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Abstract

To determine the susceptibility of an unknown pathogen to a specific drug, hospital labora-
tories perform either a drug dilution or disk diffusion test. Test/Drug-specific breakpoints
then classify the pathogen as either susceptible, intermediate or resistant to the drug. Since
only one of these tests will be used in practice, it is imperative to have the two tests give
similar results. Currently, pharmacokinetics and pharmacodynamics of the drug are used
to set drug dilution breakpoints and comparable disk diffusion breakpoints are determined
by generating pairs of test results for a wide range of pathogens and finding breakpoints
which minimize the classification discrepancies. While this procedure is very fast and simple
to implement, it does not adequately take into account the inherent variability of each test
nor the underlying distribution of pathogens. As a result, the choice of breakpoints is very
sample dependent. In this paper, a hierarchical errors-in-variables model is developed to
ekplicitly describe the various factors of uncertainty in these pairs and probabilities from
this model are used to determine breakpoints. Bayesian inference is used to combine the
model with a scatterplot of test results. While this procedure is more time consuming to
implement (particularly the inference component), it is shown that by accounting for the
various uncertainties in the results, much of the sample dependency is eliminated giving

more consistent and interpretable results.



1. Introduction

Susceptibility testing is used to aid a physician in prescribing a drug to eliminate an unknown
pathogen in the body. To determine which drugs are appropriate, hospital laboratories
perform one of two tests. Drug dilution involves the addition of two-fold dilutions of the
drug to separate vials of broth containing a standardized number of the pathogen (just below
visible detection) and after incubation, examining each vial for visible growth (vial becomes
cloudy). The minimum inhibitory concentration (MIC) is defined to be the lowest of these
two-fold dilutions that prevents visible growth. Disk diffusion involves the placement of
a disk with a standardized concentration of the drug on an agar plate covered with the
pathogen. The drug diffuses from the disk creating a gradient of concentrations. After
incubation, a clear zone around the disk will result from drug concentrations high enough
to kill the pathogen in that area. The smaller the MIC, or larger the diameter of the clear
zone (DIA), the more likely this pathogen can be successfully treated with the drug.

This likelihood is classified for the physician into one of three categories. Susceptible
(S) means that there is a very high likelihood of successfully treating the pathogen by the
usual FDA approved dosage. Intermediate (I) means that the pathogen can likely be treated,
especially if doses are higher than usual, and resistant (R) means the likelihood is low using
approved dosage levels. These drug-specific classification regions, described by a lower and
upper breakpoint, are defined by subcommittees of the Food and Drug Administration (FDA)
and the National Committee on Clinical Laboratory Standards (NCCLS). Since the MIC test
involves concentrations of the drug, its breakpoints are largely based on the pharmacokinetics
and pharmacodynamics of the drug. Determination of the DIA breakpoints, however, is not
as straightforward because there is not a simple relationship between concentration levels
and zone diameter. While there is often an assumed quadratic or linear relationship between
the log of the MIC and the diameter, the parameters of this relationship are drug-specific.

The current DIA breakpoint determination procedure, known as the error-rate bounded
method (Metzler and DeHaan, 1974; Brunden, Zurenko, and Kapik, 1992), involves in-
vestigating a wide range of pathogens using both tests and then finding DIA breakpoints
which satisfy certain discrepancy restrictions. In other words, the MIC breakpoints classify
each pathogen as either susceptible, intermediate or resistant and the DIA breakpoints are
adjusted until the observed percentage of discrepancies between the DIA and MIC classifi-
cations satisfy certain restrictions. Specifically, less than 1.5% of the pairs result in a very



major discrepancy (MIC test = R and DIA test = S) and less than 3% of the pairs result in
a major discrepancy (MIC test = S and DIA test = R) (NCCLS, 1995). There are currently
no restrictions on minor discrepancies (one of the tests = I) but often less than 10% is used.

