EMPIRICAL BAYES TESTS WITH n~!*¢ CONVERGENCE RATE
IN CONTINUOUS ONE-PARAMETER EXPONENTIAL FAMILY

by

Shanti S. Gupta and Jianjun Li
Purdue University

Technical Report #99-09C

Department of Statistics
Purdue University
West Lafayette, IN USA

June 1999



Empirical Bayes Tests With n~!*¢ Convergence Rate
In Continuous One-Parameter Exponential Family

Shanti S. Gupta and Jianjun Li

Department of Statistics Department of Statistics

Purdue University Purdue University

W. Lafayette, IN 47907 W. Lafayette, IN 47907
Abstract

Empirical Bayes tests for testing Hy : 6 < 0y against H; : # > 6, in the continuous one-
parameter family with density c(@)exp{fz}h(z), 00 < a < z < 8 < oo, are considered
under the linear loss. Using the assumptions that [, |6|dG(6) < oo and the critical point
by of a Bayes test falls in some known interval [Cy, Cs], where a < C; < Cs < 3, we show
that, for any 0 < € < 1, the empirical Bayes tests can be constructed such that they
have a convergence rate of order o(n~'*¢), which generalizes the result of Liang (1999)
from the positive (one-parameter) exponential family to any continuous one-parameter
exponential family.

AMS 1991 Subject classification: 62¢12.

Keywords: Empirical Bayes; exponential family; rate of convengence; regret.

*This research was supported in part by US Army Research Office, Grant DAAH04-
95-0165 at Purdue University.



§ 1 Introduction

Let X denote a random variable from the exponential family having density function
f(z|0) = c(6)exp{fz}h(z), —o<a<z<f< oo, (1.1)

where h(z) is continuous, positive for z € (a, §), 0 is the natural parameter, distributed
according to an unknown prior distribution G on the parameter space 2 = {0 : ¢(6) > 0}.

We consider the problem of testing the hypotheses Hy : 6 < 0y verses H; : 68 > 6,
where 6y € €.

Let a = ¢ be the action in favor of H;. For the parameter 6 and action a, we use the
loss function

1(9, a) = a(90 — 9)1[9390] + (1 - a) (9 - 90)1[.9>90], (1.2)

where I|; is the indicator function, which equals 1 or 0 if the statement inside [ ] is true
or not. Assume that [, |#|dG(0) < co. Define

ac(z) = [ c(0)e™dG(0),

and
= [ 0c(h)e?dG(6).
Ya(z) = [ 0e(8)edG(6)
By Fubini Theorem,

’ h(z)ag(z)dx (1.3)

= [ h) / c(8)e”dG (6)dz
’ c(0)e"h(z)dzdG(6) =

[¢

S~

QQ

I
:o\p

and

B

| h@)lo(z)ldz (1.4)
< /ﬁh / 10]c(8)€*2dG (8)d

[27

- /Q 9] / 0)e? dzdG (6)

Let W(z) = hac(z) — ¥(z). Then W(z) is a continuous function. By (1.3) and (1.4),

/j W (2)|h(z)dz

< /j[leo|ac;(x) + |Ye(z)|]h(z)dz < oco. (1.5)
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A test (z) is defined to be a measurable mapping from (a, () into [0,1] so that
6(x) = P{ accepting H1|X = z}, i.e, 6(z) is the probability of accepting H; when
X = z is observed.

Let R(G, ) denote the Bayes risk of the test § when G is the prior distribution. Then
Bayes risk R(G, ) can be expressed as

R(G,) = ot [ /ﬁé(x)(ﬁg—9)0(9)egmh(x)dxdG(0) (1.6)
_ Cb+/w5x‘/0 — 0)c(0)¢*=dG(0) h(z)dz
= CG+/ r)[boac(z) — Ya(z)|h(z)dz

= CG+/ ()W (z)h(z)dz

= G+ [ oGz (@)los(@)h(@)dz

where
CG=A¥0—%NW%WGWL
and bela)

Here, ¢¢(z) is the posterior mean of 4 given X = z. ¢g(z) is continuous and increasing
in z.
From (1.6), we see that a Bayes test dg is determined by
1 if W(z)<0
0 if W(z)>0

dc(z) = (1.7)

