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Abstract

We characterize the achievable pointwise redundancy rates for lossy data compression
at a fixed distortion level. “Pointwise redundancy” refers to the difference between the
description length achieved by an nth-order block code and the optimal nR(D) bits. For
memoryless sources, we show that the best achievable redundancy rate is of order O(1/n)
in probability. This follows from a second-order refinement to the classical source coding
theorem, in the form of a “one-sided central limit theorem.” Moreover, we show that,
along (almost) any source realization, the description lengths of any sequence of block
codes operating at distortion level D exceed nR(D) by at least as much as Cv/nloglogn,
infinitely often. Corresponding direct coding theorems are also given, showing that these
rates are essentially achievable. The above rates are in sharp contrast with the expected
redundancy rates of order O(logn) recently reported by various authors. Our approach is
based on showing that the compression performance of an arbitrary sequence of codes is
essentially bounded below by the performance of Shannon’s random code.

We obtain partial generalizations of the above results for arbitrary sources with mem-
ory, and we prove lossy analogs of “Barron’s Lemma.”



1 Introduction

Broadly speaking, the objective of lossy data compression is to find efficient approximate representa-
tions for relatively large amounts of data. Let =} 2 (z1,%2,...,2,) denote a data string generated by
a random source X = {X, ; n > 1} taking values in the source alphabet A. We wish to represent
each z7 by a corresponding string y7 2 (y1,y2,---,Yn) taking values in the reproduction alphabet A
(where A may or may not be the same as A), so that the distortion between each data string and its
representation lies within some fixed allowable range. For our purposes, distortion is measured by a

family of single-letter distortion measures,
1 n
el o) = =) plziy) ot € A",y €A™,
n i=1

where p: Ax A — [0,00) is a fixed nonnegative function.
To be specific, we consider “variable-length block codes operating at a fixed distortion level,” that

is, codes C,, defined by triplets (B, ¢n,¥n) where:

|

(a) By is a subset of A" called the codebook;
(b) ¢n : A™ — B, is the encoder or quantizer,

(¢) ¥n : Bp — {0,1}* is an invertible (and prefix-free) representation of the elements of B, by

finite-length binary strings.

For D > 0, the block code C, = (B, ¢n,¥n) is said to operate at distortion level D [14] (or to be

D-semifaithful [23]), if it encodes each source string with distortion D or less:
pn(al, dn(2])) < D, for all z7 € A™.

;From the point of view of data compression, the main quantity of interest is the description length
of a block code C,,, expressed in terms of its associated length function £, : A® — N. Here, ,(z7)

denotes the description length, in bits, assigned by C,, to the string z7. Formally,

tn(2T) = length of [thn(¢n(27))).

Roughly speaking, the smaller the description length, the better the code.

Shannon in 1959 characterized the best achievable compression performance of block codes. Sup-
pose, for example, that the data is generated by a memoryless source X = {X, ; n > 1}, that is, the
X, are independent and identically distributed (i.i.d.) random variables with common distribution P

on A. Suppose also that {Cy, = (By, ¢n,¥n) ; n > 1} is an arbitrary sequence of block codes operating



at distortion level D. In [28] Shannon identified the minimal ezpected description length that can be
achieved by any such sequence {C,}. He showed that the expected compression ratio E[¢,(X])]/n is
asymptotically bounded below by the rate-distortion function R(D),

n

lim inf E&lix—m > R(D) bits per symbol, (1)

n—o0

where R(D) = R(P, D) is defined by the well-known formula

R(D) = R(P,D) = inf I(X;Y).
(X,Y): X~P, E[p(X,Y)]<D

[Precise definitions are given in the next section.] Moreover, Shannon demonstrated the existence of
codes achieving the above lower bound with equality; see [28] or Berger’s classic text [4].

A stronger version of Shannon’s “converse” (1) was proved by Kieffer in 1991 [14], who showed
that the rate-distortion function is an asymptotic lower bound for £,(XT') not just in expectation, but

also in the pointwise sense:

liminf 250 S pD) s @)

n—00 n

[Here and throughout this paper the terms “pointwise,” “almost surely” (denoted “a.s.”) and “with
probability one” are used interchangeably.] Kieffer’s result says that, asymptotically, it is impossible
to beat the rate-distortion function, even on a small fraction of the messages generated by the source.
In [14] it is also demonstrated that the bound in (2) can be achieved with equality.

Our main aim in this paper is to characterize the achievable pointwise redundancy rates for block
codes applied to memoryless sources, where the “pointwise redundancy” is defined as the difference
between the description length ¢,(X7) of an nth-order block code Cy and the optimum description
length given by nR(D). Mathematically, this problem translates to describing the possible rates of
convergence in (2), and, in particular, finding the fastest such rate. The main gist of our approach
will be to show that the performance of any sequence of block codes operating at a fixed distortion
level is bounded below by the performance of a (simple variant of) Shannon’s random code.

In terms of data compression, knowing the possible convergence rates that can be achieved in
(2) tells us how big blocks of data we need to take in order to come reasonably close to optimal

compression performance. Clearly, these questions are of significant practical relevance.

1.1 Outline

For simplicity, assume for now that A and A are both finite sets, and let X = {Xn ; n > 1}

be a memoryless source with rate-distortion function R(D). Our main results (Theorems 4 and 5,



summarized in Corollary 1) state that the performance of an arbitrary sequence of codes {Cy,£,} is

essentially dominated by the performance of a random code, to which we refer as the “Shannon code.”

(MAIN RESULT): Let Q}, be the optimal reproduction distribution at distortion level D,
and write B(z}, D) for the distortion-ball of radius D around z7 [precise definitions are
given in the next section]. For any sequence of block codes {C,} operating at distortion

level D, with associated length functions {£,}, we have:
£a(X7) > log[L/Q4(B(XT, D))] + O(logm)  as.
Moreover, the Shannon code asymptotically achieves this lower bound with equality.

[Above and throughout the paper, ‘log’ denotes the logarithm taken to base 2 and ‘log,’ denotes the
natural logarithm.] Next, motivated by corresponding results in the case of lossless data compression
[15], we interpret Kieffer's result (2) as a “one-sided” law of large numbers, and we state and prove
corresponding second-order refinements to (2). In Theorem 1 we give a “one-sided” central limit

theorem (CLT) corresponding to the pointwise lower bound in (2):

(CLT): There is a sequence of random variables {G,} (depending on P and D) such that,

for any sequence of codes {Cy, ¢,} operating at distortion level D, we have
£,(XT) > nR(D) + v/nGy + O(logn)  as. (3)

where the G, converge in distribution (as n — c0) to a Gaussian random variable. More-

over, there exist codes {C,} achieving the lower bound in (3) [see Theorem 2].

This means that for any sequence of codes, about half the time, the description length £,(X7) will
deviate from the optimum nR(D) bits by an extra O(y/n) bits.

A further refinement to the pointwise converse (2) is also given in Theorem 1, in the form of a “one-
sided” law of the iterated logarithm (LIL) (under some mild conditions). This provides a complete

characterization of the pointwise redundancy of block codes at a fixed distortion level:

(LIL): For any sequence of codes {Cy,¢,} operating at distortion level D, the pointwise

redundancy exceeds Cv/nloglogn for infinitely many values of n:
2,(XT) —nR(D) > C/nloglogn infinitely often, a.s. (4)

Moreover, there exist codes {C,} asymptotically achieving this lower bound [Theorem 2.



The pointwise redundancy rates in (3) and (4) are in sharp contrast with the corresponding ezpected
redundancy results recently reported by Zhang, Yang and Wei in [39]. There, it shown that the best
possible expected redundancy

E[tn(XT)} — nR(D)

achievable by block codes is of order O(logn). For practical purposes, this difference suggests the fol-
lowing interpretation: Since any compression algorithm used in practice is bound to have fluctuations
in the description length of order at least as large as O(y/n), for big enough block lengths n it may or
may not be worth putting a lot of effort into optimizing the algorithm’s ezpected performance. Instead,
it might be more useful to either (a) try to control the variance of the description lengths £,(X7), or
(b) optimize the algorithm’s implementation. Indeed, it seems to often be the case in practice that
“implementation complexity might be the dominating issue” {5].

Our next result says, perhaps somewhat surprisingly, that there is nc cost for universality in
pointwise redundancy. That is, essentially the same performance can be achieved, even when the
source distribution is not known in advance. For the class of all memoryless sources P over the
alphabet A, Theorem 3 demonstrates the existence of a sequence of universal codes {C};} with length
functions {£}} such that, for every source P:

(a) £€.(X})/n— R(P,D) as.
(6) £.(X7) =nR(P,D)+ v/nGp + O(logn) as.
() £:(X})—nR(P,D)<C'y/nloglogn eventually, a.s.