Because of testing variabilities, rounding and the inverse relationship between MIC and
DIA, a discrepancy is most likely to occur when the pathogen is near the MIC intermediate
region. When there are very few pathogens in this region, numerous breakpoint sets satisfy
the discrepancy restrictions and other decision mechanisms, such as diameter width restric-
tions, are needed. On the other hand, when there are numerous pathogens in this region,
there may be no breakpoint sets that satisfy the discrepancy restrictions (minor included).
While previously the distribution of pathogens was bimodal with very few pathogens near
the intermediate zone, in recent years there has been a steady increase in marginally suscep-
tible and resistant pathogens making this latter situation more of a problem and has resulted
in a reevaluation of this procedure.

Rather than attempt to modify the error-rate bounded method, an alternative model-
based approach to breakpoint determination is proposed. This approach eliminates the need
for discrepancy restrictions and does not depend on the distribution of pathogens. A hi-
erarchical model explicitly accounts for the various factors of uncertainty in a scatterplot
thereby serving as a filter to remove as much explainable variation as possible. Since the
model distinguishes between true and observed results, test-specific probabilities from this
model are then used to determine DIA breakpoints. To obtain model estimates, Bayesian
inference, enabled by Markov chain Monte Carlo, is used. Thus, instead of a single estimate,
a distribution of potential breakpoint sets is obtained thereby allowing the experimenter to
assess the remaining uncertainty in the scatterplot. The paper is organized as follows. In
section 2, the hierarchical model is developed and Section 3 describes how certain probabili-
ties are used to determine DIA breakpoints. In section 4, the Bayesian method of inference is
described and in Section 5, the results of a simulation study to compare the two procedures
and an application of the new procedure to three published scatterplots are presented. A

discussion follows.

2. The Model

The model is constructed to describe a scatterplot of MIC/DIA pairs in terms of Normal
distributions thereby allowing simple computation of discrepancy percentages and other con-
ditional probabilities of interest. The model separates the scatterplot into three components:

1. The test procedures (i.e., rounding) and experimental variability



2. The drug-specific relationship between MIC and DIA

3. The underlying distribution of pathogens (or MICs).

The first component links the observed MIC/DIA pair with an underlying true value. The
second and third components describe the relationship between these true DIAs and MICs.
In the MIC test, two-fold dilutions (ug/ml) are performed with the MIC being the lowest
two-fold dilution without visible growth of the pathogen. For the remainder of this paper,
consider the MIC in terms of log base 2 units so that test results are integer values similar
to the zone diameter (DIA) which is measured to the nearest millimeter.

2.1 Ezxperimental Error

Repeat experiments, same drug and pathogen, have shown a common three-fold range in
the observed MIC. This range is attributed to inherent testing variability and rounding. To
describe the distribution of observed results, a Normal distribution is discretized by rounding
all values up to the next highest integer. For pathogen 4, the observed MIC

z; = [m; + €], (1)

where m; is the true MIC and ¢;, distributed N(0, 0,,), is the testing error. The rounding
up is due to the fact that lack of growth is only observed in dilutions above the MIC. For
example, if the observed MIC were truly -1.78, the lowest test dilution with no growth would
be -1. Figure 1 displays the observed MIC distribution for three different choices of the true
MIC. The various shapes of the distribution are consistent with what is observed in repeat
drug/pathogen trials and the choice of o,, = 0.5 is consistent with the common three to four
dilution range. One can also see the implications of the variation and rounding in terms of
the probability of correct identification. If the MIC breakpoints were -1 and 1, all three of
these true MICs (means) are in the intermediate range. However, in terms of the observed
results, the second and third pathogens are most likely going to be classified as resistant
(z > 1). While a discrepancy depends on both test results, this rounding up suggests that
a very major discrepancy (MIC test = R) is more likely than a major (MIC test = S). A
result that does not agree with the current tolerable percentage restrictions.
In a similar fashion, the observed DIA

Yi = [dz + (51] (2)
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where d; is the true DIA and ¢; is N(0, 04). Instead of rounding up, the disk diffusion test
rounds the diameter to the nearest millimeter. Because these tests are done separately, we
assume that the ¢; and §; are independent. We also assume that the experimental standard
deviations, o, and o4, remain constant over the range of MICs in the study.

