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1 Introduction

Logistic distributions have been widely used in studies that are related with growth
processes. Berkson (1957) used the logistic distribution as a model to analyze
quantal response. Plackett (1958) considered the use of the logistic distribution
with life test data. The importance of the logistic distribution has resulted in
numerous investigations involving the statistical aspects of the distribution. For
example, Talacko (1956) showed that it could be a limiting distribution in variaous
situations. Birnbaum and Dudman (1963), and Gupta and Shah (1965) studied its
order statistics and their limiting properties. Gupta and Gnanadesikan (1966), and
Gupta, Qureishi and Shah (1967) have considered the estimation of parameters of
the logistic distribution, Gupta, Qureishi and Shah have constructed the best linear
unbiased estimators of both location and scale parameters using order statistics.

It is now well recognized that the classical techniques for testing homogene-
ity hypotheses are inadequate to serve, in many practical situations, the experi-
menter’s real purpose, which is to rank several competing populations or to select
the best among them. Such realistic goals and formulations set the stage for the
development of the ranking and selection theory. An important part of this de-
velopment is the study of ranking and selection problems for specific parametric
families of distributions including, of course, logistic distributions. Gupta and
Han (1991) proposed an elimination type procedure based on the estimated sam-
ple means for selecting the best logistic population. In addition, Gupta and Han
(1992) proposed another selection rule for selecting the best logistic population
using the indifference zone approach. A very nice paper on ranking and selection
procedures for the logistic populations is Panchapakesan (1992) which is published
in “the Handbook of the Logistic Distribution”, edited by Balakrishnan (1992). In
this book one can find a good deal of recent developments related to the logistic
distribution.

In this paper, we investigate the problem of selecting the best logistic popula-
tion by using the observed sample medians. Assume that there are k independent
logistic populations whose location parameters follow a prior normal distribution
and the parameters of the prior normal distribution are unknown. Motivated by
the empirical methodology, we propose an empirical selection procedure that is
based on the past observed data.

2 Formulation of the Selection Problem and the
Selection Rule

Let I1;, ..., II; be k independent logistic populations with unknown means 64, ...,
6i. Let 0 < ... < O denote the ordered values of the parameters 01,...,0;. Itis
assumed that the exact pairing between the ordered and the unordered parameters



is unknown. A population IT; with 6; = 6} is considered as the best population.
For a given fixed control 6y, population I1; is defined to be good if the corresponding
9; > 6y, and bad otherwise. Our goal is to select the one which is the best among
the k logistic populations and also good compared with the given standard 6,. If
there is no such population, we select none.

Let Q = {6 = (64,...,6k)} be the parameter space and a = (ao,...,a;) be an
action, where a; = 0,0or 1,for¢=0,1,...,%, and 'io a; =1. Foreach i =1,... Kk,
a; = 1 means population II; is selected as the best lamong the k£ candidates and also
good compared with 8;, while a; = 0 means population II; is not selected either
because it is not the best among the k candidates or because it is bad compared
with the control. ag = 1 means that all the k populations are excluded as bad and
none of these k logistic populations is selected. The following loss function will be
considered:

k
L(6, a) = max(fp), o) — D aib;.
=0

For each 1 = 1,...,k, let X;,...,X;a be a sample of size M from the i-
th logistic population II; = L(f;,07) which has the following conditional density
distribution given 6; and o7

1 e_(xi_ei)/ai

U_i (1 -+ e“(zi—ei)/oi)2’ —o0 < x; < 00. (1)

For convenience, suppose (for now) M is an odd number, and we denote
M = 2s + 1. Since logistic distribution is symmetric about its mean, the pop-
ulation mean and median are identical. We assume that for each ¢ =1, ..., k, the
population median (and also the mean ) 6; is a realization of random variable ©;
which follows a normal N(u;, 7?) prior distribution with parameters (u;,77). The
random variables ©4, ..., O are mutually independent. o2, u;, 77 are unknown
but fixed. In other words, o2, u;, 77 are fixed nuisance parameters. Let X; be
the median of {X;,..., Xim}, 2 =1,...,k, then the conditional distribution of X;

given (6;,02) can be explicitly written out as follows:

(25 + 1)1 1 (e~(@—b:)/os)s+l

(s!)? o (1 + e~ (=i=0:)/oi)2s+2” —00 < z; < 0. (2)

fz'(l‘i|9i,0i2) =

From (2) we see that the density function f;(z;|0;,07) is symmetric about ©; = 6;,
therefore, ‘

The posterior distribution density of ©; given X; = z; is proportional to

2
(e~ (@i=i)/oi)s+1 _(01-—:,-)
(1 + e-@-o/m)zsrz € o, =00 < f; <oo. (4)




The selection procedure will be based on the sample medians X;. An estimator of
©; given X; = z; is the median of the posterior distribution of ©;. For¢=1,...,k,
denote ¢;(z;) to be the median of the posterior distribution of ©; given X; = ;.

Let X=(Xy,...,X%) and X be the sample space generated by X. A selection
procedure d=(d,, - .., d,) is a mapping defined on the sample space X'. For every
x € X, d,(x),s=1,...,k, is the probability of selecting population II; as the best
among the k populations and also good compared with the given control 6y, dy(x)
is the probability of excluding all k£ populations as bad and selecting none. Also,
YF di(x) =1, forallx € X.

We next derive a selection rule d(x) based on the posterior median wz(xi),

i=1,...,k. Foreach x € X, let I(x) = {¢|pi(z;) = Orgaécgo](mj) i=0,1,...,k},

and ¢* = min{i|¢ € I(x)}. Then based on ¢;(z;), a selection procedure d()_c) =
(do(x), . ..,dr(x)) is constructed as follows: .

dz*(x) = 17
{dj(}_c) =0, for j#i*

Under the preceding statistical model, the expected risk of the selection pro-
cedure d(x) is denoted by R(d(x)). Denote h;(8;|u;,72) to be the prior density
function of ©; given (u;,77), we have

(5)

/Eﬁ Jir(@)]f (2)d(x) + C, (6)

where

C = fQ max(()[k], GO)dH(Q),

H(8): the joint distribution of § = (6y,...,60k),

fi(zs) = [g filzil0s, 07 ) R0 s, 77) B,

F(x) = 2, fi(as),

wo(zo) = bo.

Note that sample median X; is not a sufficient statistic for ; (the observation
vector is a minimal sufficient statistic). So d(x) may not be a Bayes rule. Also,
the selection procedure d(x) defined above depends on the unknown parameters
(ui, 72), 1 = 1,...,k and the specific form of ¢;(z;). Since the parameters and
the specific form of ¢;(x;) are both unknown, it is impossible to implement this
selection procedure for the selection problem in practice.

To derive a practical selection rule, we assume there are past observations
when the present selection is to be made. At timel =1,...,n, let Xj;; be the j-th

observation from II;, that is, for each i = 1,...,k, let

O ~ N(us, 72, l=1,...,n, (7)
and

Xiji ~ L0, 07), j=1,..., M. (8)



For l=1,...,n, denote X;; to be the median of (X, .., Xsmi), and

1 n
= - Z Xi,l) (9)
n =1
SZ(n > (Xiy — Xi(n))?. (10)
-1 =1
Then,
E(X;;) = E(E(X|04 = 63)) = E(Qg) = s, (11)
and

Var(Xi,l) = Var(E(Xi,l|6’a)) + E(Var(Xz-,lwil))
= Var(@il) + E(Var(Xi,l|92-l))
Tiz + E(Var(Xi,llﬁil))
< oo. (12)

Denote v? = Var(X;;). Since (Xi,...,Xin) are i.id., by the strong law of
large numbers, we know that as n — oo,

{Xz(n) —> b, a.s.