A natural next question to ask is whether these results remain true when sources with memory are
considered. The fundamental coding theorems in (1) and (2) are of course still valid (with the rate-
distortion function now defined in terms of the distribution of the whole process X ), but redundancy
questions appear to be much more delicate. For arbitrary sources with memory (not even necessarily
stationary or ergodic), Theorem 6 gives a general pointwise lower bound for the performance of block
codes at a fixed distortion level. This result can be thought of as the natural analog to the case
of lossy compression of a well-known result from lossless compression, sometimes [29] referred to
as “Barron’s Lemma” [1][2]. A more detailed discussion of this connection is given in Section 2.4.
Finally, Theorem 8 is a direct coding theorem demonstrating a pointwise achievability result, which

complements the lower bound of Theorem 6.

1.2 History

Despite its obvious practical relevance, the redundancy problem for lossy data compression at a fixed

distortion level seems to have only been considered relatively recently, and, with few exceptions,
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attention has been restricted to questions regarding expected redundancy.

In 1993, Yu and Speed [38] demonstrated the existence of a sequence of universal codes with
expected redundancy rate of order O(logn) over the class of memoryless sources with finite source
and reproduction alphabets. In the case of the Hamming distortion measure, Merhav in 1995 {21]
proved a corresponding lower bound showing that the expected redundancy (even when the source
distribution is known in advance) is bounded below by (1/2)logn. The question was essentially
settled by the work of Zhang, Yang and Wei [39] in 1997, where it is demonstrated that Merhav’s
lower bound is true quite generally, and corresponding direct coding theorems are given, exhibiting
codes with redundancy bounded above by [logn + o(logn)]. A similar direct coding theorem for
sources with abstract alphabets was recently proved by Yang and Zhang [35]. For universal coding
at a fixed distortion level, Chou, Effros and Gray [8] showed that the price paid for being universal
over k-dimensional parametric classes of sources is essentially (k/2)logn. A universal direct coding
theorem for memoryless sources over finite alphabets was recently reported by Yang and Zhang in
[37].

With only a couple of notable exceptions from 1968 (Pilc [24] and Wyner [32]), the dual problem
of lossy compression at a fixed rate level appears to also have been considered rather recently. Linder,
Lugosi and Zeger [19][20] studied various aspects of the distortion redundancy problem and exhibited
universal codes with distortion redundancy of order O(logn). Zhang, Yang and Wei [39] proved a
lower bound of order O(logn), and they constructed codes achieving this lower bound (to first order).
Coding for sources with abstract alphabets is considered in [35], and questions of universality are
treated in [8] and [36], among many others.

The rest of the paper is organized as follows. In the next section we state and discuss our main
results. Section 3 contains the proofs of the pointwise converses for memoryless sources (Theorems 1
and 4), and Section 4 contains the proofs of the corresponding direct coding theorems (Theorems 2, 3,
and 5). In Section 5 we prove our results for arbitrary sources (Theorems 6-8), and the Appendices

contain proofs of various technical steps needed along the way.

2 Results

Let X = {X, ; n > 1} be a random source taking values in the source alphabet A, where A is
assumed to be a Polish space (i.e., a complete, separable metric space); let A denote its associated
Borel o-field. Although all our results will be stated for the general case, there is no essential “loss of
ideas” in thinking of A as being finite. For 1 <17 < j < oo, write Xij for the vector of random variables.

(Xs, Xit1,- .., X;) and similarly write m{ = (Zi, Tit1,. .-+ Tj) € A7~ for a realization of Xf



Let A denote the reproduction alphabet. Given a nonnegative measurable function p : Ax A —

[0,00), we define a sequence of single-letter distortion measures p,, : A" x A" — [0,00), n > 1, by
Pn ‘Tlayl Zp -'Ezyyz .'E?GA", y?EAn

Throughout the paper we will assume that the set A is finite, and that the function p is bounded, i.e.,
p(z,y) < M < oo for some fixed constant M, for all z € A, y € A. Although these assumptions are
not necessary for the validity of all of our results, they are made here for the sake of simplicity of the
exposition. Without loss of generality, we also make the customary assumption that
sup min p(z,y) = 0. (5)
T€A yeA
We are interested in variable-length block codes C,, operating at a fized distortion level, where C,, =
(Bn, ®n,¥n) is defined in terms of a subset B, of A™ called the codebook, an encoder ¢, : A™ = By,
and a lossless (prefix-free) binary code v, : B, — {0,1}* for B,. For D > 0, we say that the code
Cy operates at distortion level D, if pp(z7, ¢n(2l)) < D for all source strings zf € A™. The length
function £, : A™ — N induced by C, is defined by

€n(z1) = length of [thn(én(27))];

so that £,(z7) is the length (in bits) of the description of =7 by Cj,.
For D > 0 and n > 1, the nth-order rate-distortion function of X (see, e.g., [4]) is defined by

R, (D) = f I(X{;Y;
(D) (mef')(l’l)

where I(XT;Y") denotes the mutual information (in bits) between X7 and Y{*, and the infimum
is over all jointly distributed random vectors (X7, Y{*) with values in A™ x A™, such that X7 has
the source distribution and E[p,(X7,Y*)] < D; if there are no such (X}, Y/"), we let R,(D) = oo.
[Similarly, throughout the paper, the infimum of an empty set is taken to be +00.] The rate-distortion

function R(D) of X is defined as the limit of (1/n)R,(D) as n — oo, provided the limit exists.

2.1 Second-Order Coding Theorems for Memoryless Sources

In this section we assume that X is a memoryless source with fized distribution P. That is, the
random variables {X,} are i.i.d. according to P, where, strictly speaking, P is a probability measure
on (A, A). As is well-known [4], the rate-distortion of a memoryless source reduces to its first-order

rate-distortion function,

R(D) = R(P,D) = ()i(n}f,)I(X;Y), (6)



where the infimum is over all jointly distributed random variables (X, Y) such that X has distribution
P and E[p(X,Y)] < D. Let

Dipax = Dmax(P) = nli;} EP[p(X,y)] (7)
ye

and note that R(D) = 0 for D > Dmnax (see, e.g., Proposition 1 (iv) in Section 3). In order to avoid
the trivial case when R(D) is identically zero, we assume that Dyax > 0.

In our first result, Theorem 1, we give lower bounds on the pointwise deviations of the description
lengths €,(XT) of any code C,, from the optimum nR(D) bits. It is proved in Section 3.2 by an

application of the general lower bound in Theorem 4.

Theorem 1: (Second-Order Converses)
Let X be a memoryless source with rate-distortion function R(D), and let D € (0, Dyax)-
(i) CLT: There is a sequence of random variables G, = G, (P, D) such that, for any sequence of

codes {Ch, £, } operating at distortion level D, we have
L, (XT) —nR(D) > v/nGy, —2logn eventually, a.s. (8)
where the G, converge in distribution to a Gaussian random variable
G 25 N(0,0?)

with variance o2 explicitly identified.
(i4) LIL: With o2 as above, for any sequence of codes {Cy,£,} operating at distortion level D:
ny —
lim sup ba(XT) — nR(D)
noo  4/2nlog,log,n
€n(XT) — nR(D)

liminf =2

n—oo  /2nlog, log,n

> o a.s.

> —0 as.

[Recall that log, denotes the natural logarithm and log = log,.] Our next result, Theorem 2,
shows that these lower bounds are tight. It is proved in Section 4 using a random coding argument.
Although the construction is essentially identical to Shannon’s classical argument, determining its
pointwise asymptotic behavior is significantly more delicate, and it relies heavily on the recent results
of Dembo and Kontoyiannis [10] and Yang and Zhang [35] on the asymptotics of the probability of

“distortion balls.” See the discussion after Theorem 4.



