explained or is appreciated by statisticians at large.
We will show that the popular prescriptions the standard interval comes with are defective
in several respects, and are not to be trusted. In addition, we will motivate, present, and
analyze several alternatives to the standard interval for a general confidence level. We
will ultimately make recommendations about choosing a specific interval for practical use,
separately for different intervals of values of n. It will be seen that for small n ( 40 or
less), our recommendation differs from the recommendation Agresti & Coull (1998) made
for the nominal 95% case. To facilitate greater appreciation of the seriousness of the problem,
we have kept the technical content of this article at a minimal level. The companion article
Brown, Cai & DasGupta (1999) presents the associated theoretical calculations on Edgeworth
expansions of the various intervals’ coverage probabilities and asymptotic expansions for their
expected lengths.

In Section 2, we first present a series of examples on the degree of severity of the chaotic
behavior of the standard interval’s coverage probability. The chaotic behavior does not go
away even when n is quite large and p is not near the boundaries. For instance, when n
is 100, the actual coverage probability of the nominal 95% standard interval is .952 if p is
.106, but only .911 if p is .107. The behavior of the coverage probability can be even more
erratic as a function of n. If the true p is .5, the actual coverage probability of the nominal



95% interval is .953 at the rather small sample size n = 17, but falls to .919 at the much
larger sample size n = 40! This eccentric behavior can get downright extreme in certain
practically important problems. For instance, consider defective proportions in industrial
quality control problems. There it would be quite common to have a true p that is small.
For instance, if the true p is .005, then the coverage probability of the nominal 95% interval
increases monotonically in n all the way up to n = 591 to the level .945, only to drop down
to .792 if n is 592. This unlucky spell continues for a while, and then the coverage bounces
back to .948 when n is 953, but dramatically falls to .852 when n is 954. Subsequent unlucky
spells start off at n = 1279, 1583, and on and on. It should be widely known that the
coverage of the standard interval can be significantly lower at a much larger sample size, and
that all of these happen in an unpredictable and rather random way.

Continuing, also in Section 2, we list a set of common prescriptions that standard texts
present while discussing the standard interval. We show what the deficiencies are in some
of these prescriptions. For example, Proposition 1 and the subsequent Table 3 illustrate the
defects of these common prescriptions.

In Section 3, we begin to address alternative intervals. Eight alternatives are listed.
Of these, Agresti & Coull (1998) considered, for the 95% case, the Clopper-Pearson ”exact”
interval, the ”score interval”, and an adjusted Wald interval that formally adds two successes
and two failures to the observed counts and then uses the standard method. That is, this
interval is p =+ 20257 Y/2(H(1 — §))*/2, where fi = n+4, and § = (X +2)/(n+4). We refer to
this interval as the Agresti-Coull interval. Also, we refer to the score interval as the Wilson
interval since Wilson (1927) seems to have introduced it. Two additional intervals we have
considered are the arcsine interval, and the Bayesian equal tailed interval resulting from
the natural noninformative Jeffreys prior. A very simple interval that simply recenters the
standard interval is also presented. The other two intervals are slight modifications of the
Wilson and the Jeffrey prior interval in order to correct a disturbing downward spike in their
coverages very close to the two boundaries. All the intervals with necessary motivation and
additional information are then analyzed in the rest of Section 3.

In section 4, we come to choice of a specific alternative interval. At issue are three
things. First, the coverage probability should be close to the target nominal value; second,
the interval should be as parsimonious as possible in the sense of expected length. And, of
course, simplicity of presentation is also an issue, particularly for class room presentation.
On consideration of these factors, we came to the conclusion that for small n (40 or less),
we recommend that either the Wilson or the Jeffreys prior interval should be used. They
are very comparable, and either may be used depending on taste. The Wilson interval has
a closed form formula. The Jeffreys interval does not. One can expect that there would be
resistance to using the Jeffreys interval solely due to this reason. We therefore provide a
table simply listing the limits of the Jeffrey interval for n up to 30, and in addition also give
closed form and very accurate approximations to the limits. These approximations do not
need any additional software. For larger n ( n > 40), the Wilson, Jeffrey, and the Agresti-
Coull interval are all very comparable, and so for such n, due to its simplest form, we come
to the conclusion that the Agresti-Coull interval should be recommended. Even for smaller
sample sizes the Agresti-Coull interval interval is strongly preferable to the standard one,
and so might be the choice where simplicity is a paramount objective.

We strongly recommend that introductory texts in statistics present one or more of these



alternative intervals, in preference to the standard one. The slight sacrifice in simplicity
would be more than worthwhile. The conclusions we make are theoretically supported by
the results in Brown, Cai & DasGupta (1999).

2 The Standard Interval

When constructing a confidence interval we usually wish the actual coverage probability
to be close to the nominal confidence level. Because of the discrete nature of the binomial
distribution we cannot always achieve the exact nominal confidence level unless a randomized
procedure is used. Thus our objective is to construct non-randomized confidence intervals
for p such that the coverage probability Py(p € CI) =~ 1 — o where « is some prespecified
value between 0 and 1. We shall also call C(p,n) = P,(p € CI) the confidence coefficient.

