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Abstract

We consider block thresholding rules for wavelet regression and derive an “opti-
mal” block thresholding estimator that is fully specified and easy to implement, at a
computational cost of O(n).

We begin by studying the effect of block length on both the global and local adaptiv-
ity. The results show that there are conflicting requirements on block size for achieving
the global and local adaptivity. We then consider block thresholding as a testing prob-
lem and discuss the choice of threshold level so that the resulting estimator enjoys a
desirable denoising property, as well as achieving balance between variance and bias.
These results lead us naturally to the optimal choice of block thresholding estimator.

Both the asymptotic and numerical properties of the estimator are investigated. We
show that this estimator is indeed optimal in the sense that it achieves simultaneously
the global and local adaptivity, while preserves the smoothing and denoising proper-
ties. Furthermore, numerical results show that the estimator performs excellently in
comparisons with conventional methods.
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1 Introduction

Consider the nonparametric regression model:

v = fz;) +ez (1)

i=1,2,..,n(=2), z; = £, ¢is the noise level and z;’s are i.i.d. N(0,1). The function
f(-) is an unknown function of interest. We measure the estimation accuracy both globally
by the mean integrated squared error (MISE):

R(f,f)=EIf - 115, (2)
and locally by the expected loss at a point:
R(f (o), f(20)) = E(f (o) = f(%0))*. (3)

Wavelet bases offer efficient representations for functions in a wide range of function spaces
and wavelet methods have demonstrated considerable successes in terms of adaptivity and
computational efficiency in nonparametric regression. They enjoy excellent mean squared
error properties when used to estimate functions that are only piecewise smooth and have
near optimal convergence rates over large function classes. In contrast, traditional linear
estimators typically achieve good performance only for relatively smooth functions.

Wavelet methods achieve their unusual adaptivity through shrinkage of the empirical
wavelet coeflicients. Standard wavelet shrinkage procedures estimate wavelet coefficients
term by term, on the basis of their individual magnitudes. Other coefficients have no influ-
ence on the treatment of particular coefficients. The commonly used VisuShrink of Donoho
and Johnstone (1994) is a good example of the term-by-term thresholding procedures. Other
term by term shrinkage rules include firm shrinkage (Gao & Bruce (1997)), non-garrote
shrinkage (Gao (1998)), and Bayesian shrinkage rules based on independent priors on em-
pirical wavelet coeflicients (see, e.g., Clyde, et al. (1998) and Abramovich, et al (1998)).

The main objective of VisuShrink is to produce “noise-free” reconstructions. VisuShrink
achieves a degree of tradeoff between variance and bias contributions to the mean squared
error. However, the tradeoff is not optimal. VisuShrink favors reducing variance over bias.
As a result, it creates a logarithmic penalty in the MISE. The logarithmic penalty cannot
be removed by simply fine tuning the threshold. In fact, the estimator is asymptotically
optimal among all such universal term-by-term thresholding rules (see Donoho & Johnstone
(1994); also see Section 3). The difficulty of term-by-term thresholding is due to the relative
inaccuracy with which individual wavelet coefficients are estimated.

Hall, Kerkyacharian and Picard (1998 & 1999) introduced local block thresholding es-
timators which threshold empirical wavelet coefficients in groups rather than individually.
The procedure first divides the wavelet coefficients at each resolution level into nonoverlap-
ping blocks and then simultaneously keeps or kills all the coefficients within a block, based
on the magnitude of the sum of the squared empirical coefficients with that block. Hall, et
al. (1998 & 1999) argued that block thresholding enjoys a number of advantages over the
conventional term-by-term thresholding. See also Hardle, et al. (1998). The estimator of
Hall, et al., however, has an obvious drawback. The smoothing parameters, block length



and threshold level, are not completely specified. No prescription is given for finite samples
and the users thus need to select the parameters empirically.

Block thresholding is conceptually appealing. It increases estimation precision by uti-
lizing information about neighboring wavelet coefficients and allows the balance between
variance and bias to be varied along the curve, resulting in adaptive smoothing. The degree
of adaptivity, as we will show, however, depends on the choice of block size and threshold
level. In the present paper, we consider block thresholding rules for wavelet regression and
derive an “optimal” block thresholding estimator that is fully specified and easy to imple-
ment, at a computational cost of O(n). Specifically, we have three goals. The first is to
study the effect of block length and threshold level on the global as well as local adaptivity.
The second is to determine the “optimal” choice for block size and threshold level and de-
rive an estimator that achieves simultaneously the optimal global and local adaptivity while
preserving the smoothing and denoising properties of the VisuShrink estimator. The third
goal is to investigate both the asymptotic and numerical properties of the estimator.

As in any other smoothing method, the choice of smoothing parameters, in this case the
block size and the threshold level, plays a critical role in the performance of the resulting
estimator. After Section 2 in which basic notation and the block threshold method are
introduced, we consider in Section 3 the effect of block length on both the global and local
adaptivity of the estimator. The results show that there are conflicting demands on block
size for achieving the global and local adaptivity. The block size must be at least of the order
logn to achieve the optimal global adaptivity. On the other hand, to achieve the optimal
local adaptivity, the block size must be no more than logn in order. Therefore no block
thresholding estimator can achieve simultaneously the optimal global and local adaptivity, if
the block size is larger or smaller than logn in order. Then, in Section 4, we consider block
thresholding as a hypothesis testing problem and select threshold level so that the estimator
enjoys a desirable denoising property, as well as achieving balance between variance and bias.

The results obtained in Sections 3 and 4 lead us naturally to consideration in Section 5 of a
possible optimal choice of block thresholding estimator. The estimator, called BlockShrink,
is completely specified, with explicit definition of both the block size and the threshold
level. Asymptotic results show that the estimator is indeed optimal in the sense that it
achieves simultaneously the exact global and local adaptivity, while preserves the smoothing
and denoising properties. More specifically, we prove that BlockShrink achieves the exact
minimax convergence rate, under the global risk measure (2), over a wide range of function
classes of inhomogeneous smoothness. The estimator also optimally adapts to the local
smoothness of the underlying function; it achieves the adaptive minimax rate over an interval
of local Holder classes for estimating a function at a point. In addition, BlockShrink enjoys an
interesting smoothness property which should offer high visual quality of the reconstruction.

We investigate the finite-sample performance of BlockShrink in Section 6. The esti-
mator is compared both quantitatively and qualitatively with four conventional methods,
VisuShrink, RiskShrink, SureShrink and Translation-Invariant (TI) de-noising. Simulation
results show that the estimator has superior numerical performance in comparison to the
other four estimators. It automatically adapts to subtle changes in the underlying func-
tions, but do not contain the spurious fine-scale structure often contained in RiskShrink and
SureShrink. Real and simulated data sets are also discussed. SPlus scripts implementing



the estimator and additional simulation results are provided on the web site [7]. The proofs
are contained in Section 8.

2 Wavelet Thresholding

2.1 Wavelets

An orthonormal wavelet basis is generated from dilation and translation of two basic func-
tions, a “father” wavelet ¢ and a “mother” wavelet 9. The functions ¢ and 7 are assumed
to be compactly supported and [ ¢ = 1. A special family of compactly supported wavelets
is the so-called Coiflets, constructed by Daubechies (1992), which can have arbitrary num-
ber of vanishing moments for both the father wavelet ¢ and mother wavelet 1. Denote by
W (D) the collection of Coiflets {¢, 1} of order D. So if {¢,9} € W(D), then ¢ and ¢ are
compactly supported and satisfy [zf¢(x)dr =0fori=1,...,D —1; and [z (z)dz = 0 for
1=0,...,D — 1. Denote the periodized wavelets

(7)) = Y diwlx —1), ¥h(z) = > dik(x—1), forzel0,1]

leZ leZ

where ¢;x(z) = 29/2¢(2'x — k), and Y (z) = 29/2¢(2iz — k). For simplicity in exposition,
we use the periodized wavelet bases on [0, 1] in the present paper. The collection {(b?ok, k=

1,..,200,98 .5 > jo > 0,k = 1,...,2} constitutes such an orthonormal basis of L(0,1]. The

superscript “p” will be suppressed from the notations for convenience.

An orthonormal wavelet basis has an associated orthogonal Discrete Wavelet Trasnform
(DWT) that transforms sampled data into wavelet coefficient domain in O(n) operations.
The DWT is norm-preserving and this enables one to transform the problem in the function
domain into a problem in the sequence domain of the wavelet coefficients with isometry of
risks. See Daubechies (1992) and Strang (1992) for more on wavelets and the DWT.

Wavelet bases have distinguished data compression and localization properties. A re-
markable fact about wavelets is that full wavelet series (those having plenty of nonzero
coefficients) represent really pathological functions, whereas “normal” functions have sparse
wavelet series. Wavelet bases are well localized, i.e., local regularity properties of a function
are determined by its local wavelet coefficients. Large wavelet coefficients cluster around the
discontinuities and other irregularities of the function. See Meyer (1992).