Theorem 2: (Direct Coding Theorem)
Let X be a memoryless source with rate-distortion function R(D), and let D € (0, Dpax). There is a
sequence of codes {C,, £, } operating at distortion level D, which achieve asymptotic equality (to first

order) in all the almost-sure statements of Theorem 1:

(b) limsup blXf) — nR(D) = o as.

nsoo  y/2nlog,log,n

(¢) liminf tn(X]) — nF(D) = —o as.

n—oco  /2nlog, log, n

Remarks:

1. Variance. The variance 02 in Theorems 1 and 2 is a quantity characteristic of the source, which
tells us that, when the source is encoded in the most efficient way, the deviations of the codeword
lengths £,(X}) from the optimum nR(D) bits will have a variance roughly equal to no?. If any other
code is used, these deviations will be asymptotically bounded below by a Gaussian random variable of
variance no?. In view of this, we think of 02 = ¢%(P, D) as the minimal coding variance of the source
P at distortion level D. The precise definition of o2 is given in the next section and its properties are
discussed in some detail in Section 2.3. In particular, o is always nonnegative (typically it is strictly

positive), and it can be expressed as
0% = Var(— log F(X1)) (9)

for some function F': A — (0, 00).
2. Pointwise redundancy. Let {C,,{,} be arbitrary codes operating at distortion level D. If
o2 > 0, part (ii) of Theorem 1 says that when the codes {Cn} are applied to almost any realization

of the source X, then for infinitely many n,

en(XIl) - TLR(D) > C vn loge loge n, (10)

where for C' we can take any constant C € (0,v/20). Moreover, the amount by which we can “beat”

the rate-distortion function satisfies

2,(XT) —nR(D) > —C+/nlog,log,n eventually, a.s.

The O(y/nlog, log, n) rate in (10) is in sharp contrast with the ezpected redundancy rates of order
O(log n) reported in [39).
3. Ezpected versus pointwise redundancy. The difference between the two types of redundancy

is reminiscent of the classical bias/variance trade-off in statistics. Here, if the goal is to design a



lossy compression algorithm that will be used repeatedly and on large data sets, then it is probably a
good idea to optimize the expected performance. On the other hand, if it is important to guarantee
compression performance within certain bounds, it might be possible to give up some rate in order to
reduce the variance.

4. Lossless compression. The results in Theorem 1 are close parallels of the corresponding lossless

compression results in [15, Theorems 1 and 2]. There, the coding variance takes the simple form
o2 = Var(—log P(X1)) (11)

(cf. equation (9) above), which can be viewed as the natural second-order analog of the entropy
H = E(—log P(X1))- In the lossless case, the pointwise lower bounds are easily achieved, for example,
by the Huffman code or the Shannon code [9]. In fact, it is well-known [30][18] that we can come
within O(logn) of the Shannon code universally over all memoryless sources, for all message strings
z¢. Therefore, in the lossless case, the same pointwise behavior can be achieved universally at no

extra cost [15].

Next we show that the pointwise redundancy rates of Theorem 2 can be achieved universally
over all memoryless sources on A. The proof of Theorem 3 (Section 4) is similar in spirit to that
of Theorem 2, with the difference that here, in order to be universal, we generate multiple random
codebooks and we allow the encoder to choose the best one. The additional cost of transmitting the
index of the codebook that was used turns out to be negligible, and the pointwise behavior obtained
is identical (up to terms of order O(logn)) to that achieved with knowledge of the source distribution.
The idea of multiple random codebooks is well-known in information theory, dating at least as far
back as Ziv’s 1972 paper [40] and the work of Neuhoff, Gray and Davisson in 1975 [22]. Nevertheless,
to determine the exact pointwise behavior of this random code is more delicate, and our analysis relies

on recent results from [10] and [35].

Theorem 3: (Universal Coding)
There is a sequence of universal codes {C, £} operating at distortion level D, such that, if the data
(X1,X2,...) is generated by eny memoryless source P on A, and if D € (0, Dpax(P)), then:

(al) lim ET*I,(X?) _ nR(P’D)
n—00 vn
) limeup BT ZnA(P.D)
P T omTog. Tog.n
(c) liminf ta(X7) —nR(P, D)

n—300 v/ 2nlog, log, n

where the random variables G,, = G,,(P, D) and the variance 0? = ¢%(P, D) are as in Theorem 1.

—Gu(P,D)| =0 P-as.

o(P,D) P —as.

= —o(P,D) P -—as.



2.2 Main Results: Pointwise Optimality of the Shannon Code

In this section we state our main results, from which Theorems 1, 2 and 3 of the previous section will
follow.

Assume that X is a memoryless source with distribution P on A, and let @) be an arbitrary measure
on A; since A is a finite set, we think of Q simply as a discrete probability mass function (p.m.f.). For

each (), define
R(P,Q,D) = inf [I(X;Y) + H(@v]Q) (12)

where H(R||Q) denotes the relative entropy (in bits) between two distributions R and @, Qy denotes
the distribution of Y, and the infimum is over all jointly distributed random variables (X,Y’) with
values in A x A such that X has distribution P and E[p(X,Y)] < D. It is easy to see that the

rate-distortion function of X can be expressed as
R(D) = R(P,D) = igf R(P,Q,D) (13)

where the infimum is over all p.m.f.s @ on A (simply interchange the two infima).
For each source P on A and distortion level D > 0, let Q* = Q*(P, D) denote a p.m.f. achieving
the infimum in (13):

R(D) = R(P,Q*, D). (14)

[See Proposition 2 (i7) in Section 3.1 for the existence of @*.] We call this Q* the optimal reproduction
distribution for P at distortion level D.

For a fixed source P, a distortion level D € (0, Dpax), and a corresponding Q* as in (14), we let
Az(N), z € A, A €0, be the log-moment generating function of the random variable p(z,Y) when
Y ~Q*:

As(N) = log, Eq- (e’\”(z’y)) . z€A A<O.

Then there exists a unique A = A* < 0 such that %[EP(A x(M))] = D (see Lemma. 1 in Section 3.1).
Our next result, Theorem 4, shows that the pointwise redundancy of any sequence of block codes is
essentially bounded below by a sum of i.i.d. random variables. As we discuss in the remarks following
Theorem 4, this lower bound can be interpreted as saying that the performance of any sequence of
block codes is dominated by the performance of Shannon’s random code. Theorem 4 is proved in

Section 3.2.
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Theorem 4: (Pointwise Lower Bound)
Let X be a memoryless source with rate-distortion function R(D), and let D € (0, Djpax). For any
sequence of codes {C, £,} operating at distortion level D and any sequence {b,} of positive constants

such that ), 27% < oo, we have

((X}?) — nR(D) > i f(X;) —b, eventually, as. (15)
=
where
f(z) = (log e)(=Az(\*) — Ep[~Ax (\"))). (16)
Remarks:

1. Consequences. It is easy to see that Theorem 1 is an immediate consequence of the lower bound
(15). In particular, the coding variance o2 in Theorems 1 and 2 is simply the variance of the random
variable f(X3).

2. Intuition. Suppose we generate a random (Shannon) codebook according to @*, that is, we
generate i.i.d. codewords Y (i) = (Y;1,Y;2,...,Yin), ¢ =1,2,..., each drawn from the distribution
Q;, = (@*)". We can encode each source sequence X7 by specifying the index ¢ = W, of the first
codeword Y (¢) such that p,(X7,Y (7)) < D. This description takes approximately (log W) bits. But
Wh, the “waiting time” until the first D-close match for X7, is approximately equal to the reciprocal

of the probability of finding such a match, so
log Wr, = log[1/Qr(B(XT, D))]
where the “distortion balls” B(z}, D) are defined by
B(z%,D) = {3 € A : pu(a},3}) < D} af € A™ (17)

(From the recent work of Dembo and Kontoyiannis [10] and Yang and Zhang [35] we know that these
probabilities behave like

log[1/Q(B(XT,D))] = nR(D) + Z f(X;) + %logn + O(loglogn) as. (18)

i=1
[See Proposition 3 in Section 4.] Therefore, the pointwise description length of the Shannon code is,

approximately,

n
log W, = nR(D) + Z f(X;) Dbits, a.s.
i=1

11



In view of this, we can rephrase Theorem 4 by saying that, in a strong sense, the performance of any
code is bounded below by the performance of the Shannon code. Indeed, the proof of Theorem 4 is
based on first showing that any code can be thought of as a random code (according to a measure
on A" different from Q}), and then proving that the pointwise performance of any random code is
dominated by the performance of the Shannon code.

The following result, Theorem 5, formalizes the above random coding argument, and also shows

that essentially the same performance can be achieved universally over all memoryless sources.

Theorem 5: (The Shannon Code - Random Coding)
(z) Let X be a memoryless source with rate-distortion function R(D), and let D € (0, Diax). There

is a sequence of codes {Cj, £,} operating at distortion level D, such that
2, (XT) <log[l/Qn(B(XT,D))] +4logn + Const. eventually, a.s.

where Q* is the optimal reproduction distribution at distortion level D, and Q} = (Q*)".
(17) There is a sequence of universal codes {C};, ;. } operating at distortion level D, such that, if the

data (X1, X2,...) is generated by any memoryless source P on A, and if D € (0, Dpax(P)), then
0r(XT) < log[l/Qr(B(XT,D))] + (4 + k) logn + Const. eventually, P—a.s.

where k is the number of elements in A, Q* = Q*(P,D) is the optimal reproduction distribution

corresponding to the true source P at distortion level D, and @}, = (Q*)".