A standard confidence interval for p based on normal approximation has gained universal
recommendation in the introductory statistics textbooks and in statistical practice. The
interval is known to guarantee that for any fixed p, C(p,n) > 1 — o as n — 0.

‘Let ¢(2) and ®(z) be the standard normal density and distribution functions, respectively.
‘Throughout the paper we denote kK = za/o = @7 }(1 — a/2), p = X/n and § = 1 — $. The
standard normal approximation confidence interval CI is given by

CI, = p 4k n2(pg)"/>. (1)

This interval is obtained by inverting the acceptance region of the well known Wald
large-sample normal test for a general problem:

(6 6)/5e()] < & (2)

where 0 is a generic parameter, f is the maximum likelihood estimate of  and se(0) is
the estimated standard error of §. In the binomial case, we have 6 = p, =X /n and
se(f) = (pg)M/2n1/2.

The standard interval is easy to calculate and is heuristically appealing. In introductory
statistics texts and courses, the confidence CI; is usually presented along with some heuristic
justification based on the Central Limit Theorem. The students and users no doubt believe
that the larger the number n, the better the normal approximation, and thus the closer the
actual coverage would be to the nominal level 1 — a. We will show how badly this is false.
Let us take a close look at how the standard interval CI; really performs.

2.1 Lucky n, Lucky p

An interesting phenomenon for the standard interval is that the actual coverage probability
of the confidence interval contains non-negligible oscillation as both p and n vary. There
exist some “lucky” pairs (p, n) such that the actual coverage probability C(p, n) is very
close to or larger than the nominal level. On the other hand, there also exist “unlucky” pairs
(p, n) such that the corresponding C(p, n) is much smaller than the nominal level. The
phenomenon of oscillation is both in n, for fixed p, and in p, for fixed n. Furthermore, the
oscillation is discontinuous. Drastic change in coverage occurs in nearby p for fixed n and in
nearby n for fixed p. Let us look at five simple but instructive examples.
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The probabilities reported in the following plots and tables, as well as those appearing
later in this paper, are the result of direct probability calculations produced in S-PLUS.
In all cases their numerical accuracy considerably exceeds the number of significant figures
reported and/or the accuracy visually obtainable from the plots. (Plots for variable p are
the probabilities for a fine grid of values of p - e.g., 2000 equally spaced values of p for the
plots in Figure 6.)

Example 1. Figure 1 plots the coverage probability of the nominal 95% standard interval
for p = .2. The number of trials n varies from 25 to 100. It is clear from the plot that
the oscillation is significant and the coverage probability does not steadily get closer to the
nominal confidence level as n increases. For instance, C(.2,30) = .946 and C(.2,98) = .928.
So, as hard as it is to believe, the coverage probability is significantly closer to .95 when
n = 30 than when n = 98. We see that the true coverage probability behaves contrary to
conventional wisdom in a very significant way.
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Figure 1: Oscillation phenomenon for fixed p = .2 and variable n = 25 to 100.

Example 2. Now consider the case of p = .5. Since p = .5, conventional wisdom might
suggest to an unsuspecting user that all will be well if n is about 20. We evaluate the exact
coverage probability of the 95% standard interval for 10 < n < 50. In Table 1, we list
the values of “lucky” n (defined as C(p, n) > .95) and the values of “unlucky” n (defined
for specificity as C(p, n) < .92). The conclusions presented in Table 2 are surprising. We
note that when n = 17 the coverage probability is .951, but the coverage probability equals
904 when n = 18. Indeed, the unlucky values of n arise suddenly. Although p is .5, the
coverage is still only .919 at n = 40. It illustrates the inconsistency, unpredictability and
poor performance of the standard interval.

Lucky n 17 20 25 30 35 37 42 44 49
C(.5,n) 981 959 | 957 | 957 | 959 | .953 | .956 | .951 | .956
Unlucky n || 10 12 13 15 18 23 28 33 40
C(.5,n) 891 | .854 | 908 | .882 | .904 | .907 | .913 | 920 | .919

Table 1: Lucky n and Unlucky n for 10 < n < 50 and p = .5.



Example 3. Now let us move p really close to the boundary, say p = .005. We mention
in the introduction that such p are relevant in certain practical applications. Since p is so
small, now one may fully expect that the coverage probability of the standard interval is
poor. Figure 2 and Table 2 show that there are still surprises and indeed we now begin to
see a whole new kind of erratic behavior. The oscillation of the coverage probability does
not show until rather large n. Indeed, the coverage probability makes a slow ascent all the
way until n = 591, and then dramatically drops to .792 when n = 592. Figure 2 shows
that thereafter the oscillation manifests in full force, in contrast to Examples 1 and 2, where
the oscillation started early on. Subsequent “unlucky” values of n again arise in the same
unpredictable way, as one can see from Table 2.

o so0o 1000 1500 =co0o
[

Figure 2: Oscillation in coverage for small p.

Unlucky n || 592 | 954 | 1279 | 1583 | 1876
C(.005,n) || .792 | .852 | .875| .889 | .898

Table 2: Late arrival of unlucky n for small p.