Here is an example which depicts the data compression and localization properties of
wavelets. Consider JumpSine, a sinusoid with three discontinuous jumps. Panels (a) and
(b) of Figure 1 plot a sampled function of length 1024 and the DWT of the data, respectively.
The vertical lines on panel (b) represents the values of the wavelet coefficients. Among the
total of 1024 coefficients, there are only a few of them that are large enough to be visible
on the plot. The large coefficients at high resolution levels occur only around the three
jump points. Panel (c) shows the striking contrast between the energy concentration of the
original data and the transformed data. The energy concentration function is defined by

., 1082,
e(k) = Z*rl;“l & where |0](;) is the i-th largest absolute value in the vector ¢ (see Bruce &
2

Gao (1997)). In panel (c), k is plotted on a log scale. The energy concentration function
of the wavelet coefficients increases exponentially fast, whereas the energy concentration
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(a). JumpSine (b). Wavelet Coefficlents
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Figure 1: Compression and localization properties of wavelets

function of the original data increases very slowly. The information about the function is
concentrated in a very small number of large wavelet coefficients. In fact, one has almost
perfect reconstruction with only 50 largest coefficients (panel (d)).

2.2 Thresholding Estimators

The compression and localization properties of wavelets have important implications for
statstical estimation. Efficient representation leads to efficient estimation. When the ob-
servations are contaminated with noise, a good strategy is to estimate the large coefficients
accurately, and at the same time, kill the small coefficients. This can be achieved through
thresholding.

Suppose we observe noisy data Y = {y;} as in (1). Denote the true wavelet coefficients of
f by &k = (f, djk) and 0 = (f, ¥jx). Let Y = W -n12Y be the discrete wavelet transform
of n=1/2Y. Write

? = (Ejol) T 6j02j07gj01a T 7gj02j07 Ty gJ-—l,la T gJ—l,Z"_l),' (4)

Here fjok are the gross structure terms at the lowest resolution level, and §;; (7 =

1,--+,J—1,k=1,--+,2%) are empirical wavelet coefficients at level j which represent fine
structure features. The §;; are independent with noise level n~2¢ and can be written as

’gjk = H;k + n"l/zezjk (5)

where the 07 are approximately the true coefficients of f, and the z;;’s are i.i.d. N(0,1).
A term-by-term thresholding procedure estimates the function f by

R 290 J—1 27
fe(@) =D Eiokdbion(@) + D D Uil (1Gjn] > T)ju(z).
k=1 j=jo k=1

Here, each wavelet coefficient 0;; is estimated separately and the estimate éjk depends solely

on §;1, other coefficients have no influence on 6. The threshold T' = ¢(2n= logn)!/? is used
in Donoho and Johnstone (1994).



Hall, et al. (1999) introduce a block thresholding estimator which thresholds wavelet
coeflicients in groups instead of individually. At each resolution level 7, the empirical wavelet
coefficients §;;, are divided into nonoverlapping blocks of length L = C(logn)'™ with v > 0
and coefficients within a block are estimated simultaneously. Denote (jb) the indices of the
coefficients in the b-th block at level j, i.e. (jb) = {(5,k) : (b — 1)L +1 < k < bL}. Let
S% = Yke(jn) Uok denote the sum of squares of the empirical coefficients in the block. A block
(yb) is deemed important if S, is larger than a threshold 7' = ALn"'€® with A > 48 and then
all the coeflicients in the block are retained; otherwise the block is considered negligible and
all the coefficients in the block are discarded. For (j, k) € (jb),

éjk = gjk . I(szb > /\LTL—162). (6)

The estimator of the whole function is given by

R 200 J-1 L s

~ 2 —_
F(2) = 32 Eionbior (®) + D D (D2 Tintbie(®)1(S7, > ALn™"e”) (7)
k=1 i=jo b ke(jb)

It is shown that, under the global risk measure (2), the estimator (7) attain the exact
minimax rate of convergence without the logarithmic penalty over a wide range of function
classes # considered in Section 5.2. A similar estimator was discussed in Hall, et al. (1998)
in the case of density estimation. See also Hardle, et al. (1998).

Despite its virtues, this estimator has an obvious drawback. The smoothing parameters,
block length and threshold level, are not completely specified by the theory. No prescription
is given for finite samples and the users thus need to choose the parameters subjectively. Also
as we will see in Section 3.2 that the estimator does not achieve optimal local adaptivity.

Throughout this paper, the term “block thresholding estimator” refers to an estimator
of the form (7) with some L > 0 and A > 0.

3 The Effect of Block Length on Adaptivity

We measure the performance of an estimator by its global as well as local adaptivity. An
estimator that is global adaptive can automatically adjust to varying level of overall regu-
larity of the target function; and a locally adaptive estimator can optimally adapt to subtle,
spatial changes in smoothness. An estimator that achieves simultaneously the optimal global
and local adaptivity permits the trade-off between variance and bias to be varied along the
curve in an optimal way, resulting in spatially adaptive smoothing in classical sense.

We begin by investigating the effect of block length on global and local adaptivity. The
results obtained in this section will lead us naturally to an “optimal” block thresholding
estimator in Section 5 which achieves simultaneously the optimal global and local adaptivity,
and at the same time, preserves the smoothing and denoising properties. The estimator is
fully specified, with explicit definition of both the block size and the threshold level.

3.1 Effect on Global Adaptivity

We call an estimator achieving the optimal global adaptivity over certain function classes
if, under the global risk measure (2), it attains the exact minimax rate of convergence
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simultaneously over the function classes. The function classes of interest in this section is
the traditional Holder classes A®(M) which are defined in the usual way:

AM) = {f : |f1D(z) — fleD(y)| < M |z — y|*'}

where || is the largest integer less than o and o = a — |a].

Denote the minimax risk over a function class F by R(F,n) = inf; supr El| fo — 112
It is well known that the minimax rate of convergence for global estimation over A*(M) is
n~20/(1420)  The results below shows the effect of block length on the global adaptivity in
terms of convergence rate.

Theorem 1 Suppose the wavelets {¢,v} € W (D). Denote by fn the estimator given by (7)
with block size L = (logn)? and thresholding constant A.

(i). If0 < p < 1, then for any A = A(n), and for all0 < a < D and 0 < M < o0,

—_— 2c 2a(1-p) ~
Lim nta - (logn)” 2= - sup F|f,— FlIZ > 0. 8
T ¥ (logn) 5 sup By 1 ®)

(ii). On the other hand, if p > 1, then for any fited A > 1, and for all 0 < o < D and
0< M < o0,

0< Tim ni¥ - sup E||fn— flI2 < (9)
n—00 FEAS(M)

Theorem 1 shows that, when p < 1, the rate of convergence for f, over A*(M) cannot
exceed (log'™#n/n)?*/(1+22)  Therefore, it is impossible for a block thresholding estimator
with L = (logn)” and p < 1 to achieve the optimal global adaptivity. The extra logarithmic
factor in (8) is due to the fact that the block size is too small and consequently information on
neighboring coeflicients within a block is not sufficient to precisely estimate the coefficients.
On the other hand, with L = (logn)? and p > 1, and any fixed thresholding constant A > 1,
a block thresholding estimator is globally adaptive over the Holder classes. In fact, it can
be shown that the global adaptivity holds over much wider function classes.

Theorem 1(i) gives an upper bound for the global rate of convergence when 0 < p < 1.
It can be shown that the upper bound is sharp. The estimator with thresholding constant
derived in Section 4 attains the upper bound. A special case is L = 1. Theorem 1 shows
that the rate of convergence over Hélder classes A*(M) cannot exceed (logn/n)?*/(1+2%) for
any term by term thresholding estimator. This rate is attained by the VisuShrink estimator.

3.2 Effect on Local Adaptivity

We now consider local adaptivity of the estimators. For functions of spatial inhomogeneity,
the local smoothness of the functions varies significantly from point to point and global risk
measures such as (2) cannot wholly reflect the performance of estimators locally. The local
risk measure

A

R(f(zo), f(m0)) = E(f(z0) — f(z0))? (10)

is used for spatial adaptivity, where zo € (0, 1) is any fixed point of interest.
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Define the local Holder class A*(M, o, ) by
A (M, 20,8) = {f : |f1*D(e) = f1D(20)] < M|z — 2|* 5 € (0~ 6, 70+ )}

where || is the largest integer less than @ and o/ = a@ — |@]. Denote the minimax risk for
estimating functions at a point zy over A*(M, x4, d) by
R(A*(M,x0,6),n) =inf sup E(fu(zo) — f(z0))>.
fa A%(M,z0,6)

In global estimation, it is possible to achieve complete success of adaptation across a range
of function classes in terms of convergence rate, in some case, even at the level of constant.
That is, one can do as well when the degree of smoothness is unknown as one could do if
the degree of smoothness is known.