2.2 True MIC/DIA Relationship

Since the model distinguiéhes between the observed and true results, the relationship between
the MIC and DIA is described in terms of the true values. Specifically,

(3)

d; = By ( eXP(ﬁl - 527711') )

1 +exp(By — Bomy)

where m; and d; are the true values for pathogen 7 and the 3’s are drug-specific. This one-to-
one relationship means that we only need to describe the underlying distribution of MICs to
describe the joint distribution of test results. While both linear and quadratic relationships
have been used to describe this relationship, both these functions allow negative diameters
for large MIC. This function avoids the need to build into the model the restriction d; > 0
Vi.

2.3 Underlying Distribution of MICs

Just as the B parameters are drug specific, so is the undverlying distribution of pathogens.
To allow for multi-modality and skewness, this distribution is a mixture of Normals where

the number, k, of Normal distributions in the mixture is an unknown. Specifically,

m(m) = ;ij(m; 1, 0;) (4)

where p;, 0, and w; are the mean, standard deviation, and weight of the jth Normal
>Cw=1).

Figure 2 demonstrate how these two components, combined with experimental variability
and rounding, form a scatterplot. The left panel plots 300 true MIC/DIA pairs and the right
panel introduces the rounding and experimental variabilities. The true MIC/DIA pairs were
obtained by randomly sampling MICs from

w(m) = .55N(—3.0,1.00) + .10N(0.5,0.75) + .35N(5.0, 0.75),
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which is drawn in the left panel, and determining the true DIA using

27 —0. ;
di:62.8< exp(0.27 — 0.28m;) )

1+ exp(0.27 — 0.28m;)
The experimental variabilities were ¢,, = 0.5 and o4 = 1.8. Notice that due to the rounding
up of the MIC, the scatterplot shifts to the right.

3. Determining DIA Breakpoints

Guidelines state that between 300-500 pathogens “representative of all species likely to be
tested” are to be chosen for breakpoint determination (NCCLS, 1995). The MIC distribution
in Figure 2 represents the typical bimodal situation where the error-rate bounded method has
been used satisfactorily. Since the observed discrepancy percentages are kept low, numerous
breakpoint sets satisfy the discrepancy restrictions. Although single numerical summaries
of the observed discrepancy percentages have been suggested as a method to determine
the “best” set of breakpoints (Brunden, Zurenko, and Kapik, 1992), the final choice of
breakpoints is usually a combination of test results, previous breakpoint studies, breakpoints
of similar drugs, and experimenter preference. This ad hoc approach to determination has
obscured many of the sampling problems with this procedure. It is only recently, due to
the increase in pathogens near the MIC intermediate region, that the procedure has been.
reevaluated.

With the model approach, the performance of each test can be described for a specific
set of breakpoints. While similar in approach to the earlier proposed numerical summaries
of Brunden et al. (1992), this performance summary does not directly rely on the observed
discrepancy percentages (distribution of pathogens). Instead the observed results are used
to estimate the model parameters which in turn determine the breakpoints. This not only
results in more consistent results but also a more intuitive less sample dependent approach
to compare sets of breakpoints. Instead of trying to assess whether seven observed very
major discrepancies is much worse than four, one can view how the DIA test’s performance
changes with a shift in the upper breakpoint.

Consider the MIC test with breakpoints labeled My and My. Since these breakpoints
are largely based on pharmacokinetics and pharmacodynamics of the drug, they also serve
to separate the true MICs into the three classification regions. For example, a true MIC
less than My, would be considered susceptible and a true MIC greater than My would be
resistant. To describe the test performance, consider the probability that a pathogen with
true MIC m is correctly classified. This probability



pr(mSML)ZCI)(ML_m) m < M.

Om

pvic(m) =< pr(Mp <z < My) :Q(%%) —@(%ﬂ) M <m < My
pr(szU)zl—q)(M%m) m > My

where @ is the standard Normal CDF. Figure 3 plots this probability over a range of MIC
values using 0, = .5 and the common one dilution intermediate region (1,3). Due to the test
variability and rounding up, this probability decreases as the MIC approaches a breakpoint
from below (see also the last two pathogens in Figure 1.).