In the next Corollary we combine Theorem 4 (with b, = (1+6) logn) with (18) and Theorem 5 (2),
to rewrite the above results in an intuitively more appealing form. Although Corollary 1 is a simple

consequence of Theorems 4 and 5, conceptually it contains the main contribution of this paper:

Corollary 1: (Pointwise Optimality of Shannon Code)
Under the assumptions of Theorem 4, for any sequence of codes {Cj, £, } operating at distortion level

D, we have
2, (XT) > log[l/Qr(B(XT,D))] —2logn eventually, a.s. (19)
where the Shannon code achieves

2,(XT) < log[l/@Q(B(XT, D))} + 4logn + Const. eventually, a.s.

2.3 Minimal Coding Variance

Suppose X is a memoryless source with distribution P, let D € (0, Dpax), and let @* be the cor-

responding optimal reproduction distribution. In the notation of the previous section, the minimal
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coding variance o2 = Var[f(X1)] can be written as
o? = Varp [— log Eg- (e’\‘[”(x’y)_D])] .

As we will see in Section 3.1, the rate-distortion function R(D) can similarly be expressed as
R(D)::Ep[—4ogEb.Q¥TMXJ”—DQ].

Comparing the last two expressions suggests that we may think of o2 as a second-order version of
R(D), and further justifies the term minimal coding variance, by analogy to the minimal coding rate
R(D).

It is obvious that o2 is always nonnegative, and it is typically strictly positive, since the only way
it can be zero is if the expectation Eg- (e}"#(®Y)) is constant for P-almost all z € A. We give three
simple examples illustrating this.

E.g. 1. Lossless Compression. As mentioned above, in the case of lossless compression the minimal
coding variance reduces to o2 = Var[—log P(X1)] (cf. eq. (11)), from which it is immediate that
0? = 0 if and only if P is the uniform distribution over the finite alphabet A. [See [15] for more details
and a corresponding characterization for Markov sources.]

E.g. 2. Binary Source, Hamming Distortion. This is the simplest non-trivial lossy example.
Suppose X has Bernoulli(p) distribution for some p € (0,1/2]. Let A = A = {0,1} and let p be
the Hamming distortion measure, p(z,y) = |z — y|. For D € (0,p), easy but tedious calculations
(cf. [4, Example 2.7.1] and [9, Theorem 13.3.1]) show that Q* is a Bernoulli(¢) distribution with
¢=(p— D)/(1-2D), \* = log,(D/(1 — D)), and

Bq- () = P2
As we already noted, 0% = 0 if and only if the above expression is constant in z, so that, here, 2 = 0
if and only if p =1/2, i.e., if and only if P is the uniform distribution on 4 = {0,1}.

E.g. 3. A Quaternary Ezample. This is a standard example from Berger’s text [4, Example 2.7.2].
Suppose X takes values in the alphabet A = {1,2,3,4} and let A = A. Suppose the distribution of
X is given by P = (p/2,(1—-p)/2,(1—p)/2,p/2), for some p € (0,1/2], and let the distortion measure
p be specified by the matrix (p;;) = (p(7,7)), ¢, € A, where

0 1/2 1/2 1
1/2 0 1 1/2
12 1 0 1/2

1 1/2 1/2 0

(pij) =
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For D € (0,(1 — /1 —2p)/2) it is possible (although tedious) to calculate @* and A* explicitly, and

to obtain that

Eq- (eA*p(:c,Y)) = .(_1_2_(._:%_)_5

Once again, this is generally not constant in z, with the exception of the case p = 1/2. So, o2 will be

strictly positive, unless P is the uniform distribution on A = {1, 2, 3,4}.

2 is strictly positive, unless

There is an obvious trend in all three examples above: The variance o
P is uniformly distributed over A. Tt is an interesting problem to determine how generally this pattern

persists.

2.4 Sources With Memory

Here we present analogs of Theorems 4 and 5 for arbitrary sources. Of course, at this level of generality,
the results we get are not as strong as the ones in the memoryless case. Still, adopting a different
approach, we are able to get interesting partial generalizations.

Let X be an arbitrary source with values in A, and let P, denote the distribution of X{'. By a
sub-probability measure @y on A™ we mean a positive measure with total mass 0 < Qn(fi") < 1. For

each D > 0 we define (recall the notation in (17))
Ko(D) = Kn(P, D) = il Ep, {~1og Qa(B(X}, D))}

where the infimum is over all sub-probability measures Q.

Suppose Qn achieves the above infimum (the existence of such a @, is established by Lemma 3 in
Section 5). Our next result gives an analog of Theorem 4 for the case of sources with memory. It is
proved in Section 5 using an argument similar to the one used by Kieffer in the proof of Theorem 2

in [14].

Theorem 6: (A Lossy “Barron’s Lemma”)
Suppose X is an arbitrary source, and let D > 0 be such that K, (D) < oo. For any sequence of codes
{Cn, £, } operating at distortion level D, we have:
(¢) For all n:
E{tn(X7)] > Kn(D) > Ra(D).

(i) For any sequence {b,} of positive constants such that 3", 27% < oc:

£,(X}) > log[1/Qn(B(X}, D))] — b, eventually, a.s. (20)
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The lower bound in (20) is a natural “lossy analog” of a well-known result from lossless compression,
often called “Barron’s Lemma” [1]{2]. Barron’s Lemma states that for any sequence of lossless codes
{Cn, tn},

Lo (XT) > log[l/Pp(X7)] — bn  eventually, a.s.

Similarly, we can interpret the lower bound of Corollary 1 (equation (19)) as a different generalization
of Barron’s Lemma, valid only for memoryless sources. The reason why (19) is preferable over (20)
is because the Q} are product measures, whereas it is apparently hard to characterize the measures
én in general. For example, in the case of memoryless sources one would expect that, for large n, the
measures @n “converge” to the measures Q7 in some sense. The only way in which we have been able
to make this intuition precise is by proving the following result asserting the asymptotic equivalence

between the compression performance of Q, and Q.

Theorem 7: (Equivalence of Measures)

Let X be a memoryless source with distribution P, and let D € (0, Dpax). Then:

log[1/Qn(B(X, D))] = log[1/Q4(B(X?, D))] + O(logn)  a.s.

Clearly, Theorem 7 can be combined with the recent results on the probabilities of D-balls men-
tioned in (18), to give alternative proofs of the pointwise converses in Theorems 1 and 4. Finally we
state a direct coding theorem, demonstrating that the lower bound in Theorem 6 is asymptotically

tight. It is proved in Section 5 using a random coding argument.

Theorem 8: (Partial Achievability)
Suppose X is an arbitrary source, and let D > 0 be such that K,(D) < co. Then there is a sequence
of codes {C, £,} operating at distortion level D, such that:

2

2
-::—'n——:l + Const. eventually, a.s.

£(X) < 1ogl1/Qu(B(XF, D))] + 2logn + 2loglog | == s

Theorem 8, combined with Theorem 7 and (18), provides alternative proofs for Theorem 2 and
Theorem 5 (7).

Lastly we remark that, for “nice” measures Qn, it is natural to expect that the probabilities
@n(B (X7, D)) will decay to zero exponentially fast. This would be true, for example, if the Qn were
the finite-dimensional marginals of a “nice” process, like a Markov chain [34] or a process with “rapid
mixing” properties [7]. In that case, the “loglog” term in Theorem 8 would grow like logn, implying

that the lower bound of Theorem 7 is tight up to terms of order O(logn).



3 Converses for Memoryless Sources

In Section 3.1 we collect some useful technical facts, and in Section 3.2 we prove Theorem 4 and use

it to deduce Theorem 1.

3.1 Representations and Properties of R(P,Q, D)

For n > 1, let i and v be arbitrary probability measures on A™ and A™, respectively (of course, since
A is a finite set, v is a discrete p.m.f. on A”). Write X} for a random vector with distribution x on
A™ and Y} for a random vector with distribution v on An. Let S, = {y € A" : v(y}) >0} C An
denote the support of v, and define

Dty = B iy paX00)|
yi‘ESn
DflLl,gX = Luxy [Pn(XT, Yln)] .

