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Abstract

With the discovery of long range dependence in many types of real data, estimation
of the long memory parameter has become an important and challenging problem
in time series analysis. Recent work has concentrated on semi and nonparametric
estimation and the associated asymptotics.

In this article, we first give a simple closed form approximation to the Jeffrey
prior for the parameter vector § = (d,u,0) of a fractional ARIMA(0,d,0) process.
The approximation is based on the familiar Whittle approximation of ¥~1 and has a
simple interpretation. It is also amenable to further inference and computation. The
approximate Jeffrey prior and a natural uniform prior are used to construct Bayes
estimates of the long memory parameter d. The estimates are compared to the MLE
and the classic Geweke - Porter-Hudak estimate for a range of values of the sample
size n. Somewhat surprisingly, we find that except when d is rather small, the Bayes
estimates have a consistently smaller mean squared error.

Means of Bayesian predictive distributions developed from these priors are then
used to construct forecasts of future observations. We also consider an Empirical
BLUP as a classical forecast. They are applied to the Nile River data set as an appli-
cation, and the forecast based on the uniform prior is seen to be superior, sometimes
noticeably so. We give an explanation for why that could be anticipated.

*Research supported by a National Security Agency Grant.
tThis is a part of the first author’s Ph.D. dissertation at Purdue University



1 Introduction

Time series data with long range dependence has been a very active area of research in
recent years. A number of models have been successfully used in various settings; fractional
ARIMA processes, fractional Brownian motion, and increments of self-similar processes are
among the most common models that have been studied theoretically and used practically.
Equivalent definitions of long range dependence via the asymptotic behavior of the auto-
covariance function at infinity or of the spectral density at the origin are well known; for

instance, the requirement on the spectral density is that

A ~ LA, A =0, de(0,5), (1.1)

where L, (.) is slowly varying for A| — 0, or equivalently, the autocovariance at lag k, satisfy
2d-1 1
v(k) ~ La(k)|k|*™, |k| = o0, d € (0, 5), (1.2)

for some function L,(.) which is of slow variation for |k| — oco. See Beran (1994) and
Zygmund (1979), in particular.

Estimation of the parameter d, popularly known as the long memory parameter, has
recently attracted considerable attention. The problem is important, because accurate es-
timation of d is of great importance for other inference, for example inference about the
stationary variance. It is also important for forecasting and model fitting purposes. Clas-
sic literature on estimation of d includes Hurst(1951), Geweke and Porter-Hudak(1983),
Yajima(1985), Beran (1986), Dahlhaus(1989), etc. Of late, very substantial literature has
accumulated on fine tuning some of these classic estimates and on semiparametric estima-
tion of d; see Agiakloglou et al(1993), Hurvich et al (1995), Robinson (1994,1995), Tagqu
and Teverovsky (1997, 1998), Taqqu et al(1995), Koul and Giraitis(1997), Hall et al (1997),
among others.

Apart from some of the simulations and empirical studies, much of these developments

have focussed on asymptotic performance of the suggested estimates and has been almost
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exclusively frequentist. The corresponding Bayesian studies have been generally lacking.
The purpose of this article is to begin a theoretical foundation for Bayesian estimation
of the long memory parameter and forecasting, with an empirical examination of their
performance with real and simulated data.

The fractional ARIMA(0,d,0) model has proved to be a useful model for time series data,
with long memory in a variety of areas of applications; see Beran (1994), for instance. An
added advantage of the fractional ARIMA(0,d,0) model is that both the spectral density and

the autocovariance function are available in closed form. Indeed, the covariance function is

v(k) = /7r RO\, d)e* A

—T

2 2

= (_1) )
I'1+k—-dT(1—k—-d)
k=0,41,---; (1.3)
and the spectral density is
0% o A2
h(A,d) = —(2sin=)"%, A€ (-m,x) (1.4)

see Samarov and Taqqu (1988).

The Bayesian calculations that we perform depend on such closed form formulas, and
this is the process we consider in this article. Similar calculations seem to be possible for
increments of self-similar processes as well, although the expressions would be different.
Since we do not focus on the asymptotic behavior of the Bayesian estimates, the exact
expressions matter at various places. So it is better to treat these processes separately.

First, in section 2, we derive a closed form approximation to the Jeffrey prior for the
ARIMA(0,d,0) process. The stationary mean yu, the scale parameter ¢, and the long mem-
ory parameter d are all treated as unknown parameters. Thus, the Jeffreys prior is on the
vector parameter § = (d, u,0). The exact Jeffrey prior cannot be written in an analytical
form in this problem. It is mostly due to the reason that the Jeffrey prior depends on the

form of the likelihood function, which, for the Gaussian case, depends on Y71, the inverse
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covariance matrix. It is well known that except for small n, ¥~! cannot be written in an
analytical form in this problem. Therefore, to do any useful inference with realistic values
of n, an approximation to the Jeffreys prior is essential. The positive feature of such an
approximation is that it is closed form, the final closed form has a nice interpretation, and
it is in a form amenable to programming and computation. We show also in section 2 that
the Bayes estimate of d under this approximate Jeffreys prior can be obtained by only one
dimensional integrations; i.e., the other two parameters p and o can in fact be integrated
out analytically. This is a major simplification for the empirical evaluations and compu-
tations. Also in Section 2, we present a natural ”uniform” prior, and the corresponding
Bayes estimates. It turned out that the uniform prior estimates actually did better in the
simulations and the applications.