The same curve can be constructed for the DIA test given breakpoints Dy and Dy and
(3). The probability

pr(y > Dy) =1 — & (Bus2=1) m < My,
poia(m) =4 pr(Dp <y<Dy)=9 (2%) - (&%ﬁ Mp <m < My
pry<D;)=20 (—DLZS_d) m > My

Notice that since the diameter test rounds to the nearest millimeter and DIA is inversely
related to MIC, the formula is slightly different.
To calibrate the two tests, DIA breakpoints are found which minimize the loss function

L= /_o:o min (0, ppia (u) — pMIc(u))2 7(u)du

where 7 is a distribution which weights the MIC values. For example, one choice of weights
would be the underlying distribution of pathogens. Others would be to more heavily weight
those values near the MIC breakpoints or give equal weight to all values. The min function
is used because there is interest in determining breakpoints such that the DIA test is at least
as good as the MIC test. There is no loss if the probability of the DIA test is higher at a
specific MIC.

Figure 4 displays these DIA curves for four sets of breakpoints and the same model
parameters as Figure 2. Also shown is —2log(L) when 7 gives equal weight to all possible
MIC values (i.e., w; = 1). In this case, the best set is (26,32). The DIA test performs similarly
in the susceptible and resistant regions and outperforms the MIC test in the intermediate
region. Arguably any of these sets could be the best and a different loss function may result
in a different choice. From all the sets, one can see that lowering the upper breakpoint
or increasing the lower breakpoint results in increased performance in the susceptible or
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resistant region but with decrease in performance in the intermediate region. This is similar
to the trade-off between observed very major/major and minor discrepancies except in this
case the results do not depend on the number and location of the pathogens, these having
been factored into the model parameters estimates.

4. Bayesian Inference

To use this breakpoint determination approach in practice, model parameters, specifically
Om, 04, and the (’s, must first be estimated from a scatterplot. Bayesian inference is used
to obtain the joint posterior of parameters, P = {om, 04, bo, b1, B2, k, b, &, p}, where the
bold characters represent vectors of length k. Calculation of this distribution by analytic or
numeric integration is very difficult due to the varying number of parameters in the posterior,
the hidden true MIC and DIA values, and the rounding of both the MIC and DIA tests.

4.1 The Prior

We assume very little a priori knowledge about the parameters except for the testing standard
deviations o, and o4 where previous quality control studies (repeat drug/pathogen exper-
iments) provide a range of likely values. We also assume independence among parameters
describing different components of the model.

For the parameters used to determine breakpoints, we assume o,, is Gamma with mean
0.5 and standard deviation 0.204 and o, is Gamma with mean 1.8 and standard deviation
0.569. For the drug-specific parameters in (3), we assume Gy > 0 and 7(5y, 81, B2) o< 1.

For the mixture of Normals, we bound the number of Normals such that & < 35 and
assume k is discrete Uniform, pr(k) = 1/35. The choice of 35 was made arbitrarily but no
analyses (to date) have resulted in k > 30. To keep the Normal mixture identifiable, we

assume

pr < pg <o < g

and each mean is marginally Uniform between -12 and 12 so

w(w) =k ()

The choice of (-12,12) was based on the observed range of MICs in scatterplots but can be
made wider. For the weights, we assume m(w) = Dirichlet(1,1,1,...,1).
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Since there is a chance a Normal distribution may not be associated with any observations,
the standard non-informative reference priors for the standard deviations will result in an
improper posterior distribution. We use the partially proper prior described in Roeder and
Wasserman (1997) to avoid this. We assume

k

w(0) = [ (019)

where

m(05]5) ~ x1(5) m(S) oc ST

The effect of S is to shrink the o;’s down to an unspecified constant S.

4.2 Computing the Posterior

For each pathogen in the scatterplot, there is a hidden true MIC m;. To more easily keep
track of this mean in terms of the Normal mixture, we use a latent group identifier z;, which
denotes from which Normal distribution in the mixture the true MIC is selected. We use
Markov chain Monte Carlo (Smith and Roberts, 1993), specifically reversible jump MCMC
(Richardson and Green, 1997) to approximate the joint posterior of the model parameters.
We run the chain over the set of model parameters, P and the unobserved true MICs and
group identifiers, U.

U, PY, U, P?), (U, P, ..

Each step or “cycle” of the chain is the result of smaller steps, each being a Metropolis-
Hastings or Gibbs update which modifies a component of the larger state. Appendix A
details these steps.