Example 4. Figure 3 plots the coverage probability of the nominal 95% standard interval
with fixed n = 100 and variable p. It can be seen from Figure 3 that in spite of the “large”
sample size, significant change in coverage probability occurs in nearby p. The magnitude
of oscillation increases significantly as p moves toward 0 or 1.

Example 5. Figure 4 shows the coverage probability of the nominal 99% standard interval
with n = 20 and variable p from 0 to 1. Besides the oscillation phenomenon similar to
Figure 3, a striking fact in this case is that the coverage never reaches the nominal level.
The coverage probability is ALWAYS smaller than .99, and in fact on the average the coverage
is only .883. Our evaluations show that for all n < 45, the coverage of the 99% standard
interval is strictly smaller than the nominal level for all 0 < p < 1.

It is evident from the preceding presentation that the actual coverage probability of the
standard interval can differ significantly from the nominal confidence level for realistic and
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Figure 4: Coverage of the nominal 99% standard interval for fixed n = 20 and variable p.

indeed larger than realistic sample sizes. The error comes from two sources: discreteness
and skewness in the underlying binomial distribution. For a two-sided interval, the rounding
error due to discreteness is dominant, and the error due to skewness is somewhat secondary,
but still important for even moderately large n. (See Brown, Cai & DasGupta (1999) for
more details.) Note that the situation is different for one-sided intervals. There, the error
caused by the skewness can be larger than the rounding error. See Hall (1982) for a detailed
discussion on one-sided confidence intervals.

The oscillation in the coverage probability is caused by the discreteness of the binomial
distribution, more precisely the lattice structure of the binomial distribution. The oscillations
are unavoidable for any nonrandomized procedure.

The erratic and unsatisfactory coverage properties of the standard interval have often
been remarked on, but curiously still do not seem to be widely appreciated among statisti-
cians. See, e.g., Ghosh (1979) , Blyth & Still (1983), and Agresti & Coull ( 1998). Blyth &
Still (1983) also shows that the continuity-corrected version still has the same disadvantages.

Here we would like to point an error in Ghosh (1979). It is claimed that, for any p and
a, n can be chosen sufficiently large such that the confidence coefficient actually exceeds
the nominal level 1 — a up to the order n~'/2 (Ghosh (1979), pp. 895). This is in fact not
true. The oscillation terms were mistakenly omitted in the Edgeworth expansion in Ghosh
(1979). See Brown, Cai & DasGupta (1999) for more details on the Edgeworth expansion of



the coverage probability.

2.2 Textbook Qualifications

The normal approximation used to justify the standard confidence interval for p can be
significantly in error. The error is most evident when the true p is close to 0 or 1. See
Lehmann (1999). In fact, it is easy to show that, for any fixed n, the confidence coefficient
C(p,n) — 0 as p — 0 or 1. Therefore the most major problems arise as regards coverage
probability when p is near the boundaries.

Poor coverage probabilities for p near 0 or 1 are widely remarked on, and generally, in
the popular texts, a brief sentence is added qualifying when to use the standard confidence
interval for p. It is interesting to see what these qualifications are. A sample of 10 popular
texts gives the following qualifications:

The confidence interval may be used if

(a). np, n(1 —p) are > 5; (b). np, n(l — p) are > 10;

(¢). np(1—p) 2 5; (d). np(1 —p) > 10;
(e). np, n(1 —p) are > 5; (f). np, n(1 — p) are > 10;
(g). n quite large; (h). n > 50 unless p is very small.

It seems clear that the authors are attempting to say that the standard interval may
be used if the central limit approximation is accurate. These prescriptions are defective
in several respects. In the estimation problem, (a), (b), (c), and (d) are not verifiable.
Even when these conditions are satisfied, we see, for instance, from Table 1 in the previous
section, that there is no guarantee that the true coverage probability is close to the nominal
confidence level. For example, when n = 40 and p = .5, one has np = n(l — p) = 20
and np(l — p) = 10, so clearly either of the conditions (a), (b), (c), and (d) is satisfied.
But from Table 1, the true coverage probability in this case equals .919 which is certainly
unsatisfactory for a confidence interval at nominal level .95.

The qualification (g) is useless and (h) is patently misleading. (e), and (f) are certainly
verifiable, but they are not given a meaning. The point is that the standard interval clearly
has serious problems and the influential texts caution the readers about that. However, the
caution appears to not serve its purpose, for a variety of reasons.

Here is a result that shows that sometimes the qualifications are not correct even in the
limit as n — oo.

Proposition 1 Let v > 0. For the standard confidence interval,

lim inf  C(p,n) = P(a, < Poisson(y) < b,), (3)

n—00 pinp,n(l-p)>y

where a, and b, are the integer parts of

(K? + 27 & ky/K2 + 47) /2,

where the — sign goes with a, and the + sign with b,.



Let us use Proposition 1 to investigate the validity of qualifications (a) and (b) in the list
above. The nominal confidence level in Table 3 below is .95. It is clear that qualification (a)
does not work at all, and (b) is marginal. There are similar problems with qualifications (c)
and (d).