For local estimation, however, one must pay a price for adaptation. When « is known,
R(A*(M, zy,0),n) converges at the rate of n=" where r = 2a/(1+ 2¢)). When « is unknown,
as shown by Lepski (1990) and Brown & Low (1996), one has to pay a price for adaptation of
at least a logarithmic factor; the best one can do in this case is (logn/n)". We call (logn/n)"
the adaptive minimax rate for local estimation.

Theorem 2 Suppose the wavelets {¢, 9} € W(D) and zo € (0,1) is fired. Denote by f, the
estimator given by (7), with block size L = (logn)? and thresholding constant .

(). If 0 < p < 1, then there exists A = A(L) such that for all0 < a < D and 0 < M < oo,

—_— 2 A
0 < lim T+ea . su E(fa(zo) — f(20))? < 00, 11
L (o)™ sup B(falan) — F () (11)

(ii). If p > 1, then for any fized thresholding constant A > 1, and for all 0 < a < D and

0< M < o0,
z n 2a _2a(p—1) s 2
lim i+2o . (logn)” T+ - su E(fu(zo) — flz > 0, 12
T ()75 - (logm) S B(fa(ao) (o) (12)

In words, when p > 1, no block thresholding estimator fn can achieve the optimal local
adaptivity. The extra logarithmic factor in (12) is due to the fact that the block size is
too large and consequently the estimator is not well localized. Intuitively, it is clear that
the block length could not be too large in order to well adapt to the local behavior of the
underlying function. On the other hand, if p < 1, then, with an appropriate choice of A,
the optimal local adaptivity can be achieved. The choice of A will be discussed in Section 4.
Here we note that the block size in Hall, et al. (1999) is of the order (logn)? with p > 1, so,
in light of Theorem 2, it does not achieve the optimal local adaptivity.

It is revealing to put Theorems 1 and 2 together. One immediately sees that there are
conflicting requirements on the block size for achieving the global and local adaptivity;
and it is impossible to simultaneously achieve both by a block thresholding estimator with
L = (logn)? and p # 1.

These results lead us to consideration of the choice of L = logn as a possible optimal
compromise. We will show in Section 5 that L. = logn is indeed the optimal choice in the
sense that with L = logn and an appropriate A derived in Section 4, the resulting block
thresholding estimator achieves simultaneously the optimal global and local adaptivity over
a range of function classes.



4 Block Thresholding as a Testing Problem and the
Choice of the Thresholding Constant

The aim of block thresholding is to achieve better adaptivity while retaining the smoothing
and denoising properties of the VisuShrink estimator. In particular, we wish to choose the
threshold so that the estimator removes pure noise completely, with probability tending to
1. In this section, we treat block thresholding as a hypothesis testing problem and select the
thresholding constant so that the resulting estimator achieves these objectives.

Suppose one observes

:1:1-:91-—|-z,-, i=1,2,---,n,
with z; % N(0, 1). The mean @ = (6;) is the object of interest. Assume one has reasons
to think, although not certain, that the mean @ is zero. Then it is natural first to test the
hypothesis

H0291:02——'—"':9n:0. (13)

Term-by-term thresholding can be viewed as a Bonferroni type test which tests the global
hypothesis (13) coordinate-wise. In contrast, block thresholding tests the global hypothesis
(13) in groups. Divide the mean vector into block of size L and test the hypothesis

H(gb) : Opr—py1="-"="0r =0.

on each block (b) for b = 1,---n/L, and to estimate f by 0 when the hypothesis Héb) is
not rejected and by z() otherwise. The classical multivariate normal decision theory shows
that, for each block, a uniformly most powerful test exists; and the best rejection region is of
the form Y 2 > T, where T is a constant (see Lehmann & Casella (1998), pp. 351). Hence
the shrinkage estimator becomes 6; = z; - I (Tiew 27 > T) for j € (b), which is exactly a
block thresholding estimator.

Rewriting the threshold T as 7' = A- L. It is easy to see that the p-value of the blockwise
test under the null hypothesis is

pr(A) =1—(1—P(Yy > X L)™*, (14)

where Y ~ x2. It is reasonable to require that, under the null, the blockwise test asymp-
totically makes the correct decision with certainty, i.e., pr{A) = 0, as n — oo.

Theorem 3 Let L = (logn)? and let pr()\), as given in (14), be the p-value of the blockwise
test. Denote T, = 2(logn)'~* for 0 < p <1 and 6, = 2(log n)~~/2 for p > 1. Let

(i). Ar=2logn, when p=0; 15)
(ii). Ap=T,+logT,+1, when 0 < p < 1/2; 16
(iii Ap =T, +1ogT, + 1+ (logT, +1)/T,, when1/2<p<1, 17
(iv).

/\L:1—I—<5,,+5§/3, when 2 < p < 3.

(
(16)
(17)
AL = 4.5052 (the root of A —log A — 3 = 0), when p = 1; (18)
(19)
(20)
Ap=1+46,, whenp>3. (21)

)
)
(v). A=1+6,+62/34063/36, whenl<p<2.
)
)

9



Then, for X > A, pr(A) = 0 as n — co. Moreover, the bounds given above are sharp. For
example, in the case of 0 < p < 1/2, if A < T, + logT, + ¢ with a constant ¢ < 1, then
pr(A) = 1. In particular, if lim,_0 A/AL < 1, then p(A) = 1.

It is interesting to note that in the case of L = logn, Ay is an absolute constant satisfying
A —log A — 3 = 0. In the special case of L = 1, the bound given in Theorem 3 is equivalent
to the bound 1/2logn in the Gaussian case which motivates the choice of the threshold for
VisuShrink (see Donoho & Johnstone (1994)).

Guided by Theorem 3, for a given block length L = (logn)?, we choose the thresholding
constant Az, as in (15)-(21). As a consequence of Theorem 3, with the selected Ar, the result-
ing block thresholding estimator removes pure noise completely, with probability tending to
1. See Theorem 6 for the case of L = logn.

5 The BlockShrink Estimator and Its Optimality

5.1 The Estimator

The results in Section 3 show that it is impossible for a block thresholding estimator (7) with
L = (logn)? and p # 1 to achieve the optimal global and local adaptivity simultaneously. The
discussion in the preceding sections lead naturally to consideration of the block thresholding
estimator with block size L = logn and thresholding constant A = 4.5052. In this section,
we will discuss in detail the properties of this particular block thresholding estimator.
Denote by L, = logn and A, = 4.5052, we define the block thresholding estimator f;{ by

230

R _ J-1
Fal@) = 3" Giadion(2) + 30 30 20 Gl (S5 > MLun™'€") Yye(w) (22)
k=1

j=jo b ke(jb)

For specificity, we call this particular block thresholding estimator BlockShrink in the rest
of the paper.

Often one is interested in estimating f at the sample points. In that case, the BlockShrink
estimator can be easily implemented in three steps, at a computational cost of O(n):

1. Transform the noisy data via the discrete wavelet transform.

2. At each resolution level, the empirical wavelet coefficients are grouped into nonoverlap-
ping blocks of length L,. If the sum of the squared empirical coefficients in a block is
above a threshold T = \,L.€2, then the block is deemed to contain significant informa-
tion about the signal and then all the coefficients in the block are retained, otherwise
it is deemed insignificant and all the coefficients in the block are discarded.

J—

3. Obtain the estimate of function f at the sample points, (f(z;))%,, by the inverse
discrete wavelet transform of the denoised wavelet coefficients.

We will show in Sections 5.2 — 5.5 that BlockShrink indeed enjoys simultaneously a high
degree of global and local adaptivity as well as a desirable denoising property. Moreover,
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a simulation study, summarized in Section 6, shows the estimator has excellent numerical
performance. But first let us look at one example.

Consider the Doppler signal, a sinusoid with changing amplitude and frequency (Donoho
& Johnstone (1994)). Random Gaussian noise is added to the signal. The signal-to-noise ra-
tio (SNR) is 3. BlockShrink and four conventional wavelet methods, VisuShrink, RiskShrink,
SureShrink, and TI de-noising, are used for recovering the true signal. (See Section 6 for a
discussion of the four conventional methods.) Figure 2 displays the reconstructions.

Doppler + Noise BlockShrink

[0 oz o4 o6 LX) 1.0 [ o2 0.4 [0 ce 1.0
VisuShrink RiskShrink

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 o8 1.0
TI de-noising SureShrink

0.0 o2 o4 G o.8 1.0 ©.0 o.2 o4 0.6 o8 1.0

Figure 2: Comparison of the reconstructions. The dotted line is the true signal.

