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1. Introduction

Consider designing and analyzing an experiment for comparing k populations 7y,
Ty, -+, M. Suppose that m items are taken from each population and observations can
be obtained from those items in time order, as for example, in a life-testing experi-
ment. It is often desirable to terminate the test from a population as soon as there is
enough statistical evidence that it is not the best population, and then this population
is eliminated from further consideration.

Assume that the random observations from population m; have a density function

f(z|6;) of the form

f(16) = c(8)ezp{B(6)Q(z)} (=), z€X, (1.1)

where X' C (0,00) and h(z) > 0 for z € X. Let Q be the parameter space for each 6;.
Let O <y <--- < 0ir) denote the ordered values of the parameters 6;,0s,- - -, 6.
It is assumed that the exact pairing between the ordered and the unordered parameters
is unknown. The population associated with the largest value Or) is considered as the
best population. The readers are referred to Gupta and Panchapakesan (1979) for a
general reference on selection and ranking procedures.
The function f(z|0) is assumed to have (nondecreasing) monotone likelihood ratio

with respect to z. This assumption is equivalent to

(B(82) = B8(61))(Q(=2) — Q(z1)) 2 0 (1.2)

for any 6, > 6, 61,0, € Q, 25 > x4, 21,25 € X. Without loss of generality, we assume

that Q(z) is a nondecreasing function of z and 3(6) is a nondecreasing function of 6.



Many (one-parameter) exponential family distributions, such as Chi-square, expo-
nential, gamma (a, B) with one of the two parameters known, lognormal (u, 0%) with o
known, Weibull(y, B) with v known, have the property (1.2). So our results here can be
applied to them.

In an application situation of industrial life-testing experiment, m items from each
of the k population 7, - - -, 7 are independently put on test at the outset and are not
replaced on failure. Due to the time restriction, the experiment terminates at a pre-
specified time T. The failure time of an item is observable only if it fails before time
T'. Otherwise the item is said to be censored at time 7. This type of time censoring is
known as the type-I censoring. The type-I censoring scheme has received much attention
in the statistical literature, see Spurrier and Wei (1980), and others. The ranking and
selection procedures based on censored data for the exponential distribution have been
considered, for example, in Berger and Kim (1985), Gupta and Liang (1993), and Huang
and Huang (1980).

In this paper, we derive a Bayes selection rule for positive one-parameter exponential
family distributions based on type-I censored data. A monotone property of this rule is
discussed and an early selection rule is proposed. Through this early selection rule, one
can terminate the experiment on a few populations early and possibly make the final
decision before the given time T. The approach used here is similar to that of Gupta

and Liang(1993).

2. A Bayes Selection Rule

Let T be the censoring time. Let X;;,1 < j < m be the failure times of the m items



taken from population m;. According to the censoring scheme, we observe min(X;;, T).
Let N; = Z;-”zl I X <T] be the number of failures up to time 7'.

Let Y3 < Yis < --- < Yy, be the ordered values of the N; observed data given N;.
Then (Yi, Y, -, Yin,, N;) have a joint probability density

f(yu, Yiz,* 5 Yinys ”lz|9z)

nq

M g1 BT, Qi) ;)
= ————c"i(0;)e"" 2= QW py (X > T) ™= TT h(y;;)
(m — n;)! e Y
! ni
- L'Cn (8;) PO N—m=n)@M py (X > T)m=) T] h(yy), (2.1)
(m — n;)! =i
where 0 <n; <m, Yy <2 < -+ < Yin; < T and
vi =) Qi) + (m — ni)Q(T). (2.2)
j=1

For convinience, we denote the expression at the right-hand-side of (2.1) by f(y;, n;|6:).
Let A be the sample space generated by N = (ny1,mng,---,n;) and conditioned on