07 5 7 10

lim inf  C(p,n) | .875| .913 | .926

n—=0 p:np,n(l—p)>y

Table 3: Limiting minimum coverage probability when np,n(1 — p) > v.

Proof of Proposition 1: By a monotone likelihood ratio argument, it can be seen that for
fixed n, the infimum of C(p, n) over the set {p : np,n(1 — p) > «} is attained at p = y/n
(and 1—7/n). The sequence of Bin(n, «/n) distributions converges weakly to the Poisson(vy)
distribution and so the limit of the infimum is the Poisson probability in the Proposition by
an easy calculation. &

3 Alternative Intervals

From the evidence gathered in Section 2, it seems clear that the standard interval is just
too risky. Really, since one can find better alternatives, the standard interval should not be
used at all. This brings us to the consideration of alternative intervals. We now present and
analyze eight such alternatives, each with its motivation.

3.1 The Re-centered Interval

The standard interval is centered at p = X/n, the MLE of p. Although p is an optimal
point estimate of p according to many criteria, it is not the optimal center for a confidence
interval.

The performance of the standard interval can be much improved by simply moving the
center of the interval towards 1/2 to p = (X + k2/2)/(n + s?). The recentered interval has
the form

Clys = (X + K2/2)/(n + K?) £ k(pg)"/*n~1/?

This interval simply shifts the standard interval CI; towards the center 1/2 by an amount
of K*|n/2 — X|/(n(n + x2)). Figure 6 plots the coverage for n = 50; the dotted line is the
coverage of the standard interval. When o = .05, if we use the value 2 instead of 1.96 for ,
then p = (X + 2)/(n + 4); this is the Wilson estimator of p. See Wilson (1927) and Agresti
& Coull (1998).



3.2 The Wilson Interval

Another possibility is the confidence interval based on inverting the test in equation (2) that
uses the null standard error (pg)'/2n~/2, instead of the estimated standard error (5§)'/2n=1/2.
This confidence interval has the form

X +K*2  knll?
T n+ k2 n + k2

Clw (B + &/ (4n)) /2. (4)
This interval was apparently introduced by Wilson (1927) and we will call this interval the
Wilson interval.

The Wilson interval has theoretical appeal. The interval is the inversion of the CLT
approximation to the family of equal-tail tests of Hy : p = py. Hence, one accepts Hy based
on the CLT approximation if and only if py is in this interval.

3.3 Modified Wilson Interval

The lower bound of the Wilson interval is formed by inverting a CLT approximation. The
coverage has downward spikes when p is very near 0 or 1. These spikes exist for all n and
a. In fact, it can be shown that, when 1 — @ = .95 and p = .1765/n, for example,

lim P,(p € Clw) = .838;

and when 1 — o = .99 and p = .1174/n, lim,_,, P,(p € Cly) = .889. See also Agresti &
Coull (1998).

The spikes can be removed by using a one-sided Poisson approximation for z close to 0
or n. Suppose we modify the lower bound for z = 1, .., z*. For a fixed 1 < z < z*, the lower
bound of C'Iyy should be replaced by a lower bound of ), /n where A, solves

e A0+ N N X (- ) =1 - a. (5)

A symmetric prescription needs to be followed to modify the upper bound for z very near
n. The value of z* should be small. Values which work reasonably well for 1 — a: = .95 are

z* =2 for n < 50 and z* = 3 for 51 < n < 100+.

Using the relationship between the Poisson and x? distributions,
P(Y < &) = P(Xy14a) < 23)

where Y ~ Poisson()), one can also formally express A, in equation (5) in terms of the 2

quantiles: )

/\fl' = Eng,a
where Xgm,a denotes the 100a-th percentile of the x? distribution with 2z degrees of freedom.
Table 4 below gives the values of ), for selected values of z and «.

For example, consider the case 1 — o = .95 and z = 2. The lower bound of Cly is
~ .548/(n + 4). The modified Wilson interval replaces this by a lower bound of A/n where
A= (1/2) x3 o5 Thus, from a x? table, for z = 2 the new lower bound is .355/n.

We denote this modified Wilson interval by CIp_w. See Figure 6 for its coverage prob-
ability.
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l—aflz=1|z2=22=3
.90 0.105 | 0.532 | 1.102
.95 0.051 | 0.355 | 0.818
.99 0.010 | 0.149 | 0.436

Table 4: Values of \; for the modified lower bound for the Wilson interval.

3.4 The Agresti-Coull Interval

The standard interval CI; is simple and easy to remember. For the purposes of classroom
presentation and use in texts, it is nice to have an alternative that has the familiar form
D+ zy/P(1 —p)/n , with a better and new choice of p rather than p = X/n. Denote
X =X +x%/2and fi = n + &2 Let = X/fi and §=1 — p. Define the confidence interval
Cl ¢ for p by
Clac = p £ w(pg)"*7 /2. (6)
For the case when a = .05, if we use the value 2 instead of 1.96 for x, this interval is the
“add 2 successes and 2 failures” interval in Agresti & Coull (1998). For this reason, we call
it the Agresti-Coull interval. To the best of our knowledge, Samuels & Witmer (1999) is the

first introductory statistics textbook that recommends the use of this interval. See Figure 6
for the coverage of this interval. See also Figure 7 for its average coverage probability.

