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Abstract

Here is a method of approximating success run probabilities which is elementary
enough to fit nicely into almost any first course in probability, yet every bit as accu-
rate as Feller’s celebrated partial fractions expansion approach. The title is somewhat of
a play on words: “excellent approximation” were Feller’s words, while the method in this
paper can be implemented with a fairly routine use of Excel software. In addition, you
can use your spreadsheet software to quite easily compute the exact probabilities.
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1 Introduction

This paper is inspired by something I read in the Science Times section of
The New York Times on August 4, 1998. An article by Malcolm W. Browne
begins—

Dr. Theodore P. Hill asks his mathematics students at the Geor-
gia Institute of Technology to go home and either flip a coin 200
times and record the results. or merely pretend to flip a coin
and fake 200 results. The following day he runs his eye over the
homework data, and to the students’ amazement, he easily fingers
nearly all those who faked their tosses.

*Stephen M. Samuels is Professor, Department of Statistics, Purdue University, 1399
Math Sciences Bldg, West Lafayette, IN 47907-1399 (Email: ssamuels@stat.purdue.edu)



~ “The truth is,’ he said in an interview, ‘most people don’t know
the real odds of such an exercise. so they can’t fake data con-
vincingly.’

—and later quotes Hill’s 1998 American Scientist article where he said

A sequence of 200 truly random coin tosses of a fair coin contains
a run of six heads or six tails with very high probability—the
exact calculation is quite involved—yet the average person trying
to fake a random sequence very rarely writes such long runs.

I resolved to try Ted Hill’s gambit on opening day of my undergraduate
probability course (which I did, with similar results). But I also wanted to
be able to teach my class—later in the semester—how to obtain the relevant
probability. Naturally I went first to the celebrated text by Feller (1968)
What I found there (and will describe below) was fascinating, but as Hill says,
“quite involved.” I looked at some other textbooks but was unable to find
a suitable method of approximating the probabilities, so I put together my
own argument which I offer here. As you will see, its agreement with Feller’s
method is breathtakingly close. And, as you will also see, the approximation
is truly excellent.

2 Feller’s Analytic Approach

Chapter XIII of Feller (1968) is entitled “Recurrent Events. Renewal The-
ory.” And Section 7 of that Chapter is “Application to the Theory of Success
Runs.” For a sequence of independent Bernoull trials, with success proba-
bility p = 1 — ¢, let the random variable T, be the number of trials until
the first occurrence of r consecutive successes. Feller derives the probability
generating function,
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JFrom this, he gets the mean and variance of T,
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One could now make the normal approximation to the distribution of T;.
For example, if p = 1/2 = g and r = 5, then p = 62, 0 = 58.22 and 200 is
about 2.37 standard deviations above the mean, so P(Ts > 200) is estimated
to be 0.009. But, as we shall see shortly, this is a very poor estimate because
the distribution of 7. is quite skewed. What Feller does is to use a method
of partial fraction expansions (described in his Section XI.4) to derive the
following “excellent approximation” to the tail of the distribution of T:
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where z is the unique positive root of the denominator in the second formula
of (1). For r = 2 and p = 1/2, Feller leaves it to us to show that z =
(v/5—1) = 1.23607. For this case, Feller does give a brief table of both exact
and approximate values to demonstrate how good the approximation is, even
for very small n. For » = 5 and p = 1/2 (which, as we'll see, is relevant to
what Hill did in class), a little help from Mathematica yields z = 1.01732 and
the values in Column 3 of Table 1. For reasons which I will explain shortly,
I used n — 1 rather than n in (3) for my table values. You can see from the
table that P(7Ts > 200) = 0.0346 which is almost four times the 0.009 from
the crude normal approximation above.

Of course, Hill’s problem is different. He is looking for runs of length 6
of either heads or tails. Feller covers this problem, too, in Section 8, “More
General Patterns,” the first example of which is Runs of either kind. He
again gives us the probability generating function of the waiting time,
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He also gives us the mean (with an obvious misprint in my copy of the book),
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coincidence. Indeed, letting u = s/2,
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Thus, for a fair coin, the waiting time, for a run of length r of either heads
or tails, has the same distribution as one plus the waiting time for a run of

r—1 heads—which with hindsight is obvious, isn’t it?—and Feller’s “excellent
approximation” (for 199 tosses) can be applied to Hill’s case.

(6) Fr(u) =

3 Quick Approximations

Let us now specialize to runs of either kind of length r in n tosses of a fair
coin. We'll start with two crude approximations which are upper bounds
on the probability of no such run. :

Perhaps the simplest such approximation looks only at say k consecutive
non-overlapping blocks of r tosses and the probability of no run in any block,
namely

(7) P(no r-run in tosses jr + 1,50 +2,... ,jr+7; j=0,1,... ,k—1)
— (1 . 2—(r—1))k < e—k/?"“l.