Clearly, 0 < D™ < Dhizx < oo. For A < 0, we define

mlll
Ap,u(/\) = Eﬂ [loge EV (e)‘p"(XFvyln))]
and, for D > 0, we write A, ,, for the Fenchel-Legendre transform of Ay

A}, (D) =sup[AD — Apv(N)]
A<0
In analogy with (12), we also define
R(N’V’D) = (X lIlf [I(leZI) +H(QZ"”V)]
< l’ 1
where H(R||Q) denotes the relative entropy (in bits) between two distributions R and Q, Qzp denotes
the distribution of Z, and the infimum is over all jointly distributed random vectors (X7, ZT') with
values in A" x A" such that X} has distribution p and E[p, (X}, Y{")] < D. In the next Lemma we
collect various standard properties of A, and Aj, . Parts (i)-(i11) can be found, e.g., in [10] or [17};
part (iv) is proved in Appendix I.
Lemma I
(i) Ay, is infinitely differentiable on (—00,0), A, ,(0) = Dy, and A}, ,(A) = Dy, as A — —oco.
(i1) A}, (A) >0 for all X < 0; if, moreover, D} < Dirlax, then A}, ,(A) > 0 for all A < 0.

min

(i11) If DY < Dhiax and D € (D% | Dhiy), then there exists a unique X < 0 such that A}, ,(A\) = D

min min?

and A}, (D) = AD — Apu(A).
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(iv) For every A < 0 and every probability measure 1 on A, A, (A) is upper semicontinuous as a

function of v.
In the following Propositions we give two alternative representations of the function R(u, v, D), and
state several of its properties. Propositions 1 and 2 are proved in Appendices 1I and III, respectively.

Proposition 1: (Representations of R(u,v, D))

(¢) For all D > 0,
R(,U,,V, D) lnfE [H |X1)”U( ))]

where the infimum is taken over all probability measures © on A"xA" such that the A"-marginal

of © equals 1 and Eg[pn (X}, YM)] < D.
(i¢) For all D > 0 we have:
R(u,v, D) = (loge)A, (D).
Proposition 2: (Properties of R(u,v, D))

(¢) For every D > 0 and every probability measure p on A", R(u,v, D) is lower semicontinuous as

a function of v.
(i) For every D > 0, there exists a p.m.f. Q = Q* on A achieving the infimum in (14).

(iti) For D < D™V

min?

R(u,v,D) =0.

R(u,v, D) = oo; for D* < D < Disx, 0 < R(u,v, D) < o0; and for D > D,

min

(tv) For 0 < D < Dpax we have 0 < R(D) < 0o, whereas for D > Dpay, R(D) = 0.

(v) If D € (0, Dax), then D2 < DB and D € (DP9, DES).

min min ?

3.2 Proofs of Converses

Proof of Theorem 1 from Theorem 4: Taking b, = 2logn in Theorem 4, yields

£,(XT) —nR(D Z f(X;) —2logn eventually, as. (21)

Writing G, = (1/v/n) Y1y f(Xi) we get (8) since the random variables {f(X,)} are zero-mean,
bounded, i.i.d. random variables, the ordinary CLT implies that G, N (0,0%), where 02 =

Var(f(X3)). This proves part (7).

17



Next, dividing both sides of (21) by /2nlog, log, n, letting n — oo, and invoking the classical LIL
(see, e.g., [6, Theorem 13.25] or [12, p. 437]), immediately gives the two statements in part (iz). O

Proof of Theorem 4: Let {Cy, = (Bn, én, %)} be an arbitrary sequence of block codes operating at
distortion level D, and let {£,,} be the sequence of corresponding length functions. By Proposition 2 (i2)
we can choose a p.m.f. Q* on A so that R(D) = R(D,Q*, D). Since we assume D € (0, Dmax),
Proposition 2 (v) implies that D € (DPer DESYY, so by Lemma 1 we can pick a A* < 0 with

A'D — AP,Q‘ ()‘*) = A;’,Q" (D) = (loge Z)R(P’ Q*’D) = (loge Z)R(D)’ (22)

where the second equality comes from Proposition 1 (i7).

Since 1, is a prefix-free lossless code (for each n), it induces a length function L, on B, given by

Ln(y7) = length of [¥n(y7)], 41 € Ba.

The functions L, and 4, are clearly related by £,(z}) = Ln(¢n(z7)). The key idea of the proof is to
consider the following sub-probability measure on Am:
Qc,(F) & 30 2756, forall FC A
yi‘EFan
Note that Qc, is supported entirely on By; the fact that it is a sub-probability measure follows by
the Kraft inequality. Our main use for Qc, will be to bound the description lengths £,(27) in terms

of an expectation over Qc,. For any z} € A™:

9-ta@l) =  g-La(#n(=})

—_—
15
~—

2—Ln (¢n (wi‘))en/\' {on (=3 ,¢n (=7 ))~D]

< Z 9~La(y}) nA*[on (=] w7)— D]
Yr€8n

E'an (e"” [Pn(z'l‘,YI")_D])

i

where (a) follows from the fact that C,, operates at distortion level D. This gives the lower bound
ln(2T) > —log Eqg, (en,\*[pn(z’l‘,Yl")—D]) . (23)
Now consider the following family of functions on A",
Fn 2 {g : g(z%) = Eq, (e"’\*[”"(””?’yln)_D ]) for a sub-probability measure @, on /1"}
and notice that F,, is a convex family. We are interested in the infimum

. Ll nyy o i ad nA* [pn(XT,¥1*)-D]
nf Ep {~log, g(X{)} = inf Ep { log, Eq, (6 £ )} (24)
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where P" denotes the distribution X}*. According to Lemma 2 below, this infimum is achieved by the

function g* € F,, defined in terms of the measure Q}, = (Q*)",
n
¢*(@?) = Eqg. (en)\‘[pn(m’l',Yf‘)—D]> - HEQ‘ (ez\*[p(xi.Y)—D]) , (25)
i=1

ie.,

9(XT) )}
Epn<lo <0, forallgeF,.
P { ge (g*(X{;) g n

But these are exactly the Kuhn-Tucker conditions for the optimality of g* in (24); therefore, by [3,

Theorem 2| we have that

n
Epn {—g(—Xlnl} <1, forallg € Fn. (26)
g*(X7)

The result of Theorem 4 can now be proved as follows. Define g, € F, by
9n(@}) = Bqq, (M nt ¥ =P)) (27)
Recall the function f on A defined in (16), and observe that, using (22), it can be rewritten as
f(z) = —R(D) — log Eg- (e*‘lﬂ(wv”—l’l) . (28)

Then, the probability that the assertion of the Theorem fails can be bounded above as

Pr {en(Xf) —nR(D) < i F(X) — bn}

i=1
(@) . ‘n yn

i=1
=  Pr{-loggn(X7) < —log g* (XT') — bn}
n
Pr{gn(Xl) > 2"n}

g (XT)
(o) (Xt)
< 2*"nEn{g——_” 1}
Lot (Xp)
(d)
< 270 (29)

where (a) follows from the bound (23), (b) follows from the definitions of f, g, and ¢g* in equations
(28) (27) and (25), (c) is simply Markov’s inequality, and (d) follows from the Kuhn-Tucker conditions
(26) with ¢ = g,. Now since the sequence 27%" is summable by assumption, an application of the

Borel-Cantelli lemma to the bound in (29) completes the proof. O

Lemma 2:

The infimum in equation (24) is achieved by Q;, = (Q*)™.
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Proof of Lemma 2 Write P, (or SP,) for the collection of all probability (respectively, sub-
probability) measures on A™. For A <0 and @, a p.m.f. on Am, let

h(A, Qn) = nAD — Apa g, (nA).

Taking Q, = Q} = (Q*)" in the infimum in (24), the result of the Lemma, follows from the following

series of relations:

Epn {— log, Eq; (e”’\*[”"(xf’yln)_D])} @ D - Apn g (nX*)
QD = Apge (V)]
log, 2)nR(P,Q*, D)

(

= (log, 2)nR(D)
(log, 2)Rn (D)
(loge2) inf ~R(P",Qn, D)

= inf  sup h(A/n,
QnEPn ASI()) L( / Qn)

(h) .
= f sup h(\Qn

(@) .
= s inf  h(A,
S gigh, hOvQ)

)
) £ RO\, Q,
olnf, h(A",Qn)

*) Jint B {—loge Eo, (en»[pn(xrm")—Dl)}

(i) Qnielg’})n EP" {_ lOge EQTI ( A [pn(Xn }," D])} !

where (a) and (b) follow from the definitions of Apn (g+)» and Ap g-, respectively; (c) follows from the
choice of A* and (d) follows from the choice of Q* in (14); (e) follows from the well-known fact that
the rate-distortion function of a vector of n i.i.d. random variables equals n times the rate-distortion
function of one of them; (f) follows in the same way as we noted in the Introduction that (6) is the
same as (13); (g) follows from Proposition 1 (iz); (k) follows simply by replacing A by nJ; (¢) follows
by an application of the minimax theorem (see below for an explanation); (j) follows from a simple
continuity argument given below; (k) follows from the definitions of the functions h and Ap» g,; and
() follows from noting that if Q, is strictly a sub-probability measure with Qn(A™) = Z < 1, then
using the probability measure Q},(-) = Z71Q,(-) we can make the expression that is being minimized

on line (£) smaller by log Z < 0.
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To justify the application of the minimax theorem in step (z), first we note that, by Lemma 1 (iv),
h is lower semicontinuous as a function of @, and by Lemma 1 (¢) it is a continuous function of A.
Also, since by Lemma 1 (i1) Apn g (A) > 0, h is concave in A, and by Jensen’s inequality (and the
concavity of the logarithm), A is convex in Q,. And since the space of all p.m.f.s Q, on A™ is compact,
we can invoke Sion’s minimax theorem [31, Corollary 3.3] to justify the exchange of the infimum and
the supremum in step (7).