0 if ¢g(z) < b
The minimum Bayes risk is
R(G,6¢) = Co + /a ? Se(s)W ()h(z)dz. (1.9)
To exclude trivial cases, we assume that
lim ¢g(z) < 0 < lim pc(z). (1.10)

From (1.10), we get that ¢g(z) is stictly increasing and there exists the unique point b,
(critical value) such that ¢g(by) = by. dc(z) < by for T < by, and P (z) > 6, for > by.
Therefore, the Bayes test dg can be represented as

5“”*{01fx<%.
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Furthermore we assume that there exist two known constants C;, Cs, o < C; < Cy < 8
such that

Cy < by < Cs. (1.11)

We will deal with this testing problem via the empirical Bayes approach. The empiri-
cal Bayes approach was introduced first by Robbins (1956, 1964). Let X1, X5, - -, X, de-
note the observations from n independent past experiences. Denote X, = (X1, Xz, -+, Xy,).
Let X be the present observation. An empirical Bayes test d,(X, X, n) is defined to be
the probability of accepting H; when X and X,, are observed. Let R(G, 6, |X,) de-
note the Bayes risk of &, conditioning on X, and R(G,d) = E[R(G, §|X,)] the overall
(unconditional) Bayes risk of 4. _ ~

Since R(G,d¢) is the minimum Bayes risk, R(G, 6,|X,) — R(G,dg) > 0 for all X,
and for all n. Thus, the regret R(G, é¢) — R(G,d¢) > 0 for all n. The nonnegative regret
R(G,d,) — R(G, é¢) is often used as a measure of performence of the empirical Bayes
test of 6.

Johns and Van Ryzin (1972) constructed empirical Bayes tests for the continuous one-
parameter exponential family and studied the rate of convergence for their associated
regrets. Van Houwelingen (1976) improved Johns and Van Ryzin’s result by using the
monotonicity of the testing problem and showed that the empirical Bayes tests there have
a convergence rate of order O(n=2"/(r+3)]og%(n)), where r > 1 is an integer, associated
with the moment condition that [, |0|"t'dG(f) < oo and the r-times differentiability
condition on m(z). Under the assumptions [, |0|"*dG(#) < oo, (1.11), and a few others,
Karunamuni and Yang (1995) claimed that the empirical Bayes tests, constructed by
them, achieve an exact rate of convergence of order O(n=2/(+3)). Note that if r is
small, these rates are still slow. Recently, Liang (1999) investigated the empirical Bayes
test for the positive exponential family and much improved the previous results. His
paper shows that the empirical Bayes tests there have a rate of convergence of order
O(n=*/(+%)), where s > 0 is any prespecified number, under the (weaker) condition
Jo° 6dG(0) < oo and (1.11).

Our research interest on empirical Bayes tests is motivated by Liang (1999). Making
full use of properties of W{z), with the help of classical result about sum of i.i.d. random
variables, under the assumption that f,|6|dG(8) < oo and (1.11), we show that, for
any 0 < € < 1, the empirical Bayes tests can be constructed such that they have a
convergence rate of order o(n~'*¢). Thus our result generalizes the result of Liang(1999)
from the positive (one-parameter) exponential family to any continuous one-parameter
exponential family.

The paper is organized as follows: §1 gives the introduction; §2 constructs a empirical
Bayes test d,; §3 proves that the empirical Bayes test has a convergence rate of order
o(n~'%¢). §4 proves the lemmas stated in §3.



§ 2 Construction of Empirical Bayes Tests

We use the kernel method to construct the empirical Bayes tests. The idea here is
similar to that of Stijnen (1985) and Liang (1999).