N=f= (n1,n2,+ "+, ng), let V), be the sample space generated by ¥ = (y1, 2, -, U)-
Let 0 = (61,0, - - -, 0) and Q = {0]6; € Q,1 < i < k} be the parameter space. Let A

be the action space. Action 7 corresponds to the selection of population m; as the best

population. For a given 0 € O and an action i, the associated loss function is defined by
L*(0,1) = L0y — 6:) (2.3)

where L(z) is a nonnegative and nondecreasing function of z, z > 0, such that L(0) = 0.
Let g(0) = Hle g;(0;) be the prior density over the parameter space . It is assumed
that [ L(Q[k])g(g)dé < 0o0.
A selection rule § = (81,8, -, dk) is defined to be a measurable mapping from the

sample space (N, (Vz)zen) to [0,1]F such that 0 < 6;(,7) < 1 and X5, 6;(7,7) = 1 for
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all 7 € V,, 7 € N. The value of §;(7,7) is the probability of selecting population =; as
the best population based on the observation (¥, 7).

Let R(d,g) denote the Bayes risk associated with the selection rule 5. Then by
Fubini’s Theorem we have

> 6(5,7) [ (0w - 61, 716)(8)dddy (2.4)

i=1

RGo)=3 [

neN

where f(7,710) = TI%; f (i, nal6;). Now let
k
filyi,ms) = /Qf(yz',niwi)gi(@i)dai, F@,7) = 1] fi(ys, ),
=1

i i|0:) 9 (0; PRI
Oy ) = LRI g 455, 7) = TT @i,

i=1

Then (2.4) becomes

k

RG.0) = Y [ 387 [ LOw—099015,7)d8f @ 7)dy

neN Y i=1

For each (7, 7), define

and let
A7) = {ilA:(5,7) = min A;(F,7)}. (2.6)
Then a uniformly randomized Bayes rule is 3;; = (d¢1," "+, 0cr), where

joi = { /AT I i< 4G e

0 otherwise,

where | A| denotes the cardinality of the set A.
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3. A Monotonicity Property of g

For each fixed (y;,n;) in the support of f;, gi(6;|y;, n:) = 0 if and only if g;(6;) = 0.

*
(2

Then g¢;(6;|y;,ny) and g(6;|y;, n;) have a common support. Let D; be their common

support. Consider the likelihood ratio defined on D;, by

9:(0:|yF,n)

9:(0ilyi, i) (3.1)

ri(0s1y;, nf, vi, i) =
A simple calculation shows that for some nonnegative function W

ri(0ily; s i, Yi, i)
= Wyl nt,ys,n)c™m (gi)eﬂ(fh)[(yi*—yi)+(n2‘—ni)Q(T)]{pgi (X > T)}(ni—n?)

= Wlyoni, o) @0 [~ enplB(0)[Q(a) — QUT)}h(a)dz} ),
from which we get the following lemma.

Lemma 3.1 Let r;(0;|y;, n, yi, n;) be defined by (3.1). Then
(a) for ni =n;,yf > v, ri(6:]y}, nk, vi, n;) is a nondecreasing function of 0; in D; and
(b) for yi = yi,n¥ > ny, m;(0i|y, nk, vi, n;) 45 a nonincreasing function of 6; in D;.

The following lemma is used in the proof of lemma 3.3.

Lemma 3.2 If g(0) and h() are probability density functions such that g(6)/h(0) is

nondecreasing function of § in §Q, then for any nonincreasing function f(0) of 6 in Q,

[ 1@n@)a0 > [ 7(6)9(6)d.
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Lemma 3.3 Let Ay(§,7) be defined in (2.5). For each i(1 < i < k), Ai(7,7) is
nonincreasing in y; and also in n;, j # i when all the other variables are kept fized, and

nondecreasing in n; and also in y;,j # i, when all the other variables are kept fized.

Proof. We only prove that A;(7, %) is nonincreasing in 7; when all the other variables

are kept fixed. The other parts can be proved in a similar way.