Next, in Section 3, we use the approximate Jeffreys prior and the uniform prior for
forecasting. Forecasting certainly is one of the paramount goals of time series analysis.
In frequentist analysis, the Best Linear Unbiased Predictor (BLUP) has acquired quite
universal acceptance and popularity for forecasting purposes. See, for instance, Robinson
(1991), Searle, Casella, and McCulloch (1992), Ghosh and Rao (1994), among others. Ac-
tually, the expression for BLUP involves the other unknown parameters, and it is common
to substitute appropriate estimates for them. The resulting estimates are usually called
empirical BLUP. The Bayesian forecasts are the means of the predictive distribution of the
future observations given the observed series. The predictive distribution depends on the
posterior distribution of the parameter vector , and hence on the prior. As in Section 2, it
turns out that the predictive means can be found by only one dimensional integrations, for
both the uniform and the Jeffreys prior.

In Section 4, we show a comparative simulation of the mean squared error of five esti-
mates of the long memory parameter d. Two of the five estimates are classical, namely the
MLE of d and the Geweke-Porter-Hudak (GPH) estimate; the others are Bayes estimates

under the Jeffrey and the uniform prior and an equal mixture of these two priors. The



simulations are for a range of values of n. Quite surprisingly, we see that except when d is
very small, the Bayes estimates, and especially the Bayes estimate under the uniform prior
outperform the MLE. They outperform the GPH estimate as well.

In Section 5, the Bayesian forecasts and the Empirical BLUP developed in Section 3
are applied to the well known Nile river data set. The length of the observed series used
to construct the forecasts is n= 20, 50, and 100. Specifically, 20, 50, or 100 years of data.
prior to the year 1107 AD are used to forecast the minimum level of the Nile River for the
years 1107 - 1206. For the Nile River data set, there is some evidence that the first 100
observations or so show white noise variation around a stationary mean; see Beran (1994).
That is why we used as our observed series a chunk of observations around the middle
of the data set. The conclusions from a comparative evaluation of the forecasts is that
the forecast based on the Jeffreys prior and the Empirical BLUP are roughly comparable;
but the uniform prior forecast is pretty consistently superior, and sometimes noticeably
so. We discuss why that may have been anticipated. The comparisons of the forecasts are
presented with tables and plots.

Section 6 gives a concluding summary.

We hope that the formal derivation of the Jeffreys prior and the subsequent comparisons
and applications filled a void in the sense that although the frequentist literature on this
important problem is growing at a very fast rate, the corresponding Bayesian studies were
missing. In addition, the simulations and the application to the Nile river data set show
that Bayesian methods seem to have a real potential for success in these problems.

For other results on estimation of the long memory parameter, one may consult Azais
and Lang (1993), Beran (1995), Beran and Terrin (1994), Cheung and Diebold (1994),
Delgado and Robinson (1994), Graf (1983), Hurvich and Beltrao (1994), Hurvich et al
(1995), Hurvich and Ray (1994), Jannacek (1994), Jensen (1999), Kearns and Pagan (1997),
Reisen (1994), Veitch and Abry (1999), Giraitis et al (1997), etc.



Forecasting under long range dependence is addressed in Brodsky and Hurvich (1999),
Crato and Ray (1996), Eisinga et al (1999),Palma and Chan (1997), Ray(1991, 1993), etc.

Previous literature on Bayesian modelling and analysis of long memory processes in-
cludes Haslett and Raftery (1989), Koop et al (1997), Petris (1996),Ravishanker and Ray
(1997), etc.

2 Estimation of d

2.1 Jeffreys Prior: First Approximation

Consider now the ARIMA(0, d,0) model that we are using. Let 8 = (d, u,0); then the
density of X is
1 _X-p)'m N x—up

(6. S Vbl T

T m.—1 _€ 2o
(2m)z|E]20m

F(X0) =

and the log likelihood function is

(X — pd)’SH(X — pd)
202

L(6) = logf(X16) = ~Flog(2m) - %log|2| — nlogo — L @)

Now, the Jeffreys prior (see Berger, 1986), by definition, is

o2 .
m(f) = {det[—E(@Lz(Q))]}2
_ n%{det[—E(aéﬁ%L(G))]}%.