For any 0 < ¢ < 1, take integer m such that me > 4. Suppose [a,b] is a finite
closed interval inside (a, §). For each ¢ = 0, 1, let K;(y) be a Borel-measurable, bounded
function vanishing outside the interal [a, b] and for Ky(y)

b . 1 if 7=0
J — ’
LyKO(y)dy_{ 0 if ]:1,2,,77?,*1, (21)
and for K;(y)
b 0 if j=0,23,-,m
J _ 9Ly, 3 3
/a Yy Kl(y)dy — { 1 if ]: 1. (22)
We may let B; be a positive constant such that |K;(y)| < B, for all y € [a,b] and i = 0

or 1.
Let u = u(n) = n~i. Then u — 0 as n — co. For any z € (, 8), define

= — ZKO 5V IR(X;), (2.3)
and . X; -
Yale) = — Zl Ky ( x)/h(xj). (2.4)

Let Wh(z) = boan(x) — ¥n(z). We shall show later that W,(z) ia an asymptotically
unbiased and consistent estimators of W (z) (Lemma 3.2). Recalling that the critical
value by is inside [Cy, C»], then an empirical Bayes test &, (z, X,,) can be proposed by

5 — 1 if (CE > 02) or (01 <z <(Cyand Wn(iL') < 0), (2 5)
1 0 if (z<C)or (Cr<z<Cand W(z) > 0). ’
The conditional Bayes risk of the empirical Bayes test 4, is:
—_ B
R(G,60/ %) = C + [ 8u(s)W (2)h(z)d. (2.6)

Note that W(z) < 0if z € [Cy,bo]; W(z) > 0 if z € [by, Co]. Then the conditiona] regret
can be expressed as

R(G,6,X,) — R(G,5) = / ’ (6, — )W (2)h(z)dz (2.7)
= cio I[Wn(z)SO]W(:L')h(.’B)d!L‘

Ca
+ [ Tw@>alW (2) h(z)ds
(]
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and the unconditional regret becomes

R(G,6,) — R(G,6) = /bOP(Wn(:c)SO)W(x)h(:c)dx (2.8)

C1

+ [7 PWal@) > QW @)Ik(@)ds

bo

§3 Asymptotic Optimality of é,(x)

In this section, we shall prove that R(G, é,) — R(G, dg) = o(n~1*¢). The convergence
rate of R(G,d,) — R(G, d¢) depends on the properties of W(z) and W, (z). The more
information about W(z) and W, (z) (inlcuding h(z)) is used, the more accurate rate
we will get. So firstly, we dig out a few properties of W(z) and W,,(z). That is a few
lemmas, whose proofs are left to §4. Then we state two well-known facts. Following
that, a desired convergence rate of R(G, d,) — R(G, d¢) is given as a theorem.

The first lemma is concerned about W (z), which gives us a solution to deal with the
case that W(z) is small, but not small enough.

Lemma 3.1 For any n > 0, define l(n) = fgf Iyw (z)j<mdz, the Lebesgue measure of
{z : [W(z)| < n} N[Cy,Cs). Then there exists an 15 > 0 and some positive constant
Bs > 0 such that, for any n < n,

Next we consider W,(z). We have two lemmas, which are direct results of computa-
tions. Note that

Wh(z) = Ogan(z) — ¥p(z) = zi: (Xj,z,n) (3.2)

where

b Ko(*£2) 1 K (%22
V(X;,z,n) = 2 X X)) @ X X)) (3.3)

Let W(z,n) = E[V(X;,z,n)] and Zj, = V(X;,z,n) — W(z,n). Then we have
Lemma 3.2 W(z,n) can be expressed as
W(z,n) = W(x) + u"W(z,n),

where W (z,n) is some function such that |W (z,n)| < By for allz € [Cy, Cy] andn > Ny,
and where By is some positive number and Ny is some integer.



Also, we have

Lemma 3.3 For any fized n, Z;, are i.1.d. and

1 1
EZ;, =0, EZ? = ;:;Dg(:z:,n), E|\Z;* = $D3(:L’,n),

where Dy(z,n) and Ds(z,n) are some functions such that Dy(xz,n) < Bs, D3(z,n) < Bs,
%‘(z’—z; < Bj for all z € [Cy,Cs] and n > Ny, and where Bs is some positive number and
Ny 18 same as in Lemma 3.2.

From Lemma 3.3, we see that

1 zn: Zin > —\/nudD3 ' (z,n)W (z,n)), (3.4)

PW,(zx)>0)=P
(Wa(z) > 0) (nEanFl

and

P(Wa(z) < 0) = P(\/ﬁ S Zin < —/nw Dy @, )W (z,n).  (3.5)

Comparing W (z) and W (z,n), we get the following useful result:

Lemma 3.4 There ezists an integer No(> Ni) such that, for any n> Ny and x €
[Cla 02];

W (z) > % — W(z,n) >0 and ng?)l) <2, (3.6)
and
W(z) < ~-71; — W(z,n) <0 and |V_%"’L)| <2 (3.7)

Lemma 3.4 allows us to replace W(z,n) with W(z) in (3.4) and (3.5). That makes
things a little easier since W (z) does not depend on n and has a few good properties.