BlockShrink as well as the conventional methods recover the smooth lowest frequency part
reasonably well. BlockShrink automatically adapts to the changing frequency of the target
function. It estimates the smooth and low frequency part with a high degree of accuracy; at
the same time, it also recovers well the rapidly oscillating area near the origin. In contrast,
VisuShrink, RiskShrink and TI de-noising all significantly over-smooth the high frequency
area. SureShrink does better than the other three conventional methods in recovering the
high frequency part, but it contains a fair amount of local oscillation around the low frequency
part and is visually unpleasant.

Quantitatively, the BlockShrink estimator is significantly more accurate than the other
methods. In this case, the ratios of the mean squared error of BlockShrink to those of
VisuShrink, RiskShrink, SureShrink, and TT de-noising are 0.280, 0.514, 0.628, and 0.368,
respectively. See Section 6 for further numerical results.

An inspection of wavelet coefficients is also revealing. Figure 3 displays the wavelet
coefficients used in the reconstructions. To show the detail coefficients more clearly, we use
different scales at different levels. BlockShrink retains 9 blocks of size 4 with a total of 36
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detail coefficients. The coefficients at high resolution levels cluster around the area near the
origin where the function rapidly oscillates. SureShrink retains 64 detail coefficients with
many around the low frequency area. As a result, the reconstruction contains spurious fine-
scale structure in the low frequency area. RiskShrink keeps 40 detail coefficients, also with a
few around the low frequency area which result in several unpleasant artifacts. VisuShrink
keeps only 18 detail coefficients and the reconstruction is over-smoothed.

BlockShrink SuresShrink
< a1
dz= az
as ul 1 . as 1l T
d4 —rT ; e T !
as " T as 7
ae L as —L
I e N L1 se — L1
o 100 200 300 400 500 o 100 =200 300 400 500
VisuShrink RiskShrink
a1 =L L o L
az az | .
as L as |
aa “lI ’ <4 T
as N das [
de —L— de —
ce — N R -e FE TS -
o 100 =200 Y=Y} 400 so00 o 100 =200 300 400 s00

Figure 3: Wavelet coefficients of the reconstructions of Doppler.

5.2 The function classes H

We consider the adaptivity of BlockShrink over a family of large function classes which was
used in Hall, et al. (1999). These function classes contain functions of inhomogeneous
smoothness and are different from other traditional smoothness classes. Functions in these
classes can be regarded as the superposition of smooth functions with jump discontinuities
and irregular perturbations.

Definition 1 Let H = H(ay,a,vy, M1, Ma, M3,D,v), where 0 < oy <a < D,0< v <
11:_221317 and My, My, M3, v > 0, denote the class of functions f such that for any 7 > jo > 0

there exists a set of integers A; with card(A;) < M3297 for which the following are true:

e For each k € A;, there exist constants ag = f(277k),a1,...,ap-1 Such that for all
z €279k, 279 (k +v)], |f(z) — P28 am(z — 279k)™| < My277°,

m

o For each k ¢ A;, there exist constants ag = f(279k),a1,...,ap-1 such that for all
z €279k, 27 (k + )], |f(z) — Z28am(z — 277k)™| < Mp2779e,

m

Roughly speaking, the intervals with indices in A; are “bad” intervals which contain less
smooth parts of the function. The number of the “bad” intervals is controlled by M3 and
so that the irregular parts do not overwhelm the fundamental structure of the function.
The function class # (a1, @, y, My, Ma, M3, D, v) contains the traditional Besov class B (M2)
as a subset for any given ay,7, M1, M3, D,v. See Meyer (1992) for definitions and properties
of Besov spaces.
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A function f € H(ay,a,vy, My, My, M3, D,v) can be regarded as the superposition of a
regular smooth function f, in a Besov class B% . (M:) and an irregular perturbation 7:

f:fs‘}"r-

The perturbation 7 can be, for example, jump discontinuities or high frequency oscillations
such as chirp and Doppler of the form: 7(z) = ¥X , ax(z — z1)P* cos(z — zx) . See Hall,
et al. (1998 & 1999) for further discussions about the function classes #.

5.3 Global Adaptivity

In this section, we investigate the global adaptivity of BlockShrink to unknown degree of
inhomogeneous smoothness over the function classes H = H(a1, @, v, M1, M3, M3, D, v). The
optimal rate of convergence for global estimation over the Besov class B (M) is n?*/ (142e)
Because the function class H contains B%_ (Ms) as a subset, the convergence rate over H
can not exceed n~2®/(1+22)  Theorem 4 below shows that BlockShrink attains adaptively the

optimal convergence rate of n=2¢/(1+22) acrogs a wide interval of the function classes #.

Theorem 4 Suppose the wavelets {¢,v} € W(D) and supp(¢) = supp(y)) = (0,N). Let
H = H(oq, a,y, My, Mo, M3, D,v). Then BlockShrink satisfies that for all0 < a < D and
forallv > N,
sup E||fy; — fl3 < On=2e/0+2e) (23)
fen

—

and for the estimate at the sample points, (f(z;))7,
1 = 7 —Z0 (87
sup = 3 E(f(w:) — f(2:))® < Cn72/042) (24)
Thus, BlockShrink, without knowing the a priori degree or amount of smoothness of the
underlying function, attains the optimal convergence rate that one could achieve by knowing
the regularity. That is, sup;ey B/ fr — fII* < R(H,n). In particular, BlockShrink attains the
optimal rates over a range of the Holder classes A%(M).

Remark 1 (Use of Coiflets:) If the following local Lipschitz conditions are imposed on
‘H when functions in H are relatively smooth, then there is no need for using Coiflets and
the condition {¢, ¥} € W(D) can be replaced by that ¢ has D vanishing moments; and
thus regular Daubechies’ wavelets can be used.

(i). If @ > 1 > oy, then for k & A;, |f(z) — F(279k)| < M4279, for z € [277k, 277 (k +v)].
(ii). If @ > oq > 1, then |f(z) — f(279k)| < Ms279, for z € [277k, 279 (k + v)].

5.4 Local Adaptivity

Again we use the pointwise risk (3) to measure the local adaptivity. As we noted in Section
3.2, the adaptive minimax rate for estimating a function at a point z, over the local Holder

class A%(M,z,8) is (logn/n)?*/(1+2%)  Theorem 5 below shows that BlockShrink achieves
optimal local adaptation with the minimal cost for estimating f at a point.
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Theorem 5 Let the wavelets {¢, 9} € W(D) and let z, € (0, 1) be fized. Then BlockShrink
fi(zo) of f(xzo) satisfies that for all0 <a < D, 6 >0 and 0 <M < oo,

sup  E(fr(wo) — f(20))® < C - (logm/m)*/(1+2%) (25)
feAx (M, xzg,0)

Combining Theorems 4 and 5 and compare to Theorems 1 and 2, we can see that Block-
Shrink achieves both the global and local adaptivity which is impossible to achieve simulta-
neously for other block thresholding estimator with L = (logn)” and p # 1.

5.5 Denoising Property

In addition to the global and local adaptivity, the BlockShrink estimator enjoys a smoothness
property which should offer high visual quality of the reconstruction. The estimator, with
high probability, removes pure noise completely.

Theorem 6 If the underlying true function is the zero function f = 0, then, with probability

tending to 1, BlockShrink is also the zero function. That is, there exist universal constants

P, such that
P(fr=0)>PFP,—1, as n—oo. (26)

~
*
n

6 Numerical Results and Examples

A simulation study is carried out to investigate the finite-sample performance of the es-
timator. BlockShrink is compared to VisuShrink, RiskShrink, SureShrink as well as the
Translation-Invariant (T1) de-noising method. RiskShrink, due to Donoho and Johnstone
(1994) is a term-by-term thresholding estimator with the threshold chosen to achieve certain
minimaxity for a given sample size n. SureShrink thresholds the empirical wavelet coeffi-
cients by minimizing the Stein’s unbiased risk estimate at each resolution level (see Donoho
& Johnstone (1995)). Both RiskShrink and SureShrink usually have better mean squared er-
ror performance than VisuShrink, but the reconstructions often contain visually unpleasant
spurious fine-structure. A TI de-noising estimator (Coifman and Donoho (1995)) is con-
structed by averaging over VisuShrink estimates based on all the shifts of the original data.
For further details on these estimators the readers are referred to Donoho and Johnstone
(1994 & 1995) and Coifman and Donoho (1995). For SureShrink, we use the hybrid method
proposed in Donoho and Johnstone (1995) in the simulations.