Define
6 = (91,---,9i_1,9i+1,"‘,0k)
O = {F:0,€05=1,2,- k] #i}
7= (v, %)
7= (Y Y1, Y Yidly o Yk
Then

8@ = [ [ [ D60 — 0):6ilyi, i)t NECTADES

Since for each fixed § and 7, L(0p) — ;) is nonincreasing in ¢; and by Lemma 3.1,
ri(0:|y}, ¥, vi, n;) is a nondecreasing function of 6; for y* > ;. So Lemma 3.2 implies
that

/QL(e[k] — 6;)9:(6;]y;, m;)db; > /QL(e[k] — 0;)9:(6:|y; , n;)do;

and hence A;(g,7) > A;(T*, 7).

Now, from Lemma 3.3, we obtain a monotone property for é¢ in the following theo-

rem.



Theorem 3.4 For each i = 1,2,---,k, dgi(y,7) is nondecreasing in y; and nonin-

creasing in n;, when all the other variables are kept fized.

Proof. We only prove that d¢g;(7,7) is nondecreasing in 1; when all other variables
are kept fixed. The monotone property of ¢ in n; cén be proved in a similér way.

Use the notation in Lemma 3.3. Assume y} > y;.

If i ¢ A(g,7), then 0g:(3,7@) = 0. Since dg;(7*,7) is nonnegative, dci(T*, 1) >
dci(Y, 7).

If i € A(7, ), then A;(7,7) < minjz; A;j(F,7). Using Lemma 3.3,

AT ) < M@, 71) < min Ay(5,7) < min Ay (3", 7).
And hence i € A(7*, 7).
To get 6 (7*, 1) > d6i(Y,7), we still need to show
A(y*, 7)) C A(g, ). (3.2)
For each h € A(7*, %), Ap(F*, %) = A;(7*, 7). Using Lemma 3.3,

and hence h € A(7,7). So (3.2) is proved and &g;(7*, ) > 6¢i(¥, 7).

4. An Early Selection Rule

In this section, we consider the following linear loss function: L(fp; — 6;) = 6y — 6;
the difference between the parameters of the best and the selected populations. Thus

the set A(y,7) given by (2.6) turns out to be:
Ay, 1) = {1 /9igi(9i|yi,ni)d9i = lfgﬁéc/ejgj((’ﬂyj,"j)d%}- (4.1)
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Note that E[6;]y;,n:] = [6;9:(6;|yi,n;)d0;. This can be calculated for the given model

and the prior. Now, similar to the proof of Lemma 3.3, we can prove the following result.

Lemma 4.1 For each fized i, E[0;|y;, n;] is nondecreasing in y; and nonincreasing in

n;.

Now, we will use Lemma 4.1 to derive an early selection rule.

At time ¢, 0 < t < T, let N;(t) denote the number of failures from population 7; upto
time . That is, N;(t) = [{X;; : 1 <5 <m, X;; <t}|. Also,let Y;; <V < -+ < Yin)
denote the observed failure times given N;(). At time ¢, we can make an early decision
as follows:

Declare population ; as a non-best population and exclude it from further experiment

if there exists some population 7, such that

Nip(t) <m and E[fy|ya(t), m] > Elflyi(¢, T), Ni(2)] (4.2a)
Nu(t)=m and E[Bulyn(t), m] > E[ilys(t, T), Ni(2)] (4.20)
where
yn(t) = 1%) Q(yns) + (m — Nu(1))Q(2) (4.3a)
and "~
vi(t,T) = JZE_(::) Qy;) + (m — N;(1)Q(T). (4.3b)

Let S(t) denote the indices of the (non-eliminated) contending populations for the best

at time ¢, where 0 < ¢ < T'. That is,
S(t) = {i: either (Ny(t) < m and E[fp|yx(t), m] < El6:)yi(¢, T), N;i(¢)]) or
(Np(t) = m and E[6y|yx(t), m] < E[0;|y:(t,T), N;(t)]) for all h # i}. (4.4)
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The following lemma shows that for any ¢, 0 < ¢ < T, S(¢) is not empty.

Lemma 4.2 For any 0 <t < T, the set S(t) defined by (4.4) is not empty.