Next we state two general well-known results. One is about the non-uniform estimate
of the distance between the distribution of a sum of i.i.d. random variables and the
normal distribution; the other is about the normal quantile bounds.

Result A Let X1, X, -, X, be i.i.d random variables, EX, = 0, EX? = 02 > 0,
E|X1® < co. Then for all x

p
|Fa(z) — ¥(z)] < Am- (3.8)



Here ¥(z) is the c.d.f. of N(0,1), Fp(z) and p are given by

E|X1)?
p=—"

Fue) = P(; =3 X, <a), X

Remark Result A can be found in Petrov (1975, ppl25 Theorem 14) or Michel
(1981). Here A is independent of n. Michel proved A < 30.54.

Result B Let U(z) be the c.d.f. of N(0,1). Then for some constant Bg > 0,

£>0=1—U(z) /°° L —5gs < Do % (3.9)
— T} = —_— y .
x 27 Tz
and
0 = ¥U(z) /m ! e Fdr < Bse—% (3.10)
< = — — . .
v —oo \/2m - |.17|
Combining (3.8), (3.9) and (3.10), we see that, for any fixed n,
ifx >0,
1 n
P(—=) X, >z 3.11)
G %> 2) (
= 1— F,(z)
p
< 1-97 Aer—
= AT Rl
B _z? Ap
S —e 2 + )
|z] vnlz|(1+ |x])?
if z <0,
P(2-3 X, < 2) (3.12)
oyniz T .
= Fu(z)
p
< ¥ Aee——
= YO A Tl
< Bg _s? Ap

—e -+ .
|z| Vlz|(1+ |z[)?

Now, we prove our main result:
Theorem 3.5 Let 6, be the empirical Bayes test constructed in Section 2. Then we
have, as n — o0,

n'~¢[R(G,,) — R(G, )] — 0.
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Proof. For convinience, let B; = maxc, <z<c, h(z) and Bs = fgf h(z)dz < co. From
(2.8),

R(G,5,) — R(G,5) = /boPn(W( )<0)W(z)h(x)I[O<W(X)<%]dx (3.13)

* / ) > W @Ih(@) -1 cwiayende

+ Pn(W (z) < O)W (2)h(z) L (x)> 112

+ / ) > 0)|W (2)|h(2) iy ay<- 11
= I+I1T+1IT+1V.

Part I and Part II are trivial. Since we have |W(z)| < % in both,

1 fbo 1
I<—| h(z)dr < —Bs (3.14)
nle n

and
c

1 1
1<~ [ hz)ds < ~Bs. (3.15)
7 Jby n

Part III and Part IV are a little more complicated. We treat Part III first. Using (3.6)
and (3.12), we have

bo 1 n —

1171 < Pl——==) Zjn < —/nudDy*(z,n)W(z,n)) Ly -1 W (2)h(z)dx
s (m;}] V 2 (@, )W (2, 1)) [ (ay> 1 W (2) ()
bo 1 & 1 =

< Pl—=—===>_Zjn < —5{nu* Dy (2, )W (2)) [ (2> 1| W (€) h()d

G 1/7?,EZJZn j=1

bo 2B e——nu?’D Yzn)W2(z)/8
A

\/nu3D3t (z,n)W

2Au SDs(z,n)W (z )h( ) iy )> 1ydz
/Cl [u=3Ds(z,n)]32y/ny/rud Dy (&, n) W (z)[1 + 14 /nud Dyt (z, n) W (z))2
- /bo 9 BBe—nu3D Hezn)W2(z)/8
- Ja nu3Dy* (z,n)
+/b0 2ADs(z,n)
¢ nu2Dy(z,n)[1 + 21/nudDy(z, n)W (z)]?
/bo 2B, e—u®Dy (z,n)W(z)/8