This Markov chain has equilibrium distribution equal to the posterior

m({z,y}m, B, om, oa)w(mlk, z, p, o, w)w(p|k)7 (a|k, S)m(w|k)w(S)7 (k, B, Om, C4) (5)

where the first term is a product probabilities representing areas under the standard Normal
curve. The second term is a product of weighted Normal densities and the remaining terms
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are the prior. For each scatterplot, a chain of 6,000 cycles was run on an IBM RISC/6000
computer. Estimates of the DIA breakpoint posterior distribution are based on subsampling
every 10th cycle after an initial burn in of 1000; these dimensions were chosen by informal

assessment of time-series plots under various starting positions.

5. Results

5.1 Simulation Study

To demonstrate the improved consistency in results (i.e, estimator is more concentrated), two
versions of repeated tests were investigated. In the first situation, a set of 300 pathogens were
randomly chosen and 100 scatterplots were generated based on this set. In this case, only
the experimental variability and relationship between MIC and DIA (in terms of rounding)
will affect the results. In the second situation, a new set of pathogens was randomly chosen
for each experiment. This introduces another source of variability into the scatterplot.

For each of the 200 scatterplots, breakpoints were determined using both the error-rate
bounded method and the new methodology. For the error-rate bounded method, the best
set of breakpoints was the set which maximized 1/E where

E = .6(%VMaj) + .3(%Maj) + .1(%Min)

and the percentage of very major and major discrepancies were below 1.5% and 3.0% re-
spectively. This index gives more weight to a “more severe” discrepancy and roughly follows
the discrepancy limits 1.5%, 3.0%, and 10.0%. For the new methodology, breakpoints were
determined for each set of parameters in the posterior using the loss function and the mode
of the breakpoint set posterior distribution (never had ties) was selected.

The scatterplots were created using the model parameters in Figure 2. Recall this is a
situation where there were a few pathogens near the MIC breakpoints which is favorable to
the error-rate bounded method with the current tolerable percentages. Table 1 summarizes
the results where the same set of pathogens are used throughout. Table 2 summarizes the
situation when a new set of pathogens was chosen each experiment. The first number in
each cell represents the frequency this pair of breakpoints was chosen using the error-rate
bounded procedure and the second number (bold) represents the new methodology.

In both cases, there is far less variability in the selection with the new methodology. Since
the parameters that generated the scatterplots were used in Figure 4, the ideal breakpoints in
terms of performance should be around (26,32) and in terms of the index F around (25,32).
This latter set is based on using the known model parameters to compute the probability of a
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very major, major, and minor discrepancy. The model approach selected a breakpoint set in
the rectangular region (25+2,32+1) 100% of the time while the error-rate bounded selected
a set in this region 66% and 54% of the time. Since the model explicitly describes sources of
variability in the scatterplot, there is less variability in the results. Also, one of the major
limitations of the error-rate bounded procedure is its dependence on the pathogens selected
and this is demonstrated by the increased variability in situation 2. For the new procedure,
however, only the experimental variabilities and the true DIA /MIC relationship are used to
determine breakpoints so as long as the new set of observed results provide similar estimates
of these parameters, the breakpoint set will be similar. Thus, for the model-approach, there
is only a slight difference in the two situations and this is reflected in the results.

Application to Published Scatterplots

This methodology was applied to three published scatterplots of the drug Lomefloxacin
(Jones et al., 1988; Cormican and Jones, 1995; Cormican et al., 1996). The 1988 scatterplot
gave preliminary recommendations for zone diameter breakpoints which were later accepted
by NCCLS. The latter two were the result of a reevaluation of Lomefloxacin and both articles
suggest a 2mm decrease in the breakpoints. The results of the first scatterplot, for several
choices of DIA breakpoints, are summarized in Table 3 and the latter two scatterplots are
summarized in Table 4. :

In Table 3, each set of breakpoint satisfies the 1.5% and 3.0% restrictions but all have a
minor percentage slightly greater than 10%. While the set (18,22) was chosen, any of these
other sets would have sufficed. Was the set (18,22) chosen because it had the fewest minor
errors or the lowest upper breakpoint? Why is it better than the set (19,23) which has over
half as many very major discrepancies? In Table 4, similar breakpoint sets are presented.
In these cases, the set (16,20) was selected but there are similar questions concerning this
choice.