3.5 The Arcsine Interval

Another interval is based on a widely used variance stabilizing transformation for the bi-
nomial distribution (see, e.g., Bickel & Doksum (1977)): T(p) = arcsin(p'/?). Anscombe
(1948) showed that replacing p by p = (X + 3/8)/(n + 3/4) gives better variance stabiliza-
tion; furthermore

on?[arcsin(p/?) — arcsin(p'/?)] = N(0, 1), as n — oco.

This leads to an approximate 100(1 — a)% confidence interval for p:

1 1
Clup = [sin?(arcsin(p/?) — Enn_lﬂ), sin?(arcsin(p*/?) + Efsn‘lﬂ)]. (7)

See Figure 6 for the coverage probability of this interval for n = 50.

3.6 The Clopper-Pearson Interval

The Clopper-Pearson interval is “exact” for all n. If X = z is observed, then the Clopper-
Pearson (1934) interval is defined by Clcp = [Lep(z), Ucp(z)], where Lep(z) and Ucp(z)
are, respectively, the solutions in p to the equations

P,(X >z)=0a/2 and P,(X <z)=a/2

11



It is easy to show that the lower endpoint is the /2 quantile of a beta distribution Beta(z, n—
z+1), and the upper endpoint is the 1 —a/2 quantile of a beta distribution Beta(z+1, n—z).
This interval guarantees that the actual coverage probability is always at least 1 — a. Fig-
ure 6 shows the coverage probability for n = 50. It can be seen that this interval is quite
“conservative”, in the sense that the coverage probability can be significantly larger than
the nominal value 1 — .

3.7 Bayesian Methods

Beta distributions are the standard conjugate priors for binomial distributions and it is quite
common to use beta priors for the construction of a Bayesian HPD interval (see Berger (1985)
and Robert (1993)).

Suppose X ~ Bin(n, p) and suppose p has a prior distribution Beta(a;, a2); then the
posterior distribution of p is Beta(X + a1, n — X + az). Thus a 100(1 — @)% equal-tailed
Bayesian interval is given by

[B(e/2; X + a1, n— X +as), B(1 —a/2; X +a1, n— X + ap)],

where B(a; my, m2) denotes the o quantile of a Beta(m,, ms) distribution.

The well-known Jeffreys prior and the uniform prior are each a beta distribution. The
non-informative Jeffreys prior is of particular interest to us. Historically, Bayes procedures
under noninformative priors have a track record of good frequentist properties. In this
problem the Jeffreys prior is Beta(1/2,1/2) which has the density function

flp) =n"tp7M2(1 —p) 72

The 100(1 — a)% equal-tailed Jeffreys prior interval is defined as

Cl; = [Ly(z), Us(z)] (8)

where L;(0) =0, U;(n) = 1 and otherwise
Ly(z) = B(o/2; X +1/2, n— X +1/2), (9)
Uj(z) = B(l—oa/2; X+1/2, n— X +1/2). (10)

The interval is formed by taking the central 1 — o posterior probability interval. This leaves
a/2 posterior probability in each omitted tail. The exception is for z = 0 (n) where the
lower (upper) limits are modified to avoid the undesirable result that the coverage probability
C(p,n) > 0asp—0orl.

The actual endpoints of the interval need to be numerically computed. This is very easy
to do using softwares such as Minitab, S-Plus or Mathematica. Indeed, in Table 5, we have
provided the limits for the case of the Jeffreys prior for 7 < n < 30.

The endpoints of the Jeffreys prior interval are the o/2 and 1 — a/2 quantiles of the
Beta(z +1/2,n — x 4+ 1/2) distribution. The psychological resistance to using the interval
is the inability to compute them at ease without software.

We provide two avenues to resolving this problem. One is Table 5. The second is a
computable approximation to the limits of the Jeffreys prior interval, one that is computable

12



with just a normal table. This approximation is obtained after some algebra from the general
approximation to a Beta quantile given in pp. 945 in Abramowitz & Stegun (1970).
The lower limit of the 100(1 — a)% Jeffreys prior interval is approximately

z+1/2
n+14+(Mn—z+1/2)(e> —1)

(11)

where

_ 5v/4pg/n + (s* — 3)/(6n?) L (/2= 9)(#4(x* +2) — 1/n)
4pq 6n(pq)*

The upper limit may be approximated by the same expression with x replaced by —x in w.

The simple approximation given above is remarkably accurate.

An exact Bayesian solution would involve using the HPD intervals instead of our equal
tails proposal. However, HPD intervals are much harder to compute, and do not even do as
well in terms of coverage probability. See Figure 5 and compare to the Jeffreys’ equal-tailed
interval in Figure 6.

[ W

% 1% W

0% 09 1

0%

Figure 5: Coverage probability of the Jeffreys HPD interval for n = 50.