Proof. Let

S'(t) = {1: El6ily:(t), Ni(t)] = max E[Onlyn(t), Na(t)]}-

1<h<k
Then S§’(t) is not empty. We prove that S'(t) is a subset of S(¢). For i € S'(t) and any
h # 1,
if Np(t) < m, then
El0i]y:(¢, T), Ni(£)] > E[6iyi(t), Ni(t)] = E[0nlyn(t), Nu(t)] > E[Onlyn(2), m];
if Ni(t) = m, then
E0ily:(¢, T), Ni(8)] 2 E{biyi(t), Ni(t)] = E0nlyn(t), Nu(t)] > EOnlyn(t), m].

In either situation, we see that ¢ € S(¢). Hence S'(t) C S(t).

Now, the experiment terminates as soon as there is a time ¢, 0 < ¢t < T, such that
|S(t)] = 1 and in this case, we select the population with its index in S(t) as the best

population. Otherwise, the experiment goes on until time 7. Let
S(T) = {2 : E[01|y1a NZ] = max E[ejlyﬁ Nj]}’ (45)
J€S(T™)

where S(7~), which is not empty by Lemma, 4.2, denotes the set of the indices of those
populations having not been eliminated before time T. Then, a uniformly randomized
selection is made from S(T').

From the above description, we see that the early selection rule can possibly make a
final selection earlier than the termination time 7. Denote this early selection rule by

3% = (0%, -+, 0%,). Then, we have the following theorem.

10



Theorem 4.3 Under the loss function L(0), 8%; = dg;(7,7) for all1 <i <k, § € Y,

and 71 € N, where 6¢;(7,7) is defined by (4.1) and (2.7).

Let ¢ = inf{t: #S(t) = 1,0 <t < T} AT, where a A b = min(a,b). Then Theorem
4.3 is equivalent to the following theorem.

Theorem 4.4 S(t;) = A(g,n) for all (§,7).

Proof. Case 1. If t; < T, then |S(¢1)| = 1. Without loss of generality, we let 7 be
the population with index in the set S(¢1). Since A(7,7) contains at least one element, it
suffices to show that ¢ ¢ A(7,7) for all ¢ # k. Since i ¢ S(¢1), it means that population

m; 1s eliminated at some prior time, say ¢y, That is, at time ¢, for some 7, either
Ni(to) <m and E[0y|yn(to), m] > E[b:i|y:(te, T), Ni(to)] (4.6a)

or

» Nh(to) =m and E[9h|yh(t0),m] > E[9i|yi(t0,T),Ni(t0)]. (46b)

Now, note that N;(t) is a nondecreasing function of ¢ € (0,7] and N;(¢) < m. Also, by

(4.3b), y;(t,T) is nonincreasing in ¢. For any s and ¢t with 0 < s <t < T, Ny(s) < Ny(2).

By (4.3a)
Niu(2)
yn(t) —yn(s) = - Z() Q(yrj) + (m — Nu(t))Q() — (m — Nu(s))Q(s).

If the j** item from population 7 is censored ( not failed ) at time s, then y,; > s and

Q(yr;) > Q(s). Therefore
9u(6) = 9n(s) > (N(t) = Na())Q(s) + (m — Na(£))Q(2) = (m = Na(s))Q(s) > 0.

This shows that y,(t) is nondecreasing in t. Note that
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and

uh = > yh(to) if Nh(to) <m,
h = yh(to) if Nh(to) =1m.

Thus, when Nj(ty) = m, then N, = m. Then by Lemma 4.1 and (4.6b),

EOn|yn, No] = E[0nlyn(to), m]
> E[0,|yz(t0,T),NZ(t0)]

> El6i]y;, N;].

When Ny(to) < m, then y, > yn(to) and Ny < m, Therefore, by Lemma 4.1 and

(4.6a),

E[0h|yh,Nh] = E[ehlyh(tO),m]
> E[0;]yi(to, T), Ni(to)]

> E[0:|y;, Ni].