The constant term n? has no effect on the subsequent Bayes estimates and hence we may
proceed with {det[—E(g—;z%L(H))]}% itself, treating this as the Jeffreys prior.
Now from (2.1),

1 _ 1 1 (X — p)’SH(X - pd)
nL(G) = 2log(27r) 2nlog|2| logo ST .
Grenander and Szegé (1958) proved that,
. logls| 1 g7
lim 29 L / . .
Jim — o log(2mh(), d))dA (2.2)



Then from (2.2) and Gradshteyn and Ryzhik (1965, Formula 4.22 No.9), we have
lim ___log|2|

n—00 n

T A
_ 2 : —-2d —
=0 [-W log(2sm2) dX = 0. (23)

So if we replace Llog|X| by 0, we have the approximation:

(X — p1)’S (X - pd)
2no?

“L(6) ~ —log(2m) — logo — = Lo(0) (soy).  (24)

We do not provide a precise meaning to the ”"~” sign in (2.4). The approximation is a
heurism with the goal of obtaining a closed form formula for the prior density that one could
use to compute and obtain estimates and forecasts. Now we state the first approximation
to the Jeffreys prior.

Theorem 2.1 Based on the approximation (2.4), the Jeffreys prior is

tr(zx1) [tr(EE )] }1(1' 1)

Nll—l

#(6) ={ (2.5)

where 27! and 3! denote the matrices with elements as the first and second derivatives
of elements of &1 (derivative being with respect to d).

Proof: By straightforward calculation,

p L)) | X - i ) _ (55
0d? - _ 2n0? T on
__E(82La(9)) B _E_X_Iz_ll _ llll,E—ll _
odop - no? S
PLO) _ X PN X —pl) (57
0ddos ~ nod B no
0%L,(0) 111
_E( 8/.1,2 ) - no? '
BL,(0),  _2(I'S71X — pl'm1)
—B( Oudo ) = E nos =9
(62L a(6 )) _ g3 X)X ) 12
do? not o2 o%
Hence, {det[—E (%3 59022 1L(0))]}% is the square root of the determinant of the matrix
tr!Z‘.f)‘lz __t'r!EZ'J*l!
2n no
I(0) = 0 1274 0 . (2.6)
_t'rfE)f}_l! 2
no a2



This is easily computed and seen to be equal to
tr(ZEY) (XY, 1571
(ERT) ey L2

not no? n
At this stage, we need an approximation for £ as well to make (2.7) analytically

O]

2.7)

accessible and the Bayes estimates practically computable. We now proceed towards that.

2.2 Whittle’s Approximation of X!

Because of the difficulty of the computation of £, ¥~1 and %1, Whittle’s approximation
is used to replace these three matrices.

Let
A= [a(k—l)]k,l=1,...,n (2.8)

where

g 1 R
Ak-1) = (271')_2 /_ﬂ_ h(A d) eZ(k_l)/\d)‘
1

_ T er A\2di(k—DA
= o /_W(2sm2) e dA. (2.9)
The matrix A is (asymptotically) the inverse of & (see Whittle, 1953; Beran, 1994) and has

been widely used as an approximation to X! in the literature.

2.3 Jeffreys Prior: Further Approximation

If in (27), 2_1 and 2_1 are replaced by A = [d(k—l)]k,lzl,...,n and A = [&(k—l)]k,lzl,...,n
respectively, then 7(0) of Theorem 2.1 is approximated by
\ tr(SA)  tr(TA),.. 'S
w(0) = (LA (O ey

1

2 2.10
not no? n ) (2.10)
The following penultimate result is the best for practical applications.

Theorem 2.2 For 7*(f) in (2.10),

0 Jm ey = 2F (2a1)
2) lim ”1) e r(i—d) (2.12)

" g 0\ D(1-2d)02 - 2d)
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where

1 . Ay
C o /_W[log(2szn2) ]°dA =~ 3.29 (2.13)

PG |
Remark. The usefulness of the above theorem is that we can use K%E as a joint

default prior for § = (d, s, o). Similarly, another (and simpler) expression is obtained from
(2.12).

To prove this theorem, the following lemma is needed. The two parts of the lemma
enable us to handle the two separate terms in (2.10).