3.8 Modification of Jeffreys Interval

Evidently, CI; has an appealing Bayesian interpretation. And, its coverage and length
properties are reasonably appealing except for a very narrow downward coverage spike fairly
near 0 and 1 (see Figure 6) . The unfortunate downward spikes in the coverage function
result because U;(0) is too small, and symmetrically L;(n) is too large. To remedy this we
revise these two specific limits as

UM_J(O) =D and LM_J(n) =1 — Di

where p; satisfies (1 — p;)® = /2 or equivalently p; = 1 — (a/2)¥/™.
We also made a slight, ad-hoc alteration of L;(1), and set

LM__J(].) =0 and UM._J(n — 1) =1.

In all other cases, Ly—y; = Ly and Up—; = U;. We denote the modified Jeffreys interval
by CIy_;. This modification seems to remove the two steep downward spikes and the
performance of the interval is improved. See Figure 6.
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Figure 6: Coverage probability for n = 50. The dotted line on the upper-left plot is the coverage

of the standard interval.
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3.9 Connections Between Jeffreys Intervals and Exact Intervals

The equal-tailed Jeffreys prior interval has some interesting connections to the Clopper-
Pearson “exact” interval. As we mentioned earlier, the Clopper-Pearson interval Clzp can
be written as

Clcp =[B(a/2; X, n—X+1), Bl—-0a/2; X+1, n— X)].

It therefore follows immediately that C1I; is always contained in ClIcp. Thus CI; corrects
the conservativeness of Clgp.

It turns out that the Jeffreys prior interval, although Bayesianly constructed, has a
clear and convincing frequentist motivation. It is thus no surprise that it does well from a
frequentist perspective. As we explain, the Jeffreys prior intervals CI; can be regarded as
a continuity corrected version of the Clopper-Pearson intervals Clgp. The interval Clep
inverts the inequality P,(X < L(p)) < a/2 to obtain the lower limit and similarly for the
upper limit. Thus, for fixed z, the upper limit of the interval for p, Ucp(z), satisfies

PUCP(Z)(X < 117) < a/2? (12)

and symmetrically for the lower limit.
This interval is very conservative; undesirably so for most practical purposes. A familiar
proposal to eliminate this over-conservativeness is to instead invert

Pp(X < L(p) - 1) + (1/2) Bp(X = L(p)) = /2, (13)
This amounts to solving
(1/2{Poop@)(X <& = 1) + Pyope)(X < 2)} = /2, (14)
which is the same as
Unmiap(X) = (1/2)B(1 — a/2;z,n —x+ 1)+ (1/2)B(1 — a/2;z+ 1,n—xz), (15)

and symmetrically for the lower endpoint. These are the ”Mid-P Clopper-Pearson” intervals.
They are known to have good coverage and length performance. Upqp given in (15) is a
weighted average of two incomplete Beta functions. The incomplete Beta function, B(1 —
a/2;z,n — z + 1), is continuous and monotone in z if we formally treat z as a continuous
argument. Hence the average of the two functions defining U,,;4p is approximately the same
as the value at the halfway point,  + 1/2. Thus

Umidp(X) ~ B(l —a/2;:v+1/2,n—x+1/2) = UJ(.’E)

This is exactly the upper limit for the equal-tailed Jeffrey interval. Similarly, the corre-
sponding approximate lower endpoint is the Jeffreys’ lower limit.

Another way to frequentistly interpret the Jeffreys prior interval is to say that U;(z) is
the upper limit for the Clopper-Pearson rule with £ — 1/2 successes and L;(z) is the lower
limit for the Clopper-Pearson rule with z + 1/2 successes.
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3.10 Performance of the Intervals

The performance of the recentered interval is already significantly better than that of the
standard interval for p away from the boundaries. However, the coverage probability is still
unsatisfactory when p is close to 0 or 1, because it does not adjust the estimate of the
standard error.

Average coverage of the Wilson interval CIy is very close to the nominal level 1 — a.
See Figure 7. Coverage fluctuates acceptably near 1 — a, except for p very near 0 or 1. It
can be shown that, when 1 —a=.95and 1/n <p<1-1/n,

92 < lim Py(p € Clw) < .98.

The modification CIy;_w removes the first few deep downward spikes of the coverage func-
tion for Clw. The resulting coverage function is overall somewhat conservative for p very
near 0 or 1. Both Cly and CIy_w have the same coverage functions away from 0 or 1.
Heuristically, C Iy nearly minimizes average length of intervals (among procedures with cov-
erage ”approximately” > 1 — a). This minimization property can be precisely formulated
and proved using a first order Edgeworth expansion and the main result in Brown, Casella
& Hwang (1994). See Brown, Cai & DasGupta (1999) for further details.

The Agresti-Coull interval has a very simple form and is easy to remember - “Add x2/2
successes and k2/2 failures; then use the standard method”. The interval also has good
minimum coverage probability. The coverage probability of the interval is quite conservative
for p very close to 0 or 1. In comparison to the Wilson interval it is more conservative,
especially for small n. This, by the way, is not surprising because it is easy to show that
C 4sc always contains CIy as a proper subinterval.