In either situation, we see that ¢ ¢ A(7, n).

Case 2. If t; =T, we need to prove that

(a) i ¢ S(T) implies i ¢ A(f,n), and (b) i € S(T) implies i € A(g,n).

We prove (a) first. Suppose ¢ ¢ S(T'). Then, 7; is eliminated at a time t; < T by
some other 7.

If t, < T, this reduces to the situation discussed in Case 1.

If t, = T, then by (4.5), E[0n|yn, Ni] > E[6;]y;, N;]. Therefore, by the definition of

A(g,7), i ¢ A(F, 7).

12



For (b), we have firstly A(g,7) C S(T) C S(T™) by (a) and definition of S(T") and
S(T~). Ifie S(T7),

Eb;ilyi, Ni] = jelgl(aii)E[aj!yj,Nj]

> dare N
.ES%%()E[QJH/J’NJ]

j
>  max FE|0;|y;, Ni|.
jeaas) [0;1y;, N;]

This means i € A(%,7). The proof now is completed.

5. An Example

We use simulated data to illustrate how the early selection rule works. Suppose that
we have five populations 7;, ¢ = 1, 2, 3, 4, 5. The lifetime of the population ; follows a

lognormal distribution with density

1 [In(z) — 6;)?
We assume that 6y, - -, 65 are independent and identically distributed with a uniform
prior distribution U(0,1). Thus 6y, ---, 05 are simulated independently from U(0,1).

Then ten observations are simulated independently from each lognormal population.

The data are listed in the following table.
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m VP T3 T4 s
4.67 237 1.56 092 0.89
7.55 1.04 143 2.66 2.08
10.06 2.81 3.93 0.66 2.13
1.11 332 250 222 148
0.86 3.26 0.60 095 0.13
9.39 6.20 053 094 2.89
1.00 1.48 1.08 8.52 0.34
2.03 814 151 4.03 0.32
2.88 6.68 1.09 14.36 0.47
5.09 4.07 153 147 2.46

We want to select a population with the largest mean lifetime. Since the mean
lifetime of the population ; is an increasing function of 6;, what we need to do is to
find a population with the parameter 6. Suppose that the type-I censoring scheme is
planned before the life-testing experiment and the censoring time is set to be T'= 3 (in
the same unit as the failure time data). After some simple mathematical calculation, we
have

1
E[0; |y, ni] 2/0 0:9:(0: |y, n:)dO;

Jo Ose" 822438 5 [1 — B(InT — 4;)]L0-mT~6:(10-n0) gg,
fOl e—[ni0?/2+yi07;] X [1 _ @(lnT _ ei)]lo——niT—Gi(lﬂ—ni)dei ’

where ®(z) is the cumulative distribution function of the standard normal distribution.
According to the selection rule ¢, the population with the largest value of E[6;|y:, ;] is
selected as the best. The numerical value of E[6;|y;, n;] can be computed through Monte

Carlo integration method. For the data listed above, we obtain the following table.

m LP 3 T4 5

E[0;ly;,n] 082 0.87 042 0.66 0.21

So at the end of the experiment, we select 7, as the best population.

14



However, if the early selection rule 5& is applied, we can make the selection before
T = 3 and end the experiment earlier. According to the selection rule 52‘;, at time £,
0 <t < T = 3, exclude the population 7; as a non-best population and remove it from

further experiment if there exists some population 7, such that
Nh(t) <m and E[Ohlyh(t),m] > E[91|’yz(t,T), Nl(t)]

or

Na(t) =m and E[fa|yn(t), m] > Elbily:(t, T), Ni(£)].

According to this rule, 75 is excluded at ¢ = 0.8, 73 at t = 1.3, m4 at t = 1.4 and m; at
t = 2.1. That is, at t = ¢, = 2.1, all the populations m, 73, 74 and 75 are removed from
the experiment and the population 75 is selected as the best. So the experiment can be

terminated at t; = 2.1 and the time saved is 0.9 or 30%.
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