Finally we need to justify step (j). For A < 0 define the functions M(\) = h(A,Qy,), and

m(A) = inf h{(A, Qn).

Our goal is to show

supm(A) = m(\*). (30)
A<0

;From the above argument (a)—(¢), we have that

M(X*) = sup M () = supm(A).
A<0 A<0

As noted in the beginning of the proof of Theorem 4, M(}) is strictly concave and its supremum is
achieved uniquely by A* < 0, so we may restrict our attention to an interval I = [A\* — 6, A" + 4} C
(—00,0), and since m(A) < M () for all A,
M(\*) = sup M () = supm(]).
Ael Ael
By the definition of m as the infimum of continuous functions it follows that it is upper semicontinuous
(see, e.g., [27, p. 38]), so it achieves its supremum on the compact set I. Since m(A) < M(A) for all
A, and M()\) = M()\*) only at \*, this implies that the supremum of m over I must also be achieved
at A*, giving (30). O

4 Shannon’s Random Codes and D-Ball Probabilities

In this section we prove Theorem 5, and we deduce Theorems 2 and 3 from it.

We continue in the notation of the previous section, and recall the definition of a distortion ball
in (17). Let X be a memoryless source with distribution P, fix D € (0, Diax), let Q* be the optimal
reproduction distribution for P at distortion level D, and write @}, = (Q*)". The following proposition
will be used repeatedly in the proofs. If follows easily from some recent results in [10] and [35]; see

Appendix VI.
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Proposition 3:

If D € (0, Diax), we have:

~log Q. (B(X{, D)) =nR(D) + Z f(X5) + %logn + O(loglogn) as.
i=1

Proofs of Theorems 2 and 3 from Theorem 5: Combining Theorem 5 (i) with Proposition 3 gives
2,(XT7) —nR(D) < Zf ) +O(logn) a.s.

In view of the corresponding lower bound in Theorem 4 (with b, = 2logn), this, together with the
classical CLT and the LIL applied to the sum of the bounded, zero-mean, i.i.d. random variables
{f(X;)}, yield the three statements of Theorem 2. Theorem 3 follows from Theorem 5 (71) in exactly

the same way. a

Proof of Theorem 5 (i): For each n > 1 we generate a random codebook according to @y, = (Q*)™:
Let Y (i) = (Yi1,Yi2,.--,Yin), ¢ =1,2,..., be ii.d random vectors in A™, each drawn according to
Q. Given a source string XT to be encoded, let Wy, = W,,(XT') denote the first index ¢ such that X7

matches the ith codeword with distortion D or less:
W, =inf{i > 1 : pp(XT,Y(¢)) < D}.

If such a match exists, we describe X7 (with distortion no more than D) by describing the integer W,

to the decoder; this can be done using (cf. [13][33])
[log(Wy + 1)] + 2[log ([log(Wy + 1)] + 1)] < log Wy, + 2loglog(2W,) + 10  bits.

Otherwise, we describe X' exactly, using [n log|A|] bits (recall (5)). Our code Cp consists of
combining these two descriptions, together with a one-bit flag to specify which one was chosen.

Next we show that, for large n, the “waiting time” W, until a D-match is found can be approx-
imated by the reciprocal of the probability of finding such a match, Q;,(B(X{, D)). Specifically, we
claim that the difference ¢, 2 log W,, — log[1/Q% (B(X}, D))] satisfies

€n < 2logn  eventually, a.s., (31)

where the almost-sure statement above (and also in all subsequent statements) is with respect to
P-almost any source realization, and almost any sequence of codebooks generated according to the

above procedure. We prove (31) by an argument along the lines of the “strong approximation” results
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in [16][10][17]. Let Gy = {2° : 0 < Q}(B(2%, D)) < 1/2 for all n > m}. Proposition 2 implies that,

eventually, almost every string 27° generated by X will belong to a G, i.e.,
P(Um21Gm) =1, (32)

where, with a slight abuse of notation, we write P for the one-dimensional marginal of the distribution
of X as well as the infinite dimensional product distribution it induces. Now let n > m > 1.
Conditional on X{° = 1° € G, the waiting time W, has a geometric distribution with parameter

pn 2 Q*(B(X}, D)), so that

Pr{e, > 2logn| X{ =z} Pr{W, > n?/p, | X7 =z}

< (1 - pn)®/rm)-1
< 2(1 - pn)nz/pn
< 2/n?

where the last step follows from the inequality (1 — p)™ < 1/(Mp), for p € (0,1) and M > 0. Since
this bound is uniform over z{° € G, and (2/n?) is summable, the Borel-Cantelli lemma implies
that e, < 2logn, eventually, for almost every codebook sequence, and P-almost all 2{° € G;,. This
together with (32) establishes (31).

In particular, (31) implies that with probability one, W, < oo eventually. Therefore the description

length of our code
£,(XT) < log Wy, + 2loglog(2W,) + 11  bits, eventually, a.s.

and this can be bounded above as

6(XY) < log{l/Qh(B(XT, D))l + en + 2log[l + en — log Qr(B(XT, D))] + 11
(a)
< log[1/QL(B(X}, D))] + 2logn + 2log{l + 2logn + 2nR(D)] + 11
< log[l/Qr(B(XT,D))] +4logn + Const. eventually, a.s.
where (a) follows from (31) and Proposition 3. This proves part (i). O

Note that the above proof not only demonstrates the existence of a good sequence of codes {Cy, £, },
but it also shows that almost every sequence of random codes generated as above will satisfy the

statement of the theorem.

Proof of Theorem 5 (ii): Here we assume that the source X = {X, ; n > 1} has a distribution

P, where P is unknown to the encoder and decoder, but such that D € (0, Dimax(P)). For each n > 1
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we generate a family of codebooks, one for each n-type on A. Recall [9] that a pm.f. Q on Ais
called an n-type if, for each y € A, Q(y) = m/n for an integer m. The number T'(n) of n-types grows

polynomially in n, and it is bounded above as
T(n) < (n+ 1)* (33)

where k = |A| denotes the cardinality of A; see [9, Chapter 13].

For 1 < j < T(n), let QU) denote the jth n-type. The jth codebook consists of i.i.d. random
vectors Y7 (4) = (K({), Yig), e ,Y;Ef;)), i=1,2,..., where each Y)(:) is drawn according to (QU))".
Given a source string X7, we let 9 = Wy )(X{‘) be the waiting time until a D-close match for X7

is found in the jth codebook,
W =inf{i > 1 : po(XP,YP(5) < D},

and we define

It is not hard to see that, for large enough n, there will (almost) always be a D-match for X7' in one
of the codebooks, so that

Wy < oo eventually, as.,

where the almost-sure statement here (a,nd'also in all subsequent statements) is with respect to P-
almost any source realization, and almost any sequence of codebooks generated as above. [This is so
because, for n > k, at least one of the n-types has positive probability on all elements of A, so with
probability one every possible A"-string will appear infinitely often. Assumption (5) then guarantees
the existence of a D-match.] Therefore, we can describe XJ* (with distortion no more than D) to the
decoder by specifying the waiting time W}, and the codebook in which W}, is achieved. As in part

(), and using the bound in (33), this can be done using

6(XT) = [log(Wy +1)] + 2[log ([log(Wy; + 1)1 + 1)] + [k log(n + 1)]
< logW; + 2loglog(2W;;) + klogn + (11 + k)  bits, eventually, a.s.
Now, following [17], we pick a sequence of n-types that are close to Q*. We let g, be an n-type
such that gn(y) > 0 and |gn(y) — @*(y)| < k/n, for all y € A. This can be done for all n > N, for
some fixed integer N (see [17] for the details). Let V,, denote the waiting time associated with the

codebook corresponding to ¢, and write @, = (g»)". The same argument as the one used to prove

(31) in part (¢) can be used here to show that
€ = 2 Jog V, — log[1/Qn(B(X}, D))] < 2logn eventually, a.s. (34)

24



Using the obvious fact that W' is never greater than V,, we can bound £;,(X7) above by
(XY < log Vi +2loglog(2Vy) + klogn + (11 + k)
< log(1/pn) + 6p + €, + 2log[l + 0, + €, + log(1/pn)] + klogn + (11 + k),  (35)

eventually, almost surely, where p, = Q},(B(XT, D)) as before, and

o em o QLB(X}, D))
6n = 6a(XT) = log [m]

Next we claim that there exist absolute constants C and M such that:
On(2}) < C, foralln > M, and all 27 € A™. (36)
Before proving this, let us see how it allows us to complete the proof. Recalling Proposition 3 and
substituting the bounds (34) and (36) into (35) gives
(X)) < log(1/py) + 2log[l + C +2logn + 3nR(D)] + (2 + k)logn + (C + 11 + k)
< log(1/ps) + 2logldnR(D)] + (2 + k) logn + (C + 11 + k)
< log[1/Qr(B(XT, D)) + (4 + k) log n + Const. eventually, P—a.s.