2! nu3 D5z, n)

W(z)>%]W(l‘)h($)d$

Ish(z)dz



ISc
%! \/nu3D2 (z,n)

b 2AD;(x,n)
—_— d
/01 nuzDg(x,n)h(x) v

= V+VI+VII,

WheI"e S = {.’17 . e—nu3D2_1(z,n)W2(w)/8 < %} and S¢ = {.’IT e—nu3D Yz,n)W2(z)/8 > T}
Obviously,

2A b D3(z,n) 24
< h < —B5Bs. 1
VII< nu? Jo, Da(z,n) (z)dz < nu? 00 (3.16)
By our definition of S,
9 b
B6 ° \/Dz z, n \/_ B5BeBg. (317)

As for Part VI, we have ﬁrstly that

4Dy(z,n)logn
nuy3
4Bslogn
nus
4Bslogn
nud

So Ise < Iyw(s)<n, Where n = \/4—35%%2 Note that /42519 5 0 as n — oo since

nu3

u=n"%. Let N3 > Ny(> Ny) be an integer and such that for n > Nj , /2B <y,
From Lemma 3.1, when n > N,

o~ D5 (e n)W2(a)/8 < 1 s W) <
n
= W3(z) <

= |W(z)| <

vi < 2B /BB /%I d (3.18)
c QT .
= /—nu3 5427 c S
2B 4Bslogn
< \/—\/ 353733\/ R
V1
< Y STAB By BBy,
Combining (3.16), (3.17) and (3.18), we get that when n > Nj,
2A V1
111 < ~5 Bs f‘&&&+ %%&&m& (3.19)

Now we deal with V. Using (3.7) and (3.11), we get

nu3 Dy (z,n)W (z, n))I[W(w)<—%] |W (z)|h(z)d

C'z
IV < / Z > —
< . GETZ;:]
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C'2
g/ n>—\/nu3D (z, )W (z)) Ly (1< 11| W (2)|h(x)dz
5o \/@Z—%ﬂjz:l J 2 l [W( )< n]| ( )| ( )
C2 9 Bre—"u*D; H(zn)W?(z)/8
: W(x)<—l]|W($)|h($)d$
bo \/nu3D (z,n)|W (z "
2
b nu2Dy(x,n)|W (2)|[1 + $1/nud Dy (z, n)|W (z) "
C2 9 —nudDy Yz, n)Wz(:v)/S
< / Bee Ish(z)dx
bo

\/nu3D (z,n)
ISC
bo \/nu3D2 z,n)

C2 2AD;5(z,m)
/bo nu?Dy(z,n) fz)dz

= VIII+IX + X.

Recalling S = {z : e-™*D2 (=)W (@)/8 < ﬁ} and S¢ = {z : e ™D @mW3@)/8

obviously,

C.
VIII< - 2Bs /2,/ (¢, m)h(z)dz < - 2Bs ,/ BsBs.

Similarly to (3.16),

24 [C Dy(z,n) 2A

nu

nu? Ju, Dy(z,n)
As for Part IX, similarly to Part VI, we have
4Dy (z,n)logn

—nudD; (z,n)W2(z)/8 1 2
e 2 >—= = Wz)<
\/_

n nus
4B;1
= W2(z) < 28
nu
4B 1
= |W(z)| < 1| =",
nu

+v/4Bslogn
Whenn>N3, T?%— < and Igec SIW::: /AB5log 7, From Lemma 3.1,

(W (@)1 < V25T
2B ¢
X < \/7723 BsB; /bOZIScdz: (3.22)

236 \/4B5lOg’I’L
< ~—\/B B; By ——F——
= \/— 50073 ’I’I,’LL3
\/logn
nu

IN

4B3BsBgBr.

11
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Combining (3.20), (3.21) and (3.22), we get that when n > Nj,

24A 1ogn
v \/_\/ +BoBs + — BBy + ng

From (3.14), (3.15) (3.19) and (3.23), we get

4B3BsBsB;. (3.23)

4 4A \/logn
R(G,d,) — R(G,9) < +/ BsBgB -I——BB 8 B3 Bs Bg Br|. 3.24
( ) (G,0) R 506D 5Dg + " 385 Bg B (3.24)
As n — o0,
r nl_sn\}ﬁ — ,,,Ll—e',m_lsa/8 — n—5€/8 N 0;

l-¢1 —& 1 — —E/2 .
{ n 2—n —F =N 12 5 0;

\ nu3 nn—3¢/4

We get that n'~¢[R(G, 6,) — R(G,d)] — 0.
The proof is completed.

pl-e VO8n _ p1-e Vicen n~¢/%/logn — 0.