If n = kr+d, with 0 < d < r, then (7) gives an upper bound for the
probability of no run of length r. In Hill’s case, where r = 6 and k = 33, this
probability is (31/32)% = .3507 (and e~%¥/32 = .3566). So already we know
that the odds are (at least) almost two to one in favor of a run of length six
in 200 tosses.

We can do a little bit better (replacing the 33 by 38 in Hill’s case) with
very little extra work, as follows: The number of tosses, T,, until a run
of length r, is r plus the sum of geometrically many independent “short
blocklengths;” i.e., runs of length less than r. Thus
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where Ly, Lo, ... are IID with a truncated augmented geometric(p = 1/2)
distribution

(9) P(L=0)=2"%/(1-2"0"Y)y ¢=1,2...,r—1,

and 7 is independent of the L;’s with a geometric(p = 270"~Y) distribution,
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Now, ifn = r+k'(r—1)+d with 0 < d’ < r, then 7 < k' implies that T;. must
be less that or equal to n. So (10) gives an upper bound on the probability
of no run. In Hill’s case, 200 = 6 + 38(5) + 4 so ¥’ = 38. Thus an improved
simple upper bound on the probability of no run is (31/32)% = .2993 (and
e~%8/32 = 3050). So now we know that the odds are more than two to one
in favor of a run of length six in 200 tosses.

4 Our Own “Excellent Approximation”

The latter of the two approximations described above is just a piece of a
package. Here is the whole package:

Let us now use the Law of Total Probability to write P(7, > n), condi-
tioning on 7, the number of short runs before the first run of length . Thus,
forn—r=k(@r—-1)+d (ie, kK =[n—7r)/(r—1)]),
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Here we are using the normal approximation—with continuity correction—to
the distribution of L; 4 --- 4+ L;, where the L;’s are 1ID with distribution

given by (9), with mean p; and standard deviation or. For r = 6, uy =
57/31 =~ 1.84 and o, = /1122/961 ~ 1.08. When k' is substantially larger

5



than r, as it is when n = 200 and r = 6, we can be quite confident that the
normal approximation would work very well. But as we shall see, it works
quite well even for the smallest values of n.

Formula (11) is a “piece of cake” to implement with Excel, using its
NORMDIST function. To get column 2 of Table 1, I first put the integers 1 to
194 into the first 194 rows of Column A. Then I put “=(1/32)*(31/32) ~A1”
into cell B1 and copied the formula (1/32) * (31/32)7 into the next 193 rows
of Column B. Next I entered

=1-NORMDIST($E$1+0.5,$E$2*A1,$E$3+SQRT (A1) ,TRUE).

into C1 and copied the formula into the next 193 rows of Column C. (Cells
E1, E2 and E3 hold n — r, ur and oy, respectively, and the word “TRUE” tells
Excel to give us the CDF rather than the density of the standard normal.)
Finally I put products of Bj and Cj into Dj and the sum of the Dj’s—my
final answer—into E4. So each time I entered a new n — 5 into E1 I got a
new P(T5 > n) in E4, which I then copied into a little table elsewhere on my
spreadsheet.

It’s true that for n’s smaller than 200, my summation goes beyond the
limits, &' and m» — r. But no harm is done because the contribution from
those terms is negligible.

As you can see, in a wide range of n’s there is agreement to about four
significant digits between Feller’s approximation and mine. So it seems safe
to recommend mine—which uses only elementary ideas from probability—as
a proxy for Feller’s.

In addition, you can use Excel or some other spreadsheet software to
quite easily get the exact probabilities (Column 4 of the Table) via an ele-
mentary six-state Markov Chain approach. For example, start by entering
the numbers 1,0,0,0, 0,0 into cells A1, B1, C1, D1, E1 and F1, respectively.
Then enter “=.5+SUM(A1:E1)” into A2, “=.5%A1” into B2, “=.5%B1” into C2,
“= 5%C1” into D2, “=.5*D1” into E2, “=F1+.5%E1” into F'2, and “=1-F2” into
G2. Now copy these formulas, row by row, into as many rows as you like.
The contents of cell Gn will become P(T5 > n), the probability of no run of
length 6 or more in the first n tosses. For example, for n = 200, the exact
probability is 0.0346872, while Feller’s approximation gives 0.0345924 and
mine gives 0.0346857.



Table 1.
Two Approximations to the Probability
of No Run of Either Kind,
of Length 6 or More,
in n Tosses of a Fair Coin.

n  Samuels’  Feller’s Exact
6 0.964808 0.970523 0.968750
7 0.950507 0.953999  0.953125
8 0.938236  0.937757 0.937500
10 0.906182  0.906098  0.906250
20 0.763187 0.763132 0.763123
30 0.642760 0.642723  0.642710
45 0.496793 0.496775  0.496760
50 0.455915  0.455903  0.455887
70 0.323385 0.323385  0.323369
100 0.193185 0.193194  0.193179
150 0.0818581 0.0818679 0.0818587

180 0.0489007 0.0489087 0.0489021
200 0.0346857 0.0345924 0.0346872
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