Lemma 2.1

(1)
lim ltr(Ef'l.) =C,

n-—+00 7

(2)
lim ltr(EA) = 0.

n—o0 n,

Proof: Step 1. First, we take part (1) of Lemma 2.1. Let

(A = [log(2sin%)2]2(2sin%)2d; (2.14)

then by the dominated convergence theorem,
1 g Avag
G = 92gim 2 )28 i k—DA 7317
A (k1) [_27r /_W( szn2) e d)]
1 g A -
- 25in= 2d1 i(k—1)A
o /_1([( sm2) "e i)
L - Avaraio o Avad i(k—
- n 9 n i(k l))\d
o /_ﬂ[log(2sm2) %( sznz) e A
1

- = / " g\ E-DA g, (2.15)

Step 2. Now,
tr(S4) = Sp S Ye-nla-y)
= nE"m;loy(m)&(_m) - Zglllm’)’(m)d(——m) + 277;—:11 (n - m)'y(_m) Ei(m)
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= N Ym)G(—m) — 2D Y (=) i(m)

= I Ym)(om) — 21D 28(m)YV(-m), (2.16)
where
i) = 51; [ gy ez = ~imig, (2.17)
Step 3. Next, of the two terms in (2.16),

n—1 ~ a1 " im, 1 i —im
S bm)Y(om) = 2%212— g'(z)e™ dz o~ / h(y, d)e™"™dy

=T

= 1= / / S €™V g (@)h(y, d)dzdy

7'(n W(z—y) _ 1 ,
N 47r2/ / — e-ilz—y) g (z)h(y, d)dzdy

szn”(z Y) gim (r=1(z=y)

= 5 / / = 2 g(2)h(y, d)dedy. (2.18)

Step 4. The need for this step will be clear in step 5. Now observe that

/F /7T sin?u g (z)h(y, d)dzdy

= / / szn——cos () y,d)dzdy — / / cos—sm g'(w)h(y,d)d:vdy
= I + I, (say). (2.19)

The Riemann-Lebesgue Lemma says that if a function f(z) is integrable on (a,b), then
b
/ f(z)sin(nz)dz — 0, asn — oo. (2.20)
Let us check the integrability of ¢'(z): from (2.14),

g(z) = {[109(28“1—)2] (28'm2)2d}'

+ 2d[log(2sin%)2]2(252’1’L-£2E)2‘Jl‘1cosE

= 2log(2sz’nE cosy 5

[ -
2 (2sm§)1‘2d
[ l 2
ogr  (logzx)

as z — 0.
rl-2d pl—2d 7’

So ¢'(z) is integrable on (—m,w). Therefore,

/ sin%gg'(x)dz — 0, as n — oo. (2.21)

10



Similarly, h(y, d) is integrable on (—m, ) and
T X ny
/ sm?h(y, d)dy — 0, as n — oo. (2.22)

Hence,

IL — 0, and I, — 0, (223)

because cos™y and cos™ are uniformly bounded.

Step 5. On the other hand, by induction on n, we can prove that

— Dz — -
|sin(n )2($ y)l <(n- 1)|sz'nx yl.
So
smﬁn_—lgw_—_yl o
——| < 1. 2.
By (2.18), (2.19), (2.23) and (2.24)
N
lim —Y7%", 4m)Y(-m) = 0 (2.25)

n-—00 1,

Step 6. Now we come to the first term in (2.16). By Parseval’s formula, as n — oo,

_ N 1 7
2;:11_n7(m)a(_m) — %/_Wg(a:)h(x,d)dx

_ 1y . Tyo2
= 3 /_W[log(2sm2) |*dz

= C

~ 3.20. (2.26)
Therefore, from (2.16) it follows that

lim ~tr(SA) = C,

n—0o0 N,

completing part (1) of our lemma. We will now proceed to part (2) of Lemma, 2.1.

Step 7. Let us introduce the function

w(z) = log(2sz’ng)2 (232’71%)2‘1. (2.27)
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Similar to (2.15),

Now, as in (2.16),

where

Step 8. Following the steps of part (1) of this lemma, it can be proved that

1
T

[

o

" (2Sin:2\-)2dei(k_l))‘d)\]'

—T

/7r log(2sini)2(zsiné)%ei(k—z)xd/\

2 2

1 D11 Y (k1) O(1—k)

N0 V() U(—m) — 2i et Gy V(=)

lim
n—o0

1 n—1 _=*
;Emzlla(m)'y(_m) =0.

Step 9. And, again, by Parseval’s formula, as n — oo,

A atmicm — [ w(@h(z,dds

-

= /1r log(2sz’n-§-)2dx

-7

= 0 (See (2.3)).

Step 10. By (2.29), (2.30) and (2.31),

n

lim ltr(EA) =0.

—00 1

This completes the proof of both parts of Lemma 2.1.

Proof of Theorem 2.2:

(1) By (2.10) and lemma 2.1, part (1) is obtained.

12
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(2.31)



(2) By part (1) of this theorem and the fact (see Beran, 1994)

(1 - 2d)T(2 — 2d) 4y,
T2 1—d) =

IS~

part (2) is obtained.

1 r'(1—d)
' 0% /T(1—24)T(2—2d)

approximation of the Jeffreys prior for this problem. In Figure 1, we have superimposed

—d

By Theorem 2.2, we can use 01—2(1’ E‘ll)%, or even better n~% as an
these two functions on the (correctly scaled) exact formula of 7*(#). Recall that this exact
formula was given in equation (2.10). It is clear that the above approximations are quite
good.