13
S%(n) — V2, a.s. (13)

To derive an empirical selection procedure, we first consider the following lem-

mas.
Lemma 1 Let {¥;,1 <4 < m} be m i.i.d. random observations from continuous

distribution function F; also let £ and € be the sample median of {Y;,1 < ¢ < m}
and population median of F', respectively. Then, for any € > 0,

P{€ — ¢ > e} < 27, (14)

where 6, = min{F (£ +¢€) — 1,2 — F(6 —¢)}.
This lemma is from Serfling (1980) and the proof can be found in it.
Back to our selection problem. Put

o' = min 0;, o = maxo;.
T 1<i<k T itk
X, ..., Xim are i.id. from L(6;, 0?), which has the following cumulative distribu-
tion function
1
F(tz) = — o0 < t; < 00, (15)

1 + e—(ti—0:)/os



and for 0 < e < ¢,

1 1 e/ — 1 €

) = _ L —€) = >
Fi+e) 2 2 F(oi—e) 2(e</oi +1) =~ 2(e +1)o*

(16)

Given ©; = 6;, 0; and X; are the population median and sample median of
L(0;, 0;) respectively. We have, from Lemma 1,

—(2.s+1)e2

P{|X; — 6;] > €} < 2e2e+n?e*2. (17)

For any 0 < ¢ < ¢', denote A; —{xeX lz; — 6;] < €} Weshow that the

conditional density of X; given 6; and o2 is approximately N (6;, 2= e o?) as s — 0o.
From (2), the conditional density of X; given 0; and o? is
2 1 | 1 —(mi-—-gi)/Ui s+1
fladonot) = LDl ()
i (8!)2 o; (1 + e—-(z, 01)/01)23+2
2 i 1
- @stlil . as)

(S!)Z o; (2 + e—(zi—ei)/o‘i + e(zi—0i)/ai)s—|—1
By Stirling’s formula, when s-is large enough,

(25 + 1)1 _ 2@+

(sh? ~ Ver

Also choosing € = ¢; | 0 to be a sequence of fixed numbers which tend to 0 as
s — 0o, by Taylor’s polynomial expansion, we have

Vvs+ 1. (19)

1 (z; 2

log(2 + e~ @im0)/oi 4 g(@i=6:)/03) ~y Jog 4 + Z(—a_?—) (20)

on A;. When s — oo, from (17),
—(25+1)62

P{X & A;} < 2e2et1?*? —; (). (21)

Therefore, we see that as s — o0,
1 1 —s%l (=07
fi(xiwi,aiz) ~ e * (22)

\/Q_W\/2/s+1;i

that is, fi(z;]6;, 0?) is approximately N(0;, 3707

From above, we can see that for sufficiently large s, the conditional density of

X, is approximately N(6;, erl o?) given 6; and o;. Since the prior d1str1but10n of 4;

is N(u;,72), the unconditional density of X;; is approximately N(u;, 77 + 25 +1 a?).

6



For each population IT;, let W2(n) be the measure of the overall sample variation
for the past observations. That is,

Wz( ) (M 1 ijlzl 1( ’L]l X )2.
Then we define, fori =1,...,k,
ﬂz = Xz('n,),
o} = S3(n),
72 = ma,x(”z? _ 3%1612,0)
and
262 .\ /- A )
@m){xﬁ+EWWf,ﬁﬁ_ﬁﬁ>Q
Hi, lf e — ;%Ia-z? < O, (25)

Po(zo) = bo.
Then for each x € X, let I(x) = {i|@i(z;) = Ongaécgbj(xj),i =0,1,...,k}, and
<j<
= min{i|z’ € I(x)}. We propose the following selection procedure d™*)(x) =
d™)(x), ..., d™)(x)) as follows:

it =1,
(n,s) - - (26)
d;" =0, for j#i".