§ 4 Proofs of Lemmas

Proof of Lemma 3.1 Since a(z) < co for all z, oV (x) exists for all z and all > 1.
Then W(z) exists for all z and all [ > 1, since 1(x) = o/(z). These will be used in the
proof of Lemma 3.2. Now, we need that

W'(z) = 6, /Q 8c(6)ef>dG (8) / 02c(0)ef=dG (8). (4.1)

First, we prove that
W'(bg) < 0. (4.2)
If Ya(bo) = 0, then W/ (by) = — [, 6%c(8)e?™dG (0) < 0. If g (by) > 0, then

Yo(bo) _ [o0°c(0)e™dG(6) _ foBe(6)e™dG(6) _
Yalbo)  Jo0c(0)efdG(0) ~ foc(0)ePodG(O) ~

Thus W' (bo) = a(bo)[0o — TEG3] < 0. If pa(by) < 0, then

Ya(bo) _ Jo2c(6)e™dG(0) _ Jy 0c(6)e™dG(0)
balbo)  Jo0c(0)e?dG(0) ~ Joc(6)e®odG(6)

Thus W'(by) = e (bo)[0o — —%] < 0. Then (4.2) is proved.

= 00.

12



From (4.1), we see that W'(z) is continuous. Then we can find b}, > 0 such that, for
any r € [bo — bg,bo + b{-)] C [01,02],

—W'(z) > =[-W'(b)] = 2B " (4.3)

L\DIr—-\

Note that W (z) > 0 for z € [Cy,bp); W(z) < 0 for z € (by, Co]. Then

_ W .
o [Clsglsllg_% (x)]/\[bo+§§1§15502w(””)]>0’

where a A b = min{a, b}. For n < 7, let
n=A{z: W(z) =n,C1 <z < Co},

and
Nr = {ZII : W(l‘) = -, CYl S z S 02}

Since 7 < 19, nr and ng are unique, and
[z, 8] C [bo — by, bo + b

Recall W(z) < 0 for z € [by — b, by + b}]. Then I(n) = nr — n,. Using the slope formula
and (4.3), we have

_—nh=n > 233—1_
Nr — 7L
Thus
I(n) < Bsn. (4.4)

Proof of Lemma 3.2 Using Taylor’s Theorem, (2.1) and (2.2), a straight-forword
computation shows that

el (45)

uh(X;)
p 6 Ko (%)
N /n/a (y)

. / / Ko(t)e(9)e™ et dtdG (6)
_— /Q c(8)e® / Ko(t)e™dt]dG(9)

T u™ m b m But*
. /Q c(O)[1+ 20 / Ko ()™ e dt]dG (6)

E|

c(0)e”h(y)dydG (6)

b
= 6, /Q c(0)%dG(8) + u™ /Q 909mc(9)69”[% / Ko(t)t™ et dt)dG (8),
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where |t*| < max{|a|, |b|} = c¢. Also,

u?h(X; )

= [ [P B gy avacts)

u2h
= E/Q/a Kl(t)c(Q)eezegutdth(G)

- % /Q c(6)e®] / K (1) dt)dG (6)

1

= E/Qc((?)eez[u9+

E| (4.6)

m—+1

gt / e ()t e dtldG(6)
1)! o

(m+
= /Q 0c(0)e?*dG(6) + u™ /Q 9’"“::(9)6"””[(

where |t**| < max{|al, |b|} = ¢. From (4.5) and (4.6), we get that

b
m+1 _But**
—T / Ky (8618 4t dG (8),

BV (Xj,2,n)] = W(z) + u™W (z,n),

where

W(z,n) = 90/ o™ 9@'[—/ Ko(t)t™ e dt)dG (6)
- /Q g+l (g) et (m—i—l)! / Ko ()™ 4)dG (6).