Discussion. The preceding calculations provide only an approximation to the true
Jeffreys prior for = (d, u, o). We had to use approximations for log|Z|, 7!, ¥~ and
-1 in order to finally provide an analytical, clear, and useful expression that one can
use. The exact Jefferys prior does not have such an useful expression. Furthermore, the

approximation ﬁ(l’ 2‘11)% has a nice interpretation; it says that one should use the uniform

prior for u, the familiar 01—2 prior for o, and v/1'¥~1] for d.

2.4 Estimation of d

Having obtained an approximation to the Jeffreys prior, we will now address the very
important problem of finding Bayesian estimates of d and then comparing them, on the
basis of mean squared error, to certain other estimates of d. In addition to-the approximate
Jeffreys prior, the prior % jointly for 8 = (d, p1, o) is also used; casually speaking, according
to this latter prior, ;4 and d have uniform priors and o has the density % For Jeffreys
prior and the uniform prior, the Bayes estimates of d are discussed below.

(1) First let us consider the approximate Jeffreys prior

77(0) ~ %(1'2-11)%. (2.32)

13



Then the Bayes estimate of d is

> fo fo 2. d fz |9)Mdudadd

dy = e (2.33)
i 552 1% £ (210 232 dpdodd
The denominator in (2.32) is proportional to
@s): e )
/ / /oo an+2|2| = dudoda
2 X’E‘lx—(z’z‘;&?/yz—l;
20 X
- LIS
e_;’ ll(#—l'i:lé/l’ﬁ—ll)z dpudodd
'ES1X)2 _»
oc / srG)xrsix — (‘w)—_l_l))‘fdd. (2.34)
Similarly, the numerator in (2.32) is proportional to
1 ! 1 2
2 _1 12 X _n
/0 d|z| 2F(2)(XE 1xX - %) 3 dd. (2.35)

Computationally, (2.33) and (2.34) are not useful because they again include the infeasible

-1, If we replace X! by A, then we get the pseudo-Bayes estimate:
1 1A
. RS (XAX - LA -34q

1AL

dJ = 1 1 ' n (236)
S 12X AX - SR Tad

This is computable. A small clarification is in order: although an exact expression for
1'S711 is available, we still used 1'Al instead. The reason is that otherwise, the quantity
X' AX — %’—g%? can be negative. Note that we have retained the same notation d s in (2.36).

(2) Next we consider the prior

7TU(9) = —

=3 (2.37)

Analogus to (2.36), we now get an alternative Bayesian estimate:

1
g, = I d f(lf)Frdpdodd
J& 152 %% £ (zl0) Zdpdodd

14



J§ d BB AX - SR )~2qg

i I @s) (X AX - WA -tdd

(2.38)

This is also computable.
Example 2.1 For the Nile River data, the estimates of d using the full series (622-1281

AD) are as follows:

R/S 0.436
MLE 0.393
GPH 0.384

Uniform prior 0.404
Jeffreys prior 0.394

So with the exception of the R/S estimate, the numerical values of the other estimates

are quite comparable. However, over repeated simulated series, the Bayes estimates seem

to be generally better as we will see in section 4.

3 Forecasting

3.1 Introduction

Forecasting is one of the primary goals of time series analysis. In many areas of statis-
tics, the Best Linear Unbiased Predictor (BLUP) has acquired popularity for forecasting
purposes. See, for instance, Robinson (1991), Searle, Casella and McCulloch (1992), and
Ghosh and Rao (1994). Bayesian forecasting of a future observation would, on the other
hand, use the predictive distribution of the future observation given the observed data, and
then use the mean of that predictive distribution as the forecast.

In reality, however, the problem is a little more involved. The simple reason is that
the BLUP will actually involve, in its formula, parameters of the model that really are not
known. Likewise, the Bayesian predictive distribution involves, by definition, a prior on all
the unknown parameters of the model. Frequentists, typically, get around this dilemma
by simply plugging estimates of the unknown parameters in the BLUP expression. This

is known as the Empirical BLUP. There is some choice in which estimates are going to be
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plugged in for writing the Empirical BLUP. It depends on simplicity of computation, for
example. The Bayesian predictive distribution is easily written, in principle. But evidently,
there is an integration involved in getting rid of the parameters. And this integration, in
all but the most convenient models, may be impossible to perform in closed form. So there
is some work involved in either the frequentist or the Bayesian domain in order to make
the forecasts correspond to realism.

Interestingly enough, long memory is actually good for forecasting purposes. The
stronger the dependence between the observations, the more the future observations look
like the past, and easier is forecasting. Fine predictions at large lags may be obtained
under long range dependence, provided a good long series of data are available to estimate
the long memory parameter. For the Bayesian forecasts, we will use the two default priors
described in section 2, namely, the approximate Jeffreys prior m;(¢) = (1’ 2“11)%, and
the "uniform” prior 7y(f) = %. In the Empirical BLUPS , we will use the MLE of d to
estimate d, and the BLUE to estimate u. Note that the BLUE itself has the parameter d

in its expression, but there too d is replaced by its MLE.