Eight test functions representing different level of spatial variability were used in the
simulations. For each of the eight objects under study, five different methods, BlockShrink,
VisuShrink, RiskShrink, SureShrink and TI de-noising, are applied to noisy versions of the
function. Sample sizes from n = 512 to n = 8192 and signal-to-noise ratios (SNR) from
3 to 7 are considered. And several different wavelets were used. Different combinations of
wavelets and signal-to-noise ratios yield basically the same results. For reasons of space,
we only report in detail the results for one particular case, using Daubechies’ compactly
supported wavelet Symmilet 8 and SNR equal to 5. For more details see the web site [7]

We implemented BlockShrink in S+Wavelets. There are total of 27 empirical wavelet
coefficients at a given resolution level j. For convenience one often wish to choose the block
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size to be a dyadic integer and evenly divide the coefficients at each resolution level into
nonoverlapping blocks. We suggest to take the block size to be the largest dyadic integer
smaller than or equal to logn, i.e. L = 2[°e2(8n)]  This choice of block size is used in all
simulations and works very well in our experience. Throughout, the lowest resolution level
Jo = [logy log n] -1 was used for all methods. Table 1 reports the mean squared errors (MSE)
over 500 replications. A graphical presentation is given in Figure 4.

Table 1: Mean Squared Error From 500 Replications (SNR=5)

n | Block | Visu [ Risk | Sure [ TI n | Block [ Visu | Risk [ Sure [ TI
Doppler HeaviSine
512 | 094 | 340 ] 1.72 | 159 | 2.64 512 | 0.57 | 056 | 047 | 0.50 | 0.52
1024 | 059 | 222 | 117 | 089 | 1.66 | 1024 | 0.36 | 044 | 0.33 | 0.34 | 0.39
2048 | 034 | 142 | 077 | 054 | 1.02 4 2048 | 022 | 035 | 023 | 0.23 | 0.28
4096 | 0.16 | 0.80 | 045 | 0.34| 0.56 || 4096 | 0.14 | 0.21 | 0.14 | 0.13 | 0.16
8192 | 0.09 | 052 | 0.29 | 0.18 | 0.34 | 8192 | 0.08 | 0.14 | 0.09 | 0.07 ] 0.10
Bumps Blocks
512 | 2.19 | 10.92 | 499 | 2.23 | 7.53 512 | 2.15 | 6.29 | 3.05| 2.61 | 5.35
1024 | 129 | 6.66 | 3.16 | 1.69 | 450 || 1024 | 1.33 | 420 | 2.08 | 1.59 | 3.61
2048 | 075 | 418 | 2.04 | 1.12 | 2.70 || 2048 | 0.85 | 2.85 | 148 | 1.04 | 2.40
4096 | 0.56 | 2.31 | 1.18 | 0.57 | 1.47 | 4096 | 0.71 | 1.72 | 094 | 0.71 | 1.39
8192 | 0.30 140 | 0.74 | 034 | 0.86 || 8192 | 042 | 1.16 | 0.64 | 0.44 | 0.89
Spikes Blip
512 | 092 | 285 | 145 | 1.05 | 2.11 512 | 047 | 094 | 056 | 063 ] 0.75
1024 | 049 | 181 | 094 056 | 1.25 | 1024 | 0.27 | 0.69 | 0.40 | 0.42 | 0.51
2048 { 0.31 114 ] 061 | 033 | 0.72 | 2048 | 0.18 | 045 | 027 | 024 | 0.32
4096 | 0.17 | 059 | 034 | 0.15| 0.30 || 4096 | 0.09 | 0.25 | 0.16 | 0.15| 0.19
8192 | 008 | 038 | 0.21 | 0.08| 0.17 | 8192 | 0.06 | 0.16 | 0.10 | 0.09 | 0.11
Corner Wave
512 | 0.33 | 0.51 | 035 0.29 | 0.30 512 | 0.56 | 3.79 | 1.77 | 295 | 2.62
1024 | 017 | 032 | 021 | 017 0.20) 1024 | 030 | 2.34 | 1.04| 3.20| 1.56
2048 | 010 | 0.20 | 0.13 | 009 | 0.12 || 2048 | 0.18 | 1.34 | 062 | 3.38 | 0.90
4096 | 0.04 | 0.08 | 0.06 | 0.05| 0.06 || 4096 | 0.09 | 0.48 { 0.25| 0.09 ] 0.11
8192 | 003 | 005 004 | 0.03| 0.03 | 8192 | 0.06 | 027 | 0.16 | 0.06 | 0.06

.8

BlockShrink has smaller MSE than VisuShrink in all but one of cases, among the total of
40 combinations of signals and sample sizes (see Figure 4). For six of the eight test functions,
Doppler, Bumps, Blocks, Spikes, Blip and Wave, BlockShrink has better precisions with
sample size n than VisuShrink with sample size 2-n for all n from 512 to 8192 (see Table 1).
BlockShrink outperforms the other methods as well. It yields better results than RiskShrink
in 37 out of the 40 cases; and beats TI de-noising in 38 out of 40 cases. The differences
are especially notable when the underlying function is of significant spatial variability. In
terms of MSE, the only competitor among the conventional methods is SureShrink. Apart
from being better than SureShrink in more than 75% of cases in mean square error, our
estimator yields noticeably better results visually. The reconstruction is smooth where the
underlying function is smooth. They do not contain spurious fine-scale structure that are
often contained in RiskShrink and SureShrink. BlockShrink adapts well to the subtle changes
of the target functions. See the web site [7] for more on simulation results.
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Figure 4: Comparison of MSEs (SNR=5). The vertical bars represent the ratios of the MSEs of
the estimators to the corresponding MSE of BlockShrink. The higher the bar the better the relative
performance of BlockShrink. The bars are plotted on a log scale and are truncated at the value 2.
For each signal the bars are ordered from left to right by the sample sizes (n=512 to 8192).

It would be interesting to compare BlockShrink numerically with the estimator of Hall, et
al. (1999). However, as mentioned earlier, their method requires to select block length and
threshold level empirically and no specific prescription is given for choosing the parameters
in finite sample cases. We therefore leave explicit numerical comparison for future work.

We now use the well-known sunspots data as an example to compare BlockShrink qual-
itatively with VisuShrink and SureShrink. Sunspots data has been analyzed by Anderson
(1971), Brockwell and Davis (1991) and recently by Efromovich (1999). We consider 1024
consecutive monthly means of daily numbers of sunspots from January, 1749 to March, 1834.
(The data is available in the standard Splus package.) See Figure 5.

o =00 400 aoo asoco 1000
nMonth

Figure 5: Monthly number of sunspots from January, 1749 to March, 1834.

Five wavelet methods, BlockShrink, SureShrink, VisuShrink, RiskShrink and TI de-
noising are applied to the data. Figure 6 displays the reconstructions and their residuals
of BlockShrink, SureShrink and VisuShrink. Using the model in Section 5.3, we can con-
ceptually envision the true underlying function f as the superposition of two components:
a smooth part f, and a high frequency oscillation part 7. In this particular example, the
smooth part f, can be think of as the well-known periodic, seasonal component (with a
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period of about 11 years).

The BlockShrink reconstruction shows remarkable spatial adaptivity. The reconstruction
is smooth near the valleys and the sixth peak where the volatility is low; at the same time,
it captures the high frequency oscillation part very well near the other peaks where the
volatility is high. BlockShrink permits the balance between variance and bias to be varied
along the curve. It simultaneously retains the fine structures around the peaks and produces
smooth reconstruction around the valleys. The reconstruction confirms the theoretical results
derived in Section 5.

In comparison, VisuShrink grossly over-smoothes the data; it captures the smooth sea-
sonal component well but misses almost all the fine details. It does not show the local
oscillations around the peaks. SureShrink performs better than VisuShrink. But SureShrink
smoothes out some oscillations around the peaks, noticeably near the fourth and the seventh
peaks, while still retains a fair amount of noise near the valleys. The reconstructions of
VisuShrink and SureShrink fail to show the significant difference in volatilities between the
peaks and valleys. The reconstructions of RiskShrink and TI de-noising, not shown here for
the reason of space, are very similar to that of VisuShrink. See the web site [7].

A look at the residual plots is also revealing. The residuals of both VisuShrink and
SureShrink have a clear pattern — they cluster around the peaks; in comparison the residuals
of BlockShrink are much more uniform. SureShrink keeps many wavelet coefficients at the
high resolution levels around the areas in which the underlying function is smooth. In fact,
an examination of the wavelet coeflicients shows that SureShrink uses 345 coefficients while
BlockShrink keeps 63 blocks of size 4 with a total of 252 coeflicients.
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Figure 6: Comparison of reconstructions and residuals.
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7 Concluding Remarks

We consider block thresholding rules for wavelet regression. It is shown that there are
conflicting requirements on block size for achieving the global and local adaptivity. This and
the results on the choice of threshold level lead naturally to a fully specified optimal choice
of block thresholding estimator.

Asymptotic results show that the estimator, BlockShrink, is indeed optimal in the sense
that it achieves simultaneously the exact global and local adaptivity, while preserves the
smoothing and denoising properties. Numerical results also show that the estimator performs
excellently in comparison with VisuShrink, RiskShrink, SureShrink and TT de-noising.