While an index could be formulated to include the factors that were used in this decision,
the simulation study has shown that any decision based on observed discrepancy percentages
is highly variable and can likely change with a new study. On the other hand, the model
approach was shown to have consistent results and allows comparisons of breakpoints sets
using performance curves. The model approach results, based on 500 likely sets of param-
eters, are summarized in Table 5. For the first scatterplot, over 70% of the time the set
(18,23) resulted in the most favorable performance curve. In reference to the choice (18,22),
this suggests that a reduction in the performance in the susceptibility region (22 — 23) is
outweighed by the increase in performance in the intermediate region. Without plotting the
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curves, however, it is difficult to know exactly what this trade-off entails.

The main reason for choosing these three scatterplots was to see whether the new method-
ology when applied to the latter two scatterplots would agree with a reduction in the break-
points. As shown in Table 5, this is the case but the two scatterplots do not suggest the
same choice of breakpoints. Table 6 summarizes the marginal posterior distributions of the
parameters that are used in determining the breakpoints. The key differences are the esti-
mates of experimental variability and the asymptote (5p). Since the 1996 scatterplot is a
collection of results performed at numerous labs and the model does not factor in lab to lab
variability, it is not surprising the variance results are different. Why the MIC variability
would be smaller is somewhat surprising but this may be due to the confounding of test
and lab variability. As shown in Figure 5, this increase in variability combined with the
higher asymptote explains the higher upper breakpoint and similar lower breakpoint. It is
interesting to note that the 1988 curve appears parallel with the 1998 curve but about 3 mm
higher. This is also reflected in the breakpoint results. Two possible reasons for this could
be a change in the disk or media used in the diffusion test or a lab to lab difference. In either

case, further investigation is warranted.

6. Discussion

Because of the increasing number of moderately susceptible and resistant pathogens, choosing
appropriate breakpoints is becoming more and more a statistical problem. The error-rate
bounded method, although simple to implement, suffers from being too sample depedent.
In this paper, a model has been presented which explicitly describes certain uncertainties in
a scatterplot and is part of an alternative approach to breakpoint determination. Instead of
using the observed results directly in breakpoint determination (e.g., very major, major, and
minor percentages), they are used to estimate the model parameters which in turn describe
the performance of each test. Breakpoints are selected such that the test performances are
as similar as possible. In a sense, the model is filtering out as much explainable noise as
possible in the scatterplot before determining breakpoints while the previous method does
not.

While eliminating disagreements between two tests (error-rate bounded method) is often
an appropriate method of calibration, it does not necessarily work when the two tests behave
differently. Since the MIC test rounds up, it is more conservative (less likely to say a. pathogen
is susceptible) than the disk test. Simply bounding the discrepancy percentages does not
take this behavior into account. For example, this rounding means that it is more natural
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to observe a very major discrepancy than a major discrepancy but this currently has the
lowest percentage restriction. The performance curves, on the other hand, are based on each
test’s ability (in terms of probability) to classify an isolate and therefore uses these rounding
procedures directly in the calculations.

While only one simulation study has been performed, there are many factors that will
affect the results. Specifically, the inherent variability of each test, the number and location
of the isolates investigated, and the MIC/DIA relationship. However, by demonstrating
how much more variable the results are when the error-rate bounded method supposedly
works satisfactorily, it is not felt that other simulation studies are necessary. For example,
other small scalle simulation experiments where there was a larger percentage of pathogens
near the intermediate range resulted in even greater disparity in the results. The error-rate
bounded method resulted in very wide zones due to the fact that the current discrepancy
restrictions of 1.5% and 3.0% were too low for this situation.