3.2 Forecasting Formulas

For an ARIMA(0, d,0) process, suppose we have observations X = (X, ..., X;)', and we

want to predict the future value X, at lag k. Denote

E=(y(n+k-1),y(n+k—2),..,v(k)), (3.1)

the vector of covariances (apart from a multiplier of 62) between the components of X and

the future observation X, ;. Let also
X* = (X1, 0, Xuy Xoss)' (3.2)

and

2+:<§ 5) (3.3)



T'(1-2d)

here, a = rizﬂj Given X, the Bayes predictor of X, is

Xy = BOXEXntelX0( X Y. (3.4)
Since we have a Gaussian time series, we have that
KXoyl X,0 ~ N(p + 71X - p1),0%(a - £'57%)). (3.5)

In particular,

E(XniklX,0) = p+&57HX - pl)

= Wl-€37) +€57X. (3.6)
So for the uniform prior in (2.37), the Bayes predictor of X, is

Xﬁ’% = EeliEXn%I&ﬂ(Xn_i_k)

= EX(u(1-¢5™) +£¢571X)
(X—p1ys~1(x—py)

[ feAsgET R TIX RS RR  dodd

— +2|>3|7
- _(x- ul)’E (X —pD)
J[[—— n+2|2|§ 7z dudodd
J—I—r” “rleTy ¢ (SR IS Xy (yry-1x - GEXN 5 gy
(1'2 )2 =" 1 (3.7)
N z~% ¥s- lxy ’ )
f 1/2 11)§ _IE IX 1’2 )

on integrating out u and o. The integrations with respect to x4 and o, fortunately, can be

done in closed form.

Similarly, for the Jeffreys prior in (2.32),

41 [IBI2[eetX + SR s X (xrs-1x — R34y 38)
ek IhRESs 11 L) -%dd '

Now we turn to the classical forecasts. The exact formula for the BLUP of X, is
p(l—¢s ) +¢n71X.
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If in this formula, we write the BLUE of u in place of u, we get
BLUP =T ) s X1 -5 )+ ¢571X. (3.9)

Finally, if we replace d by its MLE based on the observed series X = (Xi,..., X,), we get
the Empirical BLUP.

4 Simulation for estimation of d

In this section, we provide a comparative simulation of the mean squared error of the

following 5 estimates of d:

i. dU;

~

iii. The MLE of d;
iv. The Geweke-Porter-Hudak (GPH) estimate;

v. The Bayes estimate with respect to the prior 3wy (6) + $m,(6).

The simulation results for the five estimates are listed in Table 1 for n =20,50, 100, 200
and d =0.01, 0.1, 0.25, 0.4, 0.49. For n = 50 and n = 200, the mean squared errors are
additionally displayed in Figure 2. From these results, we can see that, only for small d, the
MLE is the best. As d becomes larger, the Bayes estimates based on uniform prior, Jeffreys
prior and the mixed prior are substantially better than the MLE and GPH. The evidence -
from Table 1 is that the performance of the Bayes estimates is definitely encouraging and

the derivation of the approximations given in Theorem 2.2 was worthwhile.
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Table 1. Simulated MSE for estimators of d

n =20

Uniform

Jeffreys

MLE

GPH

Mixed

0.01

0.035596

0.017922

0.004471

0.059235

0.031542

0.10

0.013685

0.003756

0.008147

0.050953

0.011283

0.25

0.003943

0.007955

10.035887

0.042557

0.004336

0.40

0.021669

0.042638

0.078513

0.037652

0.024826

0.49

0.038851

0.069552

0.084226

0.030318

0.043068

n = 50

d

Uniform

Jeffreys

MLE

GPH

Mixed

0.01

0.022175

0.012583

0.007157

0.024291

0.018773

0.10

0.006397

0.002047

0.006649

0.016553

0.004671

0.25

0.007243

0.009199

0.021278

0.024925

0.007812

0.40

0.012328

0.023663

0.028967

0.025021

0.014844

0.49

0.020665

0.038455

0.033576

0.020106

0.023906

Table 1. Simulated MSE for Estimators of d (continued)