The arcsine interval performs well for p not too close to the boundaries. The coverage
also has downward spikes near the two edges (see Figure 6). Modifications can also be
made to correct the problem. For example, by setting the lower limit to 0 when z = 0
and the upper limit to 1 when z = n, the sharp downward spikes in the two boundaries
can be eliminated. This simple modification avoids the awkward result that the coverage
probability C(p, n) — 0 as p — 0 or 1. We also note that our evaluations show that the
performance of the arcsine interval with the standard p in place of p in (7) is much worse
than that of C14,..

The Clopper-Pearson interval guarantees that the actual coverage probability is above
the nominal confidence level. However, for any fixed p, the actual coverage probability can
be much larger than 1 — « unless n is quite large, and thus the confidence interval is rather
inaccurate in this sense. See Figure 6. See also Figure 7 for its average coverage probability.
The Clopper-Pearson interval is wastefully conservative and is not a good choice for practical
use, unless strict adherence to the prescription C(p, n) > 1 — « is demanded.

The coverage of the Jeffreys interval is qualitatively similar to that of ClIy over most of
the parameter space [0, 1]. See Figure 6. Correspondingly, the average coverage is amazingly
close to 1 — . See Figure 7. In addition, as we just saw in Section 3.9, CI; has an appealing
connection to the mid-P corrected version of the Clopper-Pearson “exact” intervals. These
are very similar to CI;, over most of the range, and have similar appealing properties.
C1I; is a serious and credible candidate for practical use. The coverage has an unfortunate
fairly deep spike near p = 0 and, symmetrically, another near p = 1. However, our simple
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modification of CI; removes these two deep downward spikes. The modified Jeffreys interval
ClIy— 5 performs well.

The specific choices of the values of n and p in the examples and figures are artifacts.
The theoretical results in Brown, Cai & DasGupta (1999) show that the same comparative
phenomena as regards coverage and length hold for general n and p. (Those results are
asymptotic as n — oo, but we argue they are also sufficiently accurate for realistically
moderate n.)

4 Choosing An Interval

We compare the performance of the various intervals in terms of the average coverage prob-
ability, the mean absolute error of the coverage, and the expected length of the interval.

Figure 7 demonstrates the striking difference in average coverage probability among five
intervals: the Clopper-Pearson interval, the Agresti-Coull interval, the Wilson interval, the
Jeffreys prior interval, and the standard interval. The Clopper-Pearson interval is very
conservative and the convergence to the nominal confidence level is extremely slow. The
standard interval performs poorly. The interval Clac is slightly conservative in terms of
average coverage probability, but the convergence is much faster than the Clopper-Pearson
interval. Both the Wilson interval and the Jeffreys prior interval have excellent performance
in terms of the average coverage probability; that of the Jeffreys prior interval is, if anything,
slightly superior. The average coverage of the Jeffreys interval is really very close to the
nominal level even for quite small n.

0%

09

0 0 02

08

10 50 100 150 200
Figure 7: Comparison of the average coverage probabilities. From top to bottom: the Clopper-

Pearson interval Clgp, the Agresti-Coull interval Clsc, the Wilson interval Cly, the Jeffreys
prior interval CI;, and the standard interval CI;. The nominal confidence level is .95.

Ideally, it would be nice to compare the intervals for individual n up to some limit. But
actually it would only add to the confusion. A summary is often more instructive than
excessive detail. We group the values of n into four intervals: 10 < n < 25, 26 < n < 40,
41 < n < 60, and 61 < n < 100. Admittedly, the grouping is somewhat subjective. But it
has to be and these intervals of n seem to be reasonable.
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Two additional criteria we use for comparison of the alternative intervals are:
1
Mean Absolute Error = / |IC(p, n) — (1 — a)| dp,
0

and

1
Average Expected Length = / E. ,(length(CI)) dp
0
1. n
= /0 > (U(=z, n) — L(z, n)) ( ; >pw(1 — p)™2 dp,
=0

where U and L are the upper and lower limits of the confidence interval C1I, respectively.

Mean Absolute Error - Mean Absolute Error
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Figure 8: The mean absolute errors of the coverage and the expected lengths for n = 10 to 25,
and n = 26 to 40.

The top panel of Figure 8 displays the mean absolute errors for n = 10 to 25, and n =
26 to 40. It is clear from the plots that among the five intervals, Cly, Clsc and CI; are
comparable, but the mean absolute errors of CIcp and Cly,. are significantly larger. The
bottom panel of Figure 8 shows the average expected lengths of the five intervals for n = 10
to 25, and n = 26 to 40. Interestingly, the comparison is clear and consistent as n changes.
Always, the Jeffreys interval CI; and the Wilson interval CI are comparable, and CI; is
just slightly more parsimonious. But the difference is not of practical relevance. However,
especially when n is small, the average expected length of C14¢ is noticeably larger than that
of CI; and Clw. In fact, for n till about 20, the average expected length of CI,¢ is larger
than that of CI; by .04 to .02, and this difference can be of definite practical relevance. The
difference starts to wear off when 7 is larger than 30 or so. The Clopper-Pearson interval
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Clcp is significantly longer than the other intervals. Based on these plots, we recommend
the Wilson interval or the Jeffreys interval for small n ( n < 40). These two intervals are
comparable in both absolute error and length for n < 40, and we believe that either could
be used, depending on taste.