BlockShrink may also be regarded as an automatic model selection procedure, which
selects a set of important variables (wavelet coefficients) by omitting insignificant ones and
fits to the data a model consisting of only the important variables. The distinctive feature
of BlockShrink is that it retains or deletes variables group-by-group rather than one-by-one.

Besides nonparametric regression, block thresholding techniques can be applied to other
statistical problems such as linear inverse problems. For instance, block thresholding can
be used to improve the asymptotic result obtained in Abramovich and Silverman (1998) for
linear inverse problems. The extra logarithmic factor in the asymptotic risk bound can be
removed. In other words, a block thresholding estimator will attain the exact minimax rate
of convergence over a range of Besov classes for certain linear inverse problems.

8 Proofs

8.1 Preparatory Results

We will prove the main results in the order of Theorems 4, 5, 6, 1, 2, and 3. For simplicity, in
the proofs we assume that n is divisible by L.- A key result used in the proofs is Proposition
1 which is proved at the end. Besides Proposition 1, we also need a number of preparatory
results given below.

. Proposition 1 Suppose that z; " N@;, ?), i =1,---,L. Let 6; = z; 1(S? > ALo?),
where 52 = Y1, 22 and A > 4. Then

E|6— 0|2 < 22 +2)(|10]12 A Lo?) + 2AL(Ater 1) 7H 262, (27)

In particular, if X = 4.5052, the root of A —logA — 3 =0, and L = logn and o* = n~'¢?,
then
E||6 — 0|12 < 21 +2)(J|8]13 A Lo?) + 2Xe’n "> log n. (28)

The second term in (28) is negligible. Thus the risk inequality shows that the estimator

achieves, within a constant factor, the optimal balance between the variance and the squared
bias within each block.
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Lemma 1 (i). Let f € H(cu,@,7, My, My, M3, D,v). Assume the wavelets {¢,¢} € W(D)
with supp(¢p) = supp(vp) C [0,v]. Let n=27. Then

€ —n 3 f(k/n)| < My|gllin~ W) ifk e Aj; (29)
e —n 2 f(k/n)| < Mo|gllin 2 ifk ¢ Aj; (30)
10;6] < My||epll 27902 if ke A (31)
0] < Mo|l)[1 27702 if k¢ A (32)

(ii). for all functions f € A*(M), the wavelet coefficients of f satisfies
0] < C'- 9-i(1/2+0)
where the constant C' depends on the wavelets, o and M only.

Lemma 1 is a direct consequence of the vanishing moments conditions on the wavelets

{¢, ¥}

Lemma 2 If ||ul|7, < ¥’ with 0 <~y <1, then

. Az llz+uly <t} 2{z: ll=ll;, < 1 —7)}
). A{z: llz+uly, 2t} S {z: llallz, > 1 —7)%}.

Lemma 2 follows from the triangle inequality.

Lemma 3 Let Y and X; be random variables, then

(i). E(Y X)) < (Z(BEXHV, (33)
(ii). (E(Y + Y X:)))? > (BY?)V? - S (EX))'2. (34)

The inequality (33) is a simple consequence of Cauchy-Schwartz inequality and
[E(Y + ZXi)2]1/2 (EY2 1/2 _ ZX 1/2 EY2)1/2 E(EXB)I/Z,

where the first inequality follows from Minkowski’s inequality and the second from (33).
Lemma 4 gives lower and upper bounds for the tail probability of the x? distribution,
and a bound for the expected value of a truncated x? variable.

Lemma 4 Let Y ~ x3 and A > 1. Then

(i). %le—I/Z(A-l YL < P(Yy > AL) < w2 (A — 1)TLLTV2 (A 1) 7H/Z (35)
(i). EYI(Yp > AL) <AL (At 1) L2 (36)
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Proof: Denote by fn,(y) the pdf of a x2, variable. Then integration by parts yields
P(Y,, > z) =2fn(z) + P(Yim_o > 1). (37)

Applying (37) recursively, one gets

[(L~-1)/2]
P(Yp>AL)<2 Y fra(AL). (38)
k=0
It is easy to see that, for m < L,
m _
fm(AL) = 37 fme2(AL) < A ' fmi2(AL). (39)
Combining (38) and (39), one has
[(L /A —k 2A 1 L/2-1,-)L/2
. ALY e 1%,
P(Yp, > AL) < ;Cz:% fr(AL) /\_1 2L/2I‘(L/2)( ) e (40)

Now Stirling’s formula,
T(z + 1) = V2r 2°%1/2 72+0/(122) | with 0 <6 < 1, (41)

yields
P(Yy > ML) < mY2(\ — 1)"1L V2 (\~LeA1)-L/2,

On the other hand,

1 . . ()\L)L/2—1 2¢—ML/2
> —_— 12-1e=% g . 42
P2 AD) = st/ / ¢ T2 LA T(L)2) (42)

Again, it follows from Stirling’s formula (41), after some simple algebra,

P(Yp > AL) > 2 A7HLTY2 (A7t )R

(S0 ]

The proof of (36) is straightforward:

1 ® L2 —z/2
1 © Lj2 —z/2(\L/2+1 —z(A-1 1 Ae1y—
= — Y 2(A-1)/2Y dr < AL (A~ e 1)L/2.
2L/2F(L/2)/L TN e ) dz <AL (AT e

8.2 Proof of Theorem 4

Let Y be the discrete wavelet transform of {n~'/2Y’} and be written as in (4). One may
write
Tik = O + aje +n" ez, (43)

where 0;; is the true wavelet coefficients of f, aj; is some approximation error which is
considered “small” by the results of Lemma 1(i), and z;;’s are i.i.d. N(0,1).
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Denote f(z) = =7, n~?y;¢55(z). The function f(z) can be written as

flz) = é[‘fh‘ + (Y2 f () — €5) + 0 Pez)dai(x)

2J0 J-1 2

= Z[Sjok + &jok -+ n‘l/zeéjok]@ok (.’L‘) + Z Z[ij + aj + n_l/zezjk]¢jk(x).

k=1 j=jo k=1

Here, &, and 6;; are the orthogonal transform of {&€si} via W, likewise d;,r and aj the
transform of {n~Y/2f(z;) — £}, and Zx, and zj;, the transform of {z;}. Thus Z;x and 2z
are 1.i.d. N(0,1). Let &x = Eigk + @jok + 1~ 2€Zjor and Jjx = Ojx + ajp + n “12¢2;. Lemma
1(i) and the orthogonality of the discrete wavelet transform yield that

270 J-1 27
Z Qo + 2 203 = S (V2 (37) — €)? = ofn~2e/42)), (44)
j=jo k=1 i=1

Let € = £jor and O = Gl (S%, > A L.n7'e?), for (5,k) € (jb). By the isometry of
the function norm and the sequence norm, the risk of the BlockShrink estimator f; can be
written as

J-1 o0
E|lfr = 113 =3 Bk — &) + 2. D B — 058)* + > D 0% (45)
k j=do k j=J
Lemma 1(i) and (44) yield that
Z E f]ok gjok Z Z sz'k = O(n_2a/(1+2a))' (46)
i=J k

Denote by C a generic constant that varies from place to place and let

G; = {blocks at level j contain at least one coefficient with indices in A;};
G; = {blocks at level j contain no coefficients with indices in A;}.

The term S = E ) P E(;, — 0;1)? can be bounded by using Proposition 1 and (44).

S < (2A+2) ZZ ik + ak)? A Lin e + A Lyon™!

Jj=jo k

< C Z Zejzk N L*n_l + O(n—2a/(1+2a)).

j=jo k

Denote

J—1 J—1
Si=3 > X egz'k/\L*n_l; Sa=> Y X sz-kAL*n_l.

J=jo (§0)€G; (4,k)€(5b) J=jo (§b)€G; (5,k)€(5b)
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Note that card(G;) < M327” and let J; and J; be two integers satisfying 27 < n!/(+e1) and
272 = nl/(1+2) regpectively. Then

Ji—1
S1 < > > L'+ Z S>> 0 SL*n_12J”+CL*2"J1(1+2°‘1—7)
7=Jo (jb)€G; J=J1 (jb)EG; (j.k )E(]b)
= 0(n_2a/(1+2a) ), (47)
and
Ja—1
Sz < Z Z L, ,n—-1+ Z Z Z 92 < Gn—2a/(1+2a (48)
J=Jo (jb)EG; j=J2 (JD)EG, (3,k)€(5b)

Now (23) follows from (46), (47) and (48). The proof of (24) is similar. &

Remark 2 Under the conditions of Remark 1 following Theorem 4, Lemma 1 still holds
with (29) and (30) replaced, respectively, by

€k — 073 f(k/n)| < Myl|g|lin=(/2Har) if k€ A,

and
[€5x — 73 f(k/n)| < Ms|g[lin= /2 if k¢ A,

These ensure that the approximation error is of higher order than the estimation error,

270 J—1 27
Z ok + Z Z a,]k = Z l/zf(xl) _ €Ji)2 — O(n——2a/(1+2a)),
k=1 J=jo k=1 i=1

which is the same as in (44). The rest is identical to the proof of Theorem 4.