n

= 100

Uniform

Jeffreys

MLE

GPH

Mixed

0.01

0.008592

0.005438

0.002041

0.012043

0.008122

0.10

0.002633

0.001208

0.004232

0.008091

0.002438

0.25

0.004496

0.005283

0.007241

0.013985

0.004566

0.40

0.003415

0.006972

0.006817

0.006642

0.003568

0.49

0.007983

0.015058

0.011992

0.010873

0.008361

n

= 200

Uniform

Jeffreys

MLE

GPH

Mixed

0.01

0.002472

0.001704

0.000578

0.002910

0.002138

0.10

0.001874

0.001535

0.003348

0.004646

0.001758

0.25

0.004037

0.004821

0.005121

0.006232

0.004302

0.40

0.002648

0.004179

0.004389

0.006269

0.002833

0.49

0.003043

0.005764

0.004455

0.003362

0.003193
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5 Application

We now apply the forecasts developed in section 3 to the Nile River data set. Beran (1994),
Beran and Terrin (1996) have shown that for the Nile River data, there is some evidence
that the first 100 observations (622 - 721 AD) follow a pattern of white noise variation
around a stationary mean. For instance, the MLE of d for the first 100 observations is
only about 0.04. In subsequent applications, Beran (1994) uses the observations for the
years 1007 - 1106 AD, to evaluate forecasts for the next 100 years. We will use the same
convention. Actually, we will also consider the cases when the available data range over 20
years ( 1087 - 1106 AD), and 50 years (1057 - 1106 AD). Then the empirical BLUPS will
be compared with the Bayesian forecasts. The conclusion will be that the empirical BLUP
is largely comparable to the forecast based on the Jeffreys prior, but the forecast based on
the uniform prior is more accurate than these two. We will discuss why that might have
been anticipated.

The empirical BLUP as well as the two Bayesian forecasts for the Nile River minima
for the years 1107 - 1206 are presented in Table 2. Some selected lags are presented for
ease of presentation. These forecasts use 50 years of observed data, i.e., data for the years
1057 - 1106.

Table 3 lists the forecast errors, respectively, for 100, 50, and 20 years of observed data.

Examination of Table 3 shows the empirical BLUP and the Bayesian forecast based on
the Jeffreys prior to be roughly of the same quality. But the forecast based on the uniform
prior is a bit superior. As an illustration, let us take the forecast errors based on 50 years
of observations. With the exception of the forecast for the years 1111, 1146, 1161, 1181
and 1201 (lags 5, 40, 55, 75 and 95), the forecast based on the uniform prior is the best.
Sometimes, relatively speaking, the superiority of the uniform prior forecast is substantial.

For instance, for the year 1108, the uniform prior forecast is 16% better than the empirical

BLUP.
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On hindsight, one can explain why this ought to be the case. Figure 2 illustrates that
the uniform prior Bayes estimate of d is superior to the MLE when the true d is moderate or
large. For the Nile River data, the true value of d seems to be fairly high. One may therefore
expect that forecasts that use the uniform prior Bayes estimate of d will outperform the
empirical BLUP in some overall sense. That is what we are seeing in Table 3.

In Figure 3, we plot the cumulative mean absolute error against the years, for all three

forecasts. For a given series of forecast values, cumulative mean absolute error at year j is

defined as
1 . N
Cumulative Mean Absolute Error = 52i=1|Xn+k — Xtk (5.1)

Figure 3 is for the case n=>50, i.e., 50 years of data are used to construct the three
forecasts. Again we see that the empirical BLUP and the Jeffreys prior forecast are of

about the same quality, and the forecast based on the uniform prior is noticeably superior.

6 Concluding Summary

Estimation of the dependence parameter under long range dependence has recently become
a very active area of research. The literature has focussed on semi and nonparametric esti-
mation and the corresponding asymptotics. Theoretical Bayesian studies and comparative
evaluation had been lacking. We consider the fractional ARIMA(0,d,0) Gaussian process
and give a simple and closed form approximation to the Jeffrey prior density for the param-
eter vector § = (d, u, o). The approximated prior has a nice interpretation and is amenable
to further inference and computation for essentially any n, not just small n. A comparative
simulation shows that except when d is rather small, the Jeffrey prior estimate and the
uniform prior estimate each outperforms the MLE of d. They also outperform the classic
Geweke - Porter-Hudak estimate.

It seemed natural to develop Bayesian forecasts for ARIMA(0,d,0) processes using these

priors. Fortunately, the means of the predictive distributions involve only one dimensional
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integration. The formulas and an Empirical BLUP are applied to the well known Nile river
minima data set. Interestingly, the forecasts based on the uniform prior are seen to be the
best quite consistently.

Our results lay the foundation for filling a void in this very important area. The results
in this article suggest that Bayesian methods have a really good potential for success in

other long memory processes.