Finally we need to prove (36). Pick M > N large enough, so that for alln > M and all y € A,
Q*(y) is either equal to zero or Q*(y) > k/n. Let n > M and 2z} € A™ be arbitrary. Then

QGBELD) _ Tuesern [0 EE]
Qn(B(z}, D)) Zy;'eB (z7,D) Qn(y1)
Qn(y?)
= yleax’f,mczn(yl)
— (yz)
- yl Elg(az?vp (y‘t)
)

< max (v
(yEA Q*(y)>0 qn(y)>

(@) Q*(y) "

: (yEA“S"Ey 20 @ y) — k/n)

< ()

where (a) is by the choice of ¢,, and y* is the y € A with the smallest nonzero Q* probability. So,
dn(27) < -—nlog(l—C'/n),
with C' = k/Q*(y*), and this is a convergent sequence so it must be bounded. 0

As in part (i), this proof actually shows that almost every sequence of random codes generated as

above will satisfy the statement of the theorem.
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5 Arbitrary Sources

Let X be an A-valued source, and write P, for the distribution of X7. In this section, we prove The-

orems 6-8. We begin with two useful Lemmas; they are proved in Appendices IV and V, respectively.

Lemma 3:

The infimum
inf Ep, {~log Qn(B(X], D))} (37)

over all sub-probability measures ), on A" is the same as the infimum over all probability measures,

and it is achieved by some probability measure Qn.

Lemma 4:

Kn(D) = Ep, {~log Gn(B(X, D)) } > Ra(D).

Proof of Theorem 6: Let {Cy,£,} be an arbitrary sequence of codes operating at distortion level
D, where each C,, consists of a triple (Bp, ¢n,¥n). Let Ly be the length function induced by %, on
B,,. As in the proof of Theorem 4, the key idea is to consider the sub-probability measure ()¢, on An
defined by

Qc, (F) 2 Z 2=Ln(¥1)  forall F C An,
yTEFﬂBn

Since C, operates at distortion level D, for any =T € A™ we have:

= —logQc,(#n(z]))
> —logQc, (B(s, D). (38)

;From (38) and the definition of K,(D) we immediately get that
Ep,[tn(XT)] 2 Kn(D)

and, in view of Lemma 4, this proves part (i).

For part (i), we define a family of functions on A™
Gn = {g = Qn(B(z}, D)) for a sub-probability measure @, on fl”}

and note that G, is a convex family. By Lemma 3 we know that

glenfn Ep, {-logg(X{)} = Ep, {-10gg(X7)}, (39)
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where § is the function g(z) = Qn(B (z}, D)). But for each n > 1, (39) are exactly the Kuhn-Tucker

conditions for the optimality of § in Gy, so [3, Theorem 2] implies that

9(X7) -
Ep, {g(X{‘) <1, forallgce€gG,. (40)
Therefore, letting g,(z}7) = Qc, (B(z},D), the probability that the assertion of (ii) fails can be

bounded above as

Pr{€n(X]) < log[1/Qn(B(X},D))] — bn}

—

a)

< Pr{log[l/Qc, (B(X], D))] < log[1/Qn(B(X}, D))] — bn}

_ {an( (XI,D>>>bn}
Qu(B(XY, D))

© gn(XT)
< 270E n{ dde et }
- P (xp)

(c)
< 270

where (a) follows from the bound (38), (b) is simply Markov’s inequality, and (c) follows from the
Kuhn-Tucker conditions (40) with ¢ = g,. Since the sequence 2-b» is summable by assumption, the

Borel-Cantelli lemma completes the proof. a

Proof of Theorem 7: Suppose X is a memoryless source with distribution P, let P, = P" denote
the distribution of X7, and write Q}, = (Q*)", where Q* is the optimal reproduction distribution at
distortion level D.

Replacing g, by ¢, (z7) = Q}(B(z}, D) in the last part of the argument of the proof of Theorem 6,

. A
and taking b, = 2logn, we get

log[1/Q%(B(X}, D))] > log[1/Qn(B(X},D))] —2logn eventually, a.s. (41)
Similarly, taking
gi(a7) = Eg, (e bne 0D
in place of g, in the proof of Theorem 4, and choosing b, 29 log n, we get
—log E5, (e”’\‘[”"(xil’yln)‘DD > —log Eqx (e"’\'[”"(x?’yln)_D]) —2logn eventually, a.s.  (42)
But by Proposition 3 we know that (in the notation of the proof of Theorem 4)
log[1/Qr(B(X7,D))] = nR(D)+ i f(X:) + %logn + O(loglogn) as.

= log Eg: (e”’\"[”"(x11 ’Yln)'D]) + %logn + O(loglogn) as., (43)
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and also, by a simple Chernov-type bound,

Qn(B(X},D)) = Eg, {H{pn(X?.Yl")SD}} <Eg {enx[pn(x?,yln)—pl}. (44)
;From (42), (43) and (44) we have
log[1L/Gn(B(XF, D)) 2 log[1/@4(B(X], D))] ~ 5 logn + Olloglogn)  a.s.

Combining this with the corresponding lower bound in (41) completes the proof. g

Proof of Theorem 8 We use a random coding argument, very similar to the ones used in the proofs
of Theorem 5 parts (¢) and (i1). For each n > 1 we generate a random codebook according to Qn:
Let Y (i) = (Yi1,Yi2,...,Yin), ¢ =1,2,..., be i.i.d random vectors in A", each drawn according to
Q,.. Given a source string X7, let W,, = W,,(XT) denote the first index i such that X7' matches the
ith codeword with distortion D or less:

W, =inf{i > 1 : po(XT,Y(9)) < D}.

If such a match exists, we describe X7 to the decoder (with distortion no more than D) by describing
W.,, using, as before, no more than

log W,, + 2log log(2W,) + 10 bits.

Otherwise, we describe X}' exactly, using [n log|A[] Dbits; this is possible because of our initial
assumption (5). Our code C, consists of combining these two descriptions, together with a one-bit
flag to specify which one was chosen.

Next we claim that the waiting times W, can be approximated by the quantities 1/ én(B( T, D)),

in that their difference satisfies:
€n 2 log Wy, — log[1/Qn(B(X},D))] < 2logn eventually, a.s. (45)

The assumption that K,(D) < oo implies that Qn(B(z?, D)) > 0 for P,-almost all z7, so the strong
approximation argument from the proof of Theorem 5 goes through essentially verbatim to prove (45).
In particular, (45) implies that W, < oo eventually, almost surely, so the description length of our

code can be bounded above as
L (XT) < logW, + 2loglog(2W,) + 11

< log[1/Qn(B(X}, D))} + € + 2log log

2€n+1 }
| 411
Qn(B(XT, D))

o2n?

log[l/én(B(X{’, D))] + 2logn + 2loglog ~—-—-——} + Const. eventually, a.s.

IA

Qn(B(XT, D))

and we are done. 0
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Appendix I

Proof of Lemma 1, (iv): Fix a A < 0 and a probability measure u on A”. Let {v{®)} be a sequence of

p-m.f.s on A", such that the v(*) converge, as k — oo, to some p.m.f. v on Ar. Then,

lim supAﬂ,y(k)(,\) = - likrging“ {_ log, E, ) (e/\pn(xi',yln))}

k—oo
< -B, { lim inf ~log, B, (X557 }
Y B {10, B, (Xm0}

= AlI-,V()‘)a

where (a) follows from Fatou’s Lemma and (b) follows from the assumption that v(*) — v. Therefore,

A, ()) is upper semicontinuous in v. O

Appendix II

Proof of Proposition 1: The alternative representation of R(u,v, D) in (i) can be obtained from its
definition by a simple application of the chain rule for relative entropy (see, e.g., [25, eq. (3.11.5)] or
(11, Theorem D.13}).