8.3 Proof of Theorem 5
For brevity, we prove the result for Holder class A*(M). It follows from Lemma 3 (i) that

f 2° < J—1 27
E( ;(1170) B f(:l?o))z < {Z(E(éjok - gjok) )1 2[¢]0k 5170 |+ Z Z ]k _ ) 1/2 |¢ k($0)|
£=t Jj=jo k=1
oo 27 2
+ Z Z |9jk”¢j’“($0)|} = (Q1 + Q2+ Q3)*.
j=J k=1

Let us consider the three terms separately. First note that at each resolution level j, there
are at most N basis functions 9;; such that 1;,(2o) # 0, where N is the length of the support
of 9. Denote K (j,%0) = {k : ¥ju(zo) # 0}. Then |K(j,z0)| < N. Therefore,

270

Q1 = D (B(Ejor — &ior)®) 2| iok (z0)| < 2°2||g||o0 N2 = o(n=/0F22)) . (49)

k=1
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For the third term, it follows from Lemma 1(ii) that

oo ¥ 00

Qs =2 > 0ellthi(zo)l < 3 N|[#lloo2/2C2730/24) < Cn~e. (50)

j=J k=1 j=J

Now consider the second term @Q,. First note that for function f € A*(M), the approx-
imation error ajj, satisfies |a;z| < Cn~*279/2. By applying Lemma 1(ii) and Proposition 1,
we have

J-1 )
Q < X Y 29PYll(E — 0)%)

Jj=jo kEK(j,.’l)o)

J-1
< Y 29/2(990+2a) | 9min=2) A Ll 4 Ln 2622
Jj=jo

= C(logn/n)*/1+2e), (51)

Combining (49), (50) and (51), we have E(f*(xo) — f(z0))? < C(logn/n)2/(+2e)

8.4 Proof of Theorem 6

The function is estimated by zero if and only if all the coefficients are estimated by zero.
When 6;; = 0, then the probability that a block is estimated by zero is P(Xye(jp) 23 < AxLn)-
Since z;; areiid. N(0,1), Y7, = Ye(jn) 25 has a x* distribution with L. degrees of freedom.
Lemma 4, together with the facts that L, = logn and A, = 3 +log A, yield

P(YL* > )\*L*) < e—L*-(A*—log)\*—l)/Z — 1/71, (52)
The total number of blocks is n/ L., so it follows from (52) that
P(f*=0) = [1 = P(Yz. > AL)IY" 2 [(1 = 1/n)"HE (53)

Let P, = [(1 —1/n)"]'/%*. Since (1 —1/n)® — e and 1/L, — 0, s0 P, = 1 as n — 0.

8.5 Proof of Theorem 1

We will prove only part (i) in detail. The proof of part (ii) is similar to that of Theorem 4.
Denote w = 2a/(1+2a) and p =1 —v with 0 < v < 1. The proof is divided into two cases.

Case 1: For all n > 0, the threshold A, > w(logn)?. Let J; be an integer such that
21 =< pl/(+20) (Jog n) =1/ (A+20) | et

Fa®) = 056¥i(t)

where 07 = co(logn)?/?n~1/2 < 27N1(1/249) with ¢y > 0. Then f, € A*(M) when the
constant ¢ is chosen small enough. We again use the decomposition (43),
Gik = O3 + aje + 1" Pezy (54)
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Since f,, € A%(M), Lemma 1(ii) yields that the approximation error satisfies |a;;| < Cn=%279/2,
For a given block (J1b) at level Jj,

N 1 ~
Y. Elx—0x)?> > (53[% — (O + a)]* — a%,)
(j:k)e(Jlb) (jak)e(‘llb)
1_ .. 1
= D 5Bk — )" 1(STy > ML) + 50k + ajn) PS5y < AnL) — 0]

(4,k)€(J1b)
1
1 2 P <L) -2 > aj (55)

(4.k)€(J1b) (5,k)E€(J1b)

Vv

To get a lower bound for P(S7, < A,L), we will apply Lemma 2 to 53 ,.

Since |ajz| < Cn™2279/2, ¥ ;4 a2 < C’n“l 40?/(1+20) (Jog p)(1~2e7)/(1+20)  Hence there
exists N > 0 such that for n > N Y ne) Bk < 5AnLnTteR. Now ¥, 0%, = cin~tlogn, so
for small co > 0, S, 0% < 150 Ln”1 2, Choosmg the constant ¢y > 0 small enough, we
have, for n > N,

1
YOk +ap)?<2> 605+2 af < ZAnLn_lez.
(J1b) (J1b) (J1b)

Then it follows from Lemma 2 that

{875 S ALY} = {3 (56 + ajr + 17 Pezj)? < MIn '} D { D 22, < )\ nL}.
(Jlb) (J1b)

For large n, A,/4 > (w/4)(logn)” > 2. Hence

P(S3, < MIn7teé®) > P(Y z]?,c <2L)>1/2. (56)
(J'b)

Combining (55) and (56), we have, for large n,

—

E||fn—fn||2 > ZE(éJlk—ﬁjlk > g2921k ZZaJk = (c2/8)(n/log” n)~ 2"‘/(IJFZ"‘)(l—f—o(l)).
k

So in this case,

fm ntHs - (logn)_% - sup El||f,— flIZ>c2/8 > 0.

n—00 fEAa(M)

Case 2: There exists a subsequence (n,,) such that the threshold A, < w(logn.,)”.

Without loss of generality, we assume in this case that for all n, the threshold A, < w(logn)?.
Consider f, = 0. Then all §;; = 0 and all ajk = 0 and for each block (jb), > x)e(iv) £ (O —
0;x)2 = nteEYI(Y > A\, L), where Y ~ x%. Hence

E|lfn — fall3 > i S Y E@j—0)?%=(n—-2°)n"teEYI(Y > M\L).

j=jo b (j,k)E(5b)
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Let A}, = max(A;, 1), then Lemma, 4 yields
2
EYI(Y > ML) > N LP(Y > M.L) > ng/z(A;e)L/zn—T/?

Hence in this case

- - fa 20y ~
lim nT - (logn) "2 - sup E|fn— fl|? =00. 1
e (logn) sera(in) o = £lI3

8.6 Proof of Theorem 2

We give the proof of part (ii) in detail. With the thresholding constant A; chosen as in
Section 4, the proof of part (i) is similar to that of Theorem 5.

Let J' be an integer satisfying 27 < (n/L)Y(+2%) and let k' be an integer such that [4)(27 zo—
K')| > co > 0. Let fi(z) = 0% (x) where 6%, = c;(n"1L)Y/2 < 2-7'(1/2+®)  The function
[ has only one “large” wavelet coefficient and all other coefficients are zero. It is easy to
show that f, € A*(M) if the constant ¢; > 0 is small enough.

Noting that &or = (fyr, jx) = 0 for all k and 0, = (f, ¥;x) = 0 for all (j,k) # (J', k'),
we have

s = {feig?M) Ef(fn(xo) - f(mo))z}l/z 2> (Ef,‘{(fn(mO) - f;(zo))z)l/z

o 1/2
= {E[(éJ’Ic’ — O (Zo) + > Eiokbjor(20) + > éjk¢jk($o)]2} (57)

k=1 (G.k)eT
where J = {(j,k): jo<j<J-1,1<k<2 and (5,k) # (J',k')}. Applying Lemma 3
(ii) to the RHS of (57), we have
270

S = (B@rw — 0:6)) Wy (zo)| — S (BE )Y bior (o) — 3 (EO2) 2141 (0)|
k=1 (G.k)eT

= Tl — T2 — T3. (58)

We will show that the first term 77 is dominating and T, and T3 are “small”. We first derive
a lower bound for T7. Denote by (J'd) the block containing (J', k'), then

E(éJ/k/ — HJ/k/)z = E(ngkl — 9J:kr)2I(S§,b > ALn—lfz) -+ eglkIP(Sglb S )\Ln_lez)
> 63, P(S%, < ALn~1€?) (59)

Same as in the proof of Theorem 1,we will apply Lemma 2 to 52, to get a lower bound for
y Jib :
P(S%, < \,L). Note again that the approximation error aj satisfies |a;;] < Cn=%279/2 g0
Jib , 7 J
Sy 03 < Cn~17407/(+420) [(2+20)/(1420)  Hence there exists a constant N, > 0 such that

for n > N,
> ah <
(J'b)

(1 = A"Y22ALnte, (60)

N
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By choosing ¢; < £(AY/2 — 1), we have for n > N,

> O+ ajp)? <20% +2 3 a2 < (1- AV Lt
(Jlb) (Jlb

It follows from Lemma, 2

{52, < ALn'} = { > (B + aju + n2ez)? < ALn 7'} D { Y zi < L}.