Table 2. Forecasts using the Nile River data between the years 1057-1106

forecast
year | k=lag | observations | uniform | Jeffreys | classical
1107 1 1333 1247.5 | 1239.1 | 1240.6
1108 2 1270 1234.5 | 1226.8 | 12275
1109 3 1245 1227.6 | 1220.5 | 1220.8
1110 4 1245 1223.0 | 1216.3 | 1216.4
1111 5 1211 1219.6 | 1213.3 | 1213.2
1116 10 1295 1210.1 | 1205.0 | 1204.6
1121 15 1268 1205.4 | 1201.0 | 1200.5
1126 20 1319 1202.5 | 1198.6 | 1198.0
1131 25 1263 1200.5 | 1197.0 | 11964
1136 30 1223 1199.1 | 1195.8 | 1195.2
1141 35 1205 1198.0 | 1195.0 | 11944
1146 40 1128 11971 | 1194.3 | 1193.7
1151 45 1209 1196.4 | 1193.7 | 1193.1
1156 50 1247 1195.8 | 1193.3 | 1192.7
1161 55 1182 1195.3 | 1192.9 | 1192.3
1166 60 1236 1194.9 | 1192.6 | 1192.0
1171 65 1259 1194.6 | 1192.3 | 1191.8
1176 70 1252 1194.3 | 1192.1 | 1191.6
1181 75 1088 1194.0 | 1191.8 | 11914
1186 80 1286 1193.8 | 1191.7 | 1191.2
1191 85 1250 1193.5 | 1191.5 | 1191.1
1196 90 1209 1193.4 | 11914 | 1190.9
1201 95 989 1193.2 | 1191.2 | 1190.8
1206 100 1290 1193.0 | 1191.1 | 1190.7
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Table 3. Absolute errors for predicting the Nile River minimum

(a) Based on the observations between the years 1007 and 1106

year | k=lag | uniform prior | Jeffreys prior | classical prediction
1107 1 77.386 82.807 80.322
1108 2 29.327 34.840 32.621
1109 3 12.764 18.178 16.167
1110 4 18.604 23.894 22.046
1111 5 10.946 5.788 7.503
1116 10 86.241 90.853 89.566
1121 15 66.322 70.528 69.489
1126 20 121.953 125.845 124.973
1131 25 69.283 72.922 72.171
1136 30 31.820 35.250 34.592
1141 35 15.828 19.082 18.497
1146 40 59.534 56.432 56.957
1151 45 22.829 25.799 25.324
1156 50 61.985 64.839 64.404
1161 55 2.021 0.728 0.330
1166 60 52.843 55.500 55.131
1171 65 76.602 79.175 78.833
1176 70 59.274 61.771 61.452
1181 75 93.126 90.699 90.997
1186 80 105.413 107.776 107.497
1191 85 69.900 72.205 71.941
1196 90 29.342 31.592 31.343
1201 95 190.255 188.055 188.291
1206 100 111.114 113.267 113.044
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Table 3. Absolute errors for predicting the Nile River minimum (continued)

(b) Based on the observations between the years 1057 and 1106

year | k=lag | uniform prior | Jeffreys prior | classical prediction
1107 1 85.525 93.935 92.364
1108 2 35.508 43.191 42.482
1109 3 17.402 24.512 24.205
1110 4 21.997 28.656 28.589
1111 5 8.607 2.319 2.223
1116 10 84.904 89.978 90.432
1121 15 62.612 66.971 67.534
1126 20 116.509 120.382 120.981
1131 25 62.490 66.006 66.612
1136 30 23.935 27.175 27.777
1141 35 7.037 10,058 10.648
1146 40 69.095 66.253 65.677
1151 45 12.606 15.298 15.860
1156 50 51.184 53.750 54.296
1161 55 13.332 10.875 10.343
1166 60 41.080 43.442 43.959
1171 65 64.433 66.713 67.216
1176 70 46.740 48.947 49.437
1181 75 105.991 103.849 103.372
1186 80 92.247 94.330 94.796
1191 85 56.458 58.488 58.943
1196 90 15.646 17.629 18.073
1201 95 204.184 202.245 201.810
1206 100 96.969 98.869 99.294
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Table 3. Absolute errors for predicting the Nile River minimum (continued)

(c) Based on the observations between the years 1087 and 1106

year | k=lag | uniform prior | Jeffreys prior | classical prediction
1107 1 70.404 77.591 72.317
1108 2 16.684 22.855 19.022
1109 3 3.670 1.840 1.253
1110 4 0.715 4.323 1.699
1111 5 32.618 27.937 30.299
1116 10 56.856 60.473 59.015
1121 15 32.294 35.370 34.260
1126 20 84.690 87.430 86.507
1131 25 29.592 32.103 31.293
1136 30 9.778 7.435 8.170
1141 35 27.314 25.099 25.782
1146 40 103.959 101.845 102.491
1151 45 22.680 20.646 21.265
1156 50 15.546 17.512 16.915
1161 55 49.268 47.359 47.939
1166 60 4.887 6.749 6.181
1171 65 28.019 29.839 29.282
1176 70 10.132 11.916 11.368
1181 75 142.770 141.017 141.558
1186 80 55.315 57.041 56.505
1191 85 19.391 21.091 20.561
1196 90 21.542 19.864 20.390
1201 95 241.482 239.824 240.347
1206 100 59.571 61.211 60.691
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Figure 2: Mean squared errors for estimators of d
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