For larger n, the Wilson, Jeffreys and the Agresti-Coull intervals are all comparable,
and the Agresti-Coull interval is the simplest to present. It is generally true in statistical
practice that only those methods that are easy to describe, remember and compute are
widely used. Keeping this in mind, we recommend the Agresti-Coull interval for practical
use when n > 40.

5 Concluding Remarks

Interval estimation of a binomial proportion is a very basic problem in practical statistics.
The standard Wald interval is in nearly universal use. We first show that the performance
of this standard interval is persistently chaotic and unacceptably poor. Indeed its coverage
properties defy all conventional wisdom, much more than is presently widely understood.
The performance is so erratic and the qualifications given in the influential texts are so
defective, that the standard interval should not be used. We provide a fairly comprehensive
evaluation of many natural alternative intervals. Based on this analysis, we recommend the
Wilson or the equal-tailed Jeffrey prior interval for small n (n < 40), and the Agresti-Coull
interval for n > 40. Even for small sample sizes the easy to present Agresti-Coull interval is
much preferable to the standard one.

We would be satisfied if this article contributes to a greater appreciation of the severe
flaws of the popular standard interval and an agreement that it deserves not to be used at
all. We also hope that the recommendations as regards alternative intervals will provide
constructive suggestions as to what may be used in preference to the standard method.
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T n="7 n=2=8 n=9 n =10 n =11 n=12

0 0 .292 0 .262 0 .238 0 217 0 .200 0 .185
1 .016 .501 .014 454 .012 414 .011 381 .010 .353 .009 .328
2 .065 .648 .056 .592 .049 .544 .044 .503 .040 467 .036 436
3 .139 .766 119 .705 .104 .652 .093 .606 .084 .565 .076 529
4 .234 .861 .199 .801 173 746 153 .696 137 652 124 612
5 .254 827 224 776 .200 .730 .180 .688
6 270 .800 .243 157
T n =13 n=14 n=15 n =16 n=17 n=18

0 0 173 0 .162 0 152 0 .143 0 .136 0 129
1 .008 .307 .008 288 .007 272 .007 .257 .006 244 .006 232
2 .033 409 .031 .385 .029 .363 .027 .344 .025 .327 .024 311
3 .070 497 .064 .469 .060 .444 .056 421 .052 .400 .049 .381
4 114 577 .105 .545 .097 517 .091 491 .085 467 .080 446
5 .165 .650 152 .616 .140 .584 131 .556 122 .530 115 .506
6 221 717 .203 .681 .188 .647 174 .617 .163 .589 153 .563
7 .283 779 .259 741 .239 .706 222 674 207 .644 .194 617
8 .294 .761 272 728 .254 .697 .237 .668
9 .303 .746 .284 716
z n n = 20 n =21 n =22 n =23 n =24

0 0 122 0 117 0 112 0 107 0 .102 0 .098
1 .006 221 .005 211 .005 202 .005 .193 .005 .186 .004 179
2 .022 .297 .021 284 .020 272 .019 .261 .018 .251 .018 241
3 .047 .364 .044 .349 .042 .334 .040 321 .038 .309 .036 .297
4 .076 426 .072 408 .068 .392 .065 376 .062 .362 .059 .349
5 .108 484 .102 464 .097 .446 .092 429 .088 413 .084 .398
6 144 539 .136 517 129 497 123 478 17 461 112 444
7 .182 591 172 .568 .163 546 155 .526 .148 .507 141 .489
8 223 .641 211 .616 .199 .593 .189 571 .180 .551 172 532
9 .266 .688 251 .662 237 .638 225 .615 214 .594 .204 574
10 312 734 293 .707 277 .681 .263 .657 250 .635 .238 .614
11 319 723 .302 .698 287 675 273 .653
12 .325 713 .310 .690
T n =25 n = 26 n =27 n =28 n =29 n = 30

0 0 .095 0 .091 0 .088 0 .085 0 0821 O .080
1 .004 172 .004 .166 .004 160 .004 155 .004 .150 .004 145
2 .017 .233 .016 225 .016 217 .015 210 .015 .203 .014 197
3 .035 287 .034 277 .032 .268 .031 .259 .030 .251 .029 .243
4 .056 337 .054 325 .052 315 .050 305 .048 .295 .047 .286
5 .081 .384 077 371 074 .359 072 .348 .069 337 .067 .327
6 .107 429 102 415 .098 402 .095 .389 .091 .378 .088 .367
7 135 473 129 457 124 443 119 .429 115 416 A11 404
8 .164 .515 158 498 151 482 145 468 .140 454 135 441
9 .195 .555 187 537 .180 521 172 .505 .166 .490 .160 A76
10 228 .594 218 .576 .209 .558 201 .542 .193 .526 .186 511
11 .261 .632 .250 .613 .239 594 230 B77 221 .560 213 .545
12 .295 .669 282 .649 271 .630 .260 611 .250 .594 .240 578
13 331 .705 .316 .684 .303 .664 .201 .645 279 627 .269 .610
14 .336 .697 322 678 310 .659 .298 .641
15 341 .690 328 672

Table 5: 95% Limits of the Jeffreys prior interval.
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