(J'0) (J'b)

So, P(S3y, < ALn~te?) > P(Z () 25, < L) > 1/2. Now (59) yields

1
~c*n'L.

A 1
E(GJ/k/ - 9]%/)2 Z Eeﬁ,k, = 2

Therefore
1

T = (E(éJ/k, — eJ’k’)2)1/22J,/2,¢(2J,$0 _ kr)l > ﬁcocln—a/(1+2a)[ja/(l+2a).

For T5, same as in the proof of Theorem 5, we have
270

Tz = Z(E Jok)1/2|¢j0k($0)| — O(H_a/(1+2a)),
k=1

(62)

Now consider the term T5. Let J; be an integer satisfying 2 =< max(1, n(=")/1+22))
Denote J1 = {(j,k) € J and j < 41}, and Jo = {(j,k) € J and j > j;}. First consider

(7,k) € J1. It is easy to see that
EQ}, = By (S} > Mn™'é) < By = af, + 071 < Cn %2279 4 n7'e.
So,

Tn= ) (Eégz'k)l/zh/)jk(xo” < Cn~%logn + Cn~Y2211/2 Jogn = o(n~o/(1+2),
(4.k)eN
Now consider (4,k) € J,. In this case, similar to (60), for large n, we have
Y oag < 12—{;\)\)1/2)2/\[//?,_162.
(7b)

It then follows from Lemma 2 that

—

{Sfb > An e’} = D (ajx +n “M2ez:4)% > ALn"te?} C -2 zj, > = (L+ AL}

%) ) 2

So for sufficiently n, we have
E0%, = E§%I(S} > An7'e) < on'@ B2 I(S3, > ALn~ e?) + 2%,
1
< 2 'EEY(Y > 5(1 + A)L) + 2a%,

26
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where Y = 34 23, ~ x}. Denote A; = (1 + ))/2. Lemma 4 now yields
E(0;) < 2n7'eéML (A M2 4202, < 2nteNL L 4 O
where 8 = (A\7! eM~1)Y/2 > 1, since A; > 1. Hence

To= 3 (B8 s(a0)] < CFHPLY? 4 OneLM? = o(n=o/0+2) (g5)
(4,k)eT>

It follows by combining (64) and (65),
Ty = Tay + Tsp = o(n~/(1F22)), (66)
Putting together (61), (62), and (66), we have

1
S>NTh—-1T,-T3 > ﬁcocm_a/(lﬂama/(“za)(1 + o(1)). (67)

Now (12) follows by letting L = (logn)” with p > 1. 1

8.7 Proof of Theorem 3

Let k(A) = (A — log A — 1)/2. Lemma 4 shows

%/\—IL—I/Ze—L-n()\) < P(YL > AL) < 7['_1/2(A _ 1)—1L—1/2e—L-n()\)'

First consider p = 1. Since xk(A\) > 1 for A > Ay = 4.5052, for L = logn and A > Az, one has
pr(A)=1—(1—=P(Yy > AL)"F <1— (1 — (A =1)"tlog™/2 n/ntMyn/lgn _y

On the other hand, if A is a constant less than Ar, then x(A\) < 1 and it is easy to see that

pr(A) — 1. The case of p = 0 is similar.

Now consider other cases. Suppose A = 3+ 4 with 6 = o(8). Then, using Taylor expansion,

one has for any M > 1,

om oM
k(A)=B+6— 1ogﬁ—1+z )" —— + O(757)- (68)
=1 mp™ pM
Consider 0 < p < 1/2. Let A\, = 2(logn)'~* + log(2(logn)}=?) + 1. Applying (68) with
B = 2(logn)'~* and § = log(2(logn)'=*) + 1, one has, for large n,

log(2(logn)'=*)

(’\L) (log n) - 2(10g n)l—p

Hence,
e~ L) < \/an~t(logn) /2, (69)

Note that (69) also holds for any A > A > 1, since k() is strictly increasing for A > 1.
Thus, for A > AL,
pL(A) <1 (1— (A= 1)~ /n)™/0osm .

The other cases can be verified in the same way by using (68). We omit the details here for
brevity. »
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8.8 Proof of Proposition 1
Denote R(6,6,0) = E,||6 — 0]|2, and 6* = 6/5. Since R(f ,0,0) = o?R(6*,6* 1), it suffices
to consider only the case o = 1. For brevity, we denote R(0,6,1) by R(6). It is easy to see
that R(6) is bounded above by (2\ + 2)L since
R(8) = E||zI(S? > AL) — 0|2 < 2E||lz — 8|3 + 2ES?I(S? < AL) < (2A+2)L.  (70)
On the other hand,
R(0) = El|lz — 0|)31(S? > AL) + ||0]3Py(S* < AL) < 2[|0]13 + 2ES?I(S* > AL).  (71)
When ||0]12 > L/2, ES*I(S*> > AL) < ES? < 3||6||2. So,
R(6) < 8[16ll3, when [|6]I3 > L/2. (72)
Now assume ||0]|3 < L/2. Let u = ||#||2 and denote
g(u) = ES*I(S* > \L). (73)

Denote by fm ,.(y) the density of a noncentral y?-distribution with m degrees of freedom
and noncentrality 4 and denote fr,0(y) by fm(y). The pdf fr, ,(y) has many representations
(see, e.g., Johnson, et al. (1995)). We will need the Poisson form and the integral form:

e—H/2

rslt) = S ) (74
Frul) = %/ (W= + V) + a8~ VY= 2) P fma(a) dz (75)

where g(z) is the density of a standard normal distribution. Since $? has a noncentral x?
distribution with L degrees of freedom and noncentrality parameter u, using (74), one has

= (u/2) 2 e H/?
Z EYL+2kI(YL+2k > /\L) (76)

where Y;, denotes a central x* random variable with m degrees of freedom. Denote a; =
EYp 4ok I(Yr2r > AL) and differentiate both sides of (76),

(1) = . i (u/i#(akﬂ — ay) (77)

e {P (Y4542 > AL) + ALfr1ok42(AL)} < 14+ ALfria,(AL)  (78)
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Now use the integral form (75) of fris, to bound ALfr4s ,(AL).
friasOD) = 5 [T @OAL= 5+ VD) + (WAL= 7 = VRO — 2) 2 fya (o)

2/(A Z)L V2L) + q(V2L — /L/2))(2L) ™ * f1 11 (z)da
1

2 (= 2)L(\/_ \/—)fL+1((

#L‘l/z(e_ +e iy 4 ﬁL V2 (A= 2)L).

Using Stirling’s formula (41), after some algebra, one has

IA

A —2)L)(A\L — z2)"Y?dy

<

1 A= 2\ 12
G -20) s e (57)

So,

L
A L1/2(e—L + e—L/4) + A L3/2 </\ - 2) 2 ) (79)
4y 2m/2(A — 2) er3

Some calculus shows that for a,b > 0,

/\LfL+2,/.L ()‘L) <

L'2e7L < supze™®" = (2ae)™2, and L**bL < supz®b™* = (3/(2elogh))*2.  (80)
>0 >0

Set a =1 and a = 1/4, and let b = (e*~3/(\ — 2))'/2, it follows from (79) and (80) that, for
A >4,

3/2
MLfran(AL) < T ((26) Vo /e ) — JZ(AA—_Z)(e(A_?)_ng(A_m)) <A1,

Now (78) yields ¢'(n) < A and hence g(u) < A+ g(0) = Ap+ EYLI(Yy > AL). It now
follows from Lemma 4 and (71) that

R(0) < 2A +2)|10]2 + 2AL(A )22, when ||6]12 < L/2. (81)
The inequality (27) follows by putting together (70), (72), and (81). 1
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9 Appendix

The test functions are normalized so that all of the functions have the same s.d.(f) = 100.
Doppler, HeaviSine, Bumps and Blocks are from Donoho & Johnstone (1994). Blip and

Wave are from Marron, et al. (1998). Formulae for Spikes and Corner are given below.

Spikes:

f(z)

15.6676 - [¢—300(z=0.23)? | 9 ,—2000(z—0.33)

244 ¢—8000(z—0.47)2

—8000(x—0.47)2 —16000(z—0.69)2 —32000(z—0.83)?
+4e +3e +e

Corner:

f(z) = 62.3865-[102° (1—4z?) Lo, 5)(2)+3(0.125—2°)z*I 5 ) (x) +59.4432(x—1)%I 5 1) (2)]

Doppler HeaviSine
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Figure 7: The test functions.
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