Choose ¢ > 0 such that a < C; — ( < Cy + ¢ < B. Then, we can find an N; such that
for n > Ny,
uc < C. (4.7)

Then
W (z,n)| < Balfo|c™(b— a) /ﬂ 10]™c(8)e? (e% 4 e~%)dG(9)
+Byc™ (b — q) /Q 10]™+Le(8) 8% (% + e=)dG (8).
Let mg be an even number such that m +1 < mg. Then

/ 16]™c(8)e% (€% + ¢~%)dG (8)

IA

0z 0C | —6C mo 0z 0C | —0C
/Q Helsuc(a)e (% + e=%)dG(9) + /Q o IO 7))
< /Q c(0)e%2 (% + ¢=%)dG (6) + /Q 0m0c(0)€%% (% + ¢=%)dG(6)
= aglz+¢) +acle— Q) +af (z+ () + o™ (z - ().
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Similarly
[ 1677+2c(0)€" (e + e=)dG(0) < ag(w+ ) +ag(e — ¢) + ol @+ )+l (s - ).

Since a(Gl) is continuous, it follows that

By = max aa(z) < oo
0= 0, B8, o) ’
and
By = max ™) (1) < co.
10 C1—(<z<C2+¢ G ( )
Thus

|W (z,n)] < Ba|fo|c™(b — a) x 2(Bg + Big) + B2c™ (b — a) x 2(Bg + Byy) = By < co.

Proof of Lemma 3.3 Obviously, Z;, are i.i.d. for fixed n. A few computations
show that

522, = & [ [ Sos) - SO e, me(o)e b ayaco)

= / /b[eo’uKo +Ut ( ) _ u2W(x,n)]2c(9)69“’69”th(1:—|—ut)dth(9)

where

/ /b 90uKox — Ki(t) _ W (2, n)[Pe(6) e h(z + ut)dtdG(6).

Also,

E|Znf = — / /ﬁ|90uK0(y;_w)—K;L(}%)—u2W(x,n)|3c(9)eoyh(y)dde(0)

= ’ GOUKO ( ) 2347 3 Ox Out
B u5 / / x+ut W (z,n)*c(6)e” ™ h(z + ut)dtdG ()

where

’ HOUKO ( ) 7 3 0z _But

15



When n > Ny, for any z € [C1,Cs] and ¢ € [a,b], z + tu € [C; — (,C3 + (] and

W(z,n) = W(z)+u™W(z,n)
max W (z) +u™B,
C1<z<Cs

max W(z) + By
C1<LzLCy

Byi.

IA A

Let Byy = MaXge[c,—¢,Crt] —h(l—:v) < 00 and By = maxgeic,—¢,cp+¢ B(T) < 0o. Then, for
any n > N; and any z € [Cy, Cs],

90’LLKO(t) — Kl(t) —

— y? < fyluB By)B ’B
| h(z + ) uwW(z,n)| < (|6oluB;+ B2)Bis +u*By
< (|6o| + 1)B2By2 + By
= Bl4a
and
/ / e# et (3 + ut)dtdG(6)
< Bus(b—a) /Q c(0)e? (% + e=%)dG (6)
< 2By3(b—
B 13(0 =) xE[C{I-I?,)éﬁC] ()
= BIS-
Therefore
Ds(z,n)
D < B%B D < BB /< B
2(117,72) < B{;Bis, 3(3?,"1) S DyyDis, Dz(:c,n) S Dy
Letting By = max{Bi4, B4 Bis, B3, B1s} < 0o, completes the proof.
£ em—4

Proof of Lemma 3.4 Noting that v = n74 and me > 4, nu™ =n""12 — 0 as
n — oo. Since W(z,n) < By for all z € [C1,Cs] if n > N1, there exists an No(> Np)
such that [nu™W (z,n)| < 1 for all z € [Cy, Cy]. If W (z) >

nW(z,n) = n[W(z) + "W (z,n)] = nW (z) + nu™W (z,n) > 1 — % = % >0
and
_I/V(z _ nW(x)
W(z,n) nW(z) + nu™W (z,n)
nW(z) -1+1
<
- aW(z)-1+3
< 2
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Then (3.6) is proved. (3.7) can be proved in a similar way.
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