The performance curve depends not only on the choice of breakpoints but also the model
selected. While it is felt this model adequately describes scatterplots, variations such as
allowing for increasing variance in the DIA test or a different relationship between DIA and
MIC can be included and are currently under review. This same methodology can also be
applied in device testing where NCCLS approved procedures (usually MIC lab tests) are
compared with device results. At the present time, a variation of the error-rate bounded
procedure is performed where device and lab results must be more than one dilution apart
in order to be considered a discrepancy. With this methodology, one would assume that the
MIC and device (d) results are linearly related

d; = Bo + fim;

and could use this same procedure to see if the device is unbiased (Gp = 0 and 5, = 1). It
would also take into account the location of the isolates investigated and eliminate the need
for similar tolerable percentages.
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APPENDIX I
Metropolis-Hastings Algorithms

We run a Markov chain over the set of model parameters and unobserved variables. One
complete step in the Markov chain is produced by a sequence of smaller Metropolis-Hastings
(MH) steps which modify different aspects of this set. Fach MH algorithm is defined by
a proposal distribution, having density ¢(s,s’), which indicates the probability density of
sampling the new state s’ given the current state s. The MH ratio,

(s')q(s’, 5)

"7 7 (9)q(s, 5)

is calculated and with probability min(r,1) the Markov chain moves to s’, otherwise it stays
put. The following sections describe the proposal distribution for each of the MH steps and
the form of the MH ratio. '

Updating the B’s, 01, 04

We update each parameter individually using a normal centered at the current value. In
the case of the two standard deviations, this normal is folded over zero to avoid negative
standard deviations. Both the normal and folded normal centered at the current value are
symmetric proposal distributions so the MH ratio is simply the ratio of the likelihood and
prior. For example, for o4, the ratio of likelihood and prior reduces down to

({2, y}m, B, om, o5)7(07)
7.(-({'7:7 y}lm) 137 Om, o-d)ﬂ'(o'd)

?

where the first term is a product of probabilities representing the area under the standard
Normal as defined by the DIA test and the second term is the prior.

Normal Distributions in Mizture

A Gibbs step is used to update the weights w, means u, and standard deviations o. For the
weights, the full conditional is Dirichlet(n; + 1,12 + 1, ...,y + 1), where n; is the number of
MICs sampled from the jth Normal. For each mean, the full conditional is a truncated Nor-
mal with mean 7; and standard deviation o;/n; (if n; > 0) or truncated Beta distribution
defined by the jth order statistic of k& Uniforms. In this situation, it is assumed py, = —12
and g1 = 12.
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The full conditional of o; is a scaled inverse-chi distribution with n,+1 degrees of freedom
where the scale factor is

S + (’H,j - 1)8? + ’I’Lj(mj - /.l,j)z.
A Gibbs step is also used to update the standard deviation scaling parameter S. The full
conditional is Gamma(®51,2 3 ¢5%).
Latent Group Identifiers
The full conditional for variable z; is Multinomial where
ij(mi§ Hjs Uj)

pr(z =J) = SE L wiN(mg; p, 01) ’

Instead of performing a Gibbs step, a Metropolis-Hastings step, proposed by Roeder and
Wasserman (1997), is used. Instead of all ¥ groups as potential candidates, the proposal
distribution chooses uniformly from the nearest neighbors z; — 1 and z; + 1. When z = 1,
the only potential candidate is 2 and when z; = k, the only potential candidate is £ — 1. The
acceptance probability is based on a ratio of probabilities using (6) and possibly a 2 or 3 if
near a boundary group. Note that this avoids calculation of the denominator in (6).

Reversible Jump

To update k, the number of Normals in the mixture, a splitting/combining step similar to
that proposed by Richardson and Green (1997) is used. This increases/decreases the value
of k£ by 1 and makes appropriate changes to the Normal distribution parameters: (w, i, o).
In each update, either a split or combination step is chosen with probability 1/2. For the
combination step, an adjacent pair (j;,j2) of Normal distributions is randomly selected and
merged together such that

Wix = Wy, + ’U.)j2
Wiyx hjx = Wy Kjy + Wi, g, (7)
Wy (lu?* + 0—‘72'*) = Wy, (Iu‘fl + 0-]21) + Wi, (p‘?z + 0-]22)

For the split step, a Normal distribution is randomly selected and three Uniform random
variables (uy, uz, us) are generated to specify the new parameters making sure that (7) holds.
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In addition, the n; pathogens are randomly allocated to the two new groups. This is done
analogously to the Gibbs update of the group identifiers. For further details, see Richardson
and Green (1997).
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TABLE 1: Number of times each DIA breakpoint set was selected when using the same
set, of isolates for each scatterplot®

Lower Upper Limit
Limit 28 29 30 31 32 33 34 35
22 1 1 1 3 2 1
23 1 1 4 4 1 7 3 5
24 1 1 6 12 8 8 4 1
25 1 2 2 1 6 35 1 1
26 2 3 7 6 30 5 2
27 4 3 1 2 2 2
28 3 1
29 2

%The left number in each cell is for the error-rate bounded procedure and the right for the new methodology.