For part (ii}) we will use the representation in (¢). Fix D > 0 arbitrary, and recall (see [11,
Lemma 6.2.13]) that for any bounded measurable function ¢ : A" — R, any z} € A", and any

candidate measure © on A™x A" with A™-marginal equal s and Eg [on(XT,Y")] £ D, we have
(log, 2H(O( D)) > [ #(47)d0E o) — log, B, (o0)).
Choosing ¢(yT) = Apn(z7,y}) and taking expectations of both sides with respect to u, yields that
(loge 2) B [H(O(-[XT)Iv(-))] 2 AD = A (A)-
Taking the infimum over all candidate measures © and the supremum over all A < 0, implies (from (4)):
R(y,v, D) > (loge)A;, (D). (46)
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To prove the reverse inequality we consider four cases. (Note that we only need to consider cases when

A}, (D) < o0.)
Case L: D" >0 and D € (0, Df;). By Lemma 1, for all A <0,
d v
a—X[/\D - AWM =D — A:L',,(/\) < D- DL <.
Therefore

A, (D) > limsup[AD — App(N)] = o0,

A——00
so in this case
R(u,v, D) = (loge)A}, (D) = oo. 47)
CASE 1I: D > DHY,. Here, by Lemma 1, for all A <0,
L (AD — Ay (N)] = D = 8, () 2 Dl — Dl =0,

so Ay, (D) is achieved at A = 0, giving A}, (D) = A, ,(0) = 0. On the other hand, taking O = uxv,
noting that Eelon(X{,Y")] = DY, and recalling that relative entropy is nonnegative, implies that

R(u,v, D) = 0. Hence, here
R(u,v,D) = (loge)A,;, (D) =0. (48)

Casg I1I: DMV < DEY, and D € (D

min min?

A, ,(\*) =D and

Dh%). By Lemma 1, there is a unique A* < 0 such that

A;;,,,(D) =A*D — Aup(A*) > 0—Au,(0) =0. (49)
Let
de n n eA'Pn(m’llvy’f)
d,u,xdu (a7, 97) = E, (e/\‘pn(m';,Y;‘))
and observe that Eglon(XT,Y{")] = A, ,(A*) = D. Then

R(u,v,D) < Eu[HOMXD)())]

do
/log [duxdu] du xdv

(log e)[A\*D — Ayp(A")]
= (loge)A,, (D).

This, together with (46) and (49) imply that here:
0 < R(u,v, D) = (loge)A}, (D) < oo. ~ (50)
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CASE IV: D"V < DI and D = DMV . Write S, C A" for the support of v, and for z7 € A" let

min

X == mm T
pn(z]) = YT ES pn(zT,U7)

so that D = F,[p,(X7)] and

min

min

AD™Y — A, (A) = E, [_ log, E, (exlpn(xwm—pn(xw})] ,

Also, by Lemma 1,
[)“Dmm - Au,u(/\)] == Drl':;m - A:t,u(A) <0,

so A% (D) is the increasing limit of [AD/ — Ay, (M)] as A — —oo. Therefore, letting Z(2T) denote

min min

the event {y7 : pn(z}, ) = pu(a?)} C A" and Z(27) denote its complement

AL (DAY = lim B, [~log, B, (XerXEID-en (X0

min A——00

= lim E, [ log, {I/(Z(X{’)) + B, (e’\[”"(xf’Yln)_p"(xr)]ﬂi(xf)) }]

A——o00
= Eu[-log. v(Z(XT))],
where the last equality follows from the monotone convergence theorem. Since we are only interested

in the case A* ,(D"”) < o0, the above calculation implies that we may assume, without loss of
.V min

generality, that v(Z(z7)) > 0 for p-almost all } € A™. We can then define a measure © by

T S
duxdy VY T (7 () WEZEND

which has Ee[on(XT,Y)] = D™, and

mm’

R(p,v,D) < E,
Y

(
(

|X1 v ()]
] duxdv

loge)Ay, ,(Dii)-

min

This together with (46) complete the proof. O

Appendix 111

Proof of Proposition 2: By Lemma 1 (iv), A, () is upper semicontinuous as a function of v, so [AD —

A, (N)] is lower semicontinuous. Therefore, by the representation of R(u,v, D) in Proposition 1 (:1)
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and the fact that the supremum of lower semicontinuous functions is itself lower semicontinuous (see,
e.g., [27, p. 38]) we get that R(u,v, D) is lower semicontinuous as a function of v, proving ().

Part (ii) follows immediately from part (¢): Since A is finite, the set of all p.m.fs Q on A is
compact, and therefore the lower semicontinuous function R(P,Q, D) must achieve its infimum over
that compact set (see, e.g., [26, p. 195]), proving the existence of the required Q*.

For part (¢ii), it is easy to check that the stated properties of R(u,v, D) are actually proved in the
course of proving Proposition 1 (i7); see equations (47), (48) and (50).

Part (iv): First, if D € (0, Dpax), then letting U denote the uniform distribution on A and recalling

our basic assumption (5), we have

PU
Dol =B,

min

mmp(X y)| < supminp(z,y) =0,
yEA z€A yeA

ie., DPV = 0. Therefore D > 0 means that D > Dmm, so by part (i7¢) above R(P,U, D) < oo and

min

hence R(D) < oo. Also, for any distribution () on A,
Dinax = mint Ep[p(X,9)] < Epsqlo(X,Y)] = Dru
KIS
s0, in particular, D < DES . Part (i4i) then implies that R(D) = R(P,@*,D) >0
On the other hand, if D > Dy, then by the definition of Dmax in (7) there exists a 2z € A such
that
Dmax = Ep[p(X, 2)] = Eps,[0(X,Y)] = Dii:

where §, is the measure attaching unit mass at z. This means that D > Df,’;ﬁ;, so by part (iiz) above

R(P,6,,D) =0, and hence R(D) = 0.
Part (v): Since R(P,Q*, D) = R(D) € (0,00), from part (iis) we have that D € [Dzlg , DES,
and, in particular that Dphe" < D,mx . So we only have to rule out the case D = DP?" but this

min min ?

done in Appendix II of [17]. g

Appendix IV

Proof of Lemma 3: First observe that if @, is strictly a sub-probability measure with Qn(fi") =7Z <1,
then using the probability measure @}, (-) = Z~1Qn(-) we can make the expectation in (37) smaller by
log Z < 0. Therefore it is enough to consider probability measures Q.

As for the achievability of the infimum, it suffices to note that it is taken over a compact set (the set
over all p.m.f:s Q, on A"), and that the map Q,, + Ep, {~log Qn(B(X7, D))} is lower semicontinuous.
This follows from Fatou's Lemma in exactly the same way as it was shown in Appendix I that A, ,())

is upper semicontinuous in . , d
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Appendix V

Proof of Lemma 4: Define a joint probability measure © on the product space A™ x A" by restricting
the product measure P, X Qn to be supported on {(z},v}) : palzl,y}) < D}:

B S
dPaxGn T Qu(BGay, D)) VPR

Observe that the A"-marginal of © is P,, and let ©, denote its A"-marginal. Then, with (X},Y])
distributed according to ©,

K.D) € Ep, {~10g@n(B(x}, D))}
= H(O|P.xGn)
2 Eo, (HOCIY)IPa()} + H(O2G)
>  H(O||Pyx©s)

21

Rn(D),

where (a) follows from the definition of K, (D), (b) follows from the chain rule for relative entropy
(see, e.g., [25, eq. (3.11.5)] or [11, Theorem D.13}), (c) follows from the nonnegativity of relative
entropy, (d) is just the definition of mutual 1nformat10n, and (e) comes from the definition of R(D),

since Eglon(XT,YM)] < D. = d

Appendix VI

Proof of Proposition 3 Since D € (0, Dyax), Proposition 2 (v) implies that D € (D,}:“g ,DPQ'), s0

we may invoke [35, Corollary 1] to obtain
- 1
—‘IOgQ;(B(X{",D)) =nR(Pn7Q*,D)+§10gn+0(l) a.s.

where P, is the empirical measure induced by X7 on A4, i.e., the measure that assigns mass 1/n to

each one of the values X;, i = 1,2,...,n. Also, 10, Theorem 3] says that
. n
nR(Pn,Q*,D) = nR(D)+ Y _ f(X:) +o(vn) as.
i=1
but a simple examination of the proof in [10] shows that we may replace the term o(y/n) above by
O(loglogn), without any changes in the proof. Combining these two results completes the proof of

the proposition. |
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