TABLE 2: Number of times each DIA breakpoint set was selected when using a different
set of isolates for each scatterplot®

Lower Upper Limit
Limit 27 28 29 30 31 32 33 34 35
20 1
21 1 1 1 1
22 4 3 2 1 3
23 2 1 2 3 3 6 1 4 1
24 1 5 4 2 13 2 3 1
25 3 5 6 23 5 9 1
26 1 4 1 4 34 3 7
27 3 3 11 2
28 1
29 : 3

%The left number in each cell is for the error-rate bounded procedure and the right for the new methodology.
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TABLE 3: Summary of 1988 Scatterplot (n = 829)
Number of Isolates in Each Category

Brkpts SS* RR® VMAJ MAJ MIN INDEX®
19 23 587 131 3 2 86 75.36
18 23 587 116 3 1 94 72.09
20 24 569 150 1 6 91 72.09
19 24 569 131 1 2 104 71.47
18 24 569 116 1 1 112 68.51
18 22 598 116 7 1 85 63.77
17 23 587 88 3 1 113 61.87
17 22 598 88 7 1 104 55.64

“Classified as susceptible on each test
bClassified as resistant on each test
€Index used in the simulation study

TABLE 4: Summary of 1995 and 1996 Scatterplots

1995 (n = 299)

1996 (n = 1501)

| # of Isolates in Each Category

# of Isolates in Each Category

Brkpts SS¢ RR® VMAJ MAJ MIN INDEX¢® SS RR VMAJ MAJ MIN INDEX
15 21 79 200 1 0 15 143.52 1237 132 4 1 106 112.86
15 20 82 200 2 0 11 130.00 1285 132 7 1 61 141.60
16 20 82 201 2 0 12 124.58 1285 136 7 2 99 140.28
15 19 83 200 2 0 10 13591 1300 132 14 1 45 113.71
14 20 82 194 2 0 15 110.74 1285 124 7 1 68 132.83
16 21 79 201 1 .0 10 186.88 1237 136 4 2 104 112.01
14 21 79 194 1 0 19 119.60 1237 124 4 1 113 107.21
14 19 83 194 2 0 14 115.00 1300 124 14 1 52 107.99

¢Classified as susceptible on each test
bClassified as resistant on each test
¢Index used in the simulation study
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TABLE 5: Potential Breakpoints for Lomefloxacin Using Model-Based Approach

1988 1995 1996
Brkpts Freq %  Brkpts Freq % Brkpts Freq %
(18,23) 71.8  (1419) 375 (14,21)  54.0
(17,22) 202 (1520) 35.0 (14,20)  25.5
(18,22) 42 (14,200 17.0 (1521) 19.5

(15,19) 6.5

Table 6: Summary of Marginal Posteriors for 1995 and 1996 Scatterplots
1995 1996
Percentiles Percentiles
Parameter | 2.5 500 975 | 25 50.0 975
Om 0.28 047 0.66 | 0.13 0.26 0.38

o4 172 2.03 235|337 3.52 3.68
Bo 27.91 29.26 31.37|30.16 30.72 31.47
B 079 112 144|102 1.14 1.27
B2 041 047 054 | 044 048 0.52
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Figure 2: Formation of a scatterplot. The left panel contains 300 randomly sampled MICs

and the associated DIA values. The right panel introduces the testing errors and rounding.
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Figure 3: Probability that a pathogen with true MIC m will be classified correctly by the
MIC test (o, = 0.5 and (M, My) = (1, 3)).
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Figure 4: DIA test probability curves (dashed) for various breakpoints sets, o, = 1.8 and
d = 62.8(exp(.27 — .28m) /(1 + exp(.27 — .28m))). The MIC performance curve (solid) is

shown for reference.
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Figure 5: Estimated MIC/DIA relationship for the three scatterplots.
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