3 Asymptotic Optimality of the Proposed Selec-
tion Procedure

Consider the selection procedure d™*)(x) constructed in (26). d™*)(x) is similar
to selection rule d(x) except that normal approximation is used to estimate the
unknown prior parameters and the specific form of ¢;(z;) for d™*)(x). A natural
question to ask is: How good is the selection rule d™*)(x) compared with d(x)? Let
R(d™)(x)) be the conditional expected risk given the past observations {Xyji,7 =
Lk,j=1,...,M,andl=1,...,n}, then

R(d™(x) ﬂzwm () (@) (x)d(x) + C. 27)



Since d™*)(x) is mimicking d(x), R(d™*(x)) — R(d(x)) should be close to 0 if
the empirical selection rule works well. Note that R(d™*)(x)) — R(d(x)) can be
negative because d(x) is not a Bayes rule. Therefore, we use the overall integrated
risk B|R(d™*) (x)) — R(d(x))] > 0 as a measure of the performance of the selection
procedure d™*)(x), where E is the expectation taken with respect to the past
observations {X;;}.

We first state some facts about ¢;(z;), the posterior median of 6; given X; = z;
and y;. From the definition of ¢;(z;), we can see that ¢;(z;) is between z; and ;.
Besides,

Lemma 2 When s is large enough, for 1 <1 <k,

‘|‘Pi($i) — x5 < 2034 lo§s (28)

Proof. We only prove ¢;(z;) < z; + 20M/1—°f—s here. The proof of p;(z;) > z; —
20; 135—5 is similar. To prove ¢;(z;) < z; + 20“/1355—5-, it suffices to show that

00 , ,
/-'E‘i+20'i\/¥—s_ ft(xlw“ g; )h1(92|,u’1a T; )dez

_ o0 (25‘ + 1)! 1 1 (e(ei—xi)/ai)s+1 _(9,'2—:;1')2 "
N /J:i+20i\/E—;E (3!)2 ;1, 27I'Ti (1 + e(oi_:z:i)/ai)2s+2 c z '
. /OO 1 (28 + 1)' 66 s+1 . _(cr‘9+;_-.—u')2 90— 0 (29
= eV o \areap) ¢ )
as s — 0o. We first show
@s+1)y ¢ N
t(0,s) == EE ((1 - 69)2> — 0 as s — 00, (30)

uniformly for § > 2\/1353. Obviously it is enough to consider the case of § = 2\/135—5-

since t(0, s) is decreasing on 6 > 0. When 0 = 2\/13;1i and s is large enough, by
Taylor’s formula,

1 1
log(1 + €) =log2 + 59 + §92 + 0(6?), (31)
and by (19), when s is large enough,

%)_! < 2s+1)log2 + % log(s +1). (32)

From (31) and (32), we obtain that

log

(25 +1)!

logt(d,s) = (s+1)[0— 2log(1+ )] + log (52



1 1
< —2(s+1)log2— -Sj—:—02 +2(s+1)log2 + Elogs + 0(s6%)
_ _(s+1

s
as s — 0o. Therefore, (30) is proved, from which we can immediately see that (29)
holds true. It completes the proof of Lemma 2.

The next lemma is well known and can be found in Baum and Katz (1965).
Lemma 3 Let Xi,..., X, be i.i.d. random variables with mean 0. Suppose for
a>1, B|X;|* < oo, for i =1,...,n, then for any € > 0,

1
— 5) log s + o(log s) — —o0, (33)

P{IZX/nI > e} = o(n~*7Y). (34)

As a consequence of Lemma 3, we have
Lemma 4 Let X, ..., X, be independent random variables, with mean EX; =
and variance VarX; = o2, for i = 1,...,n. Alsolet X = 23 X; and S7 =
~L 53(X;— X)?. Suppose for i =1,...,n and a fixed number a > 2, E|X;|* < oo,
then for any € > 0, )

P{|S2 = 0®| > €} = o(n~(*/27D)). (35)
Since EX}, < oo, for any € > 0, by Lemma 3,
P{|fz — pu| > €} = o(n™), (36)
also by Lemma 4,
P{|p? — v} > €} = o(n™"). . (37)

Similarly, we have for any € > 0,

P{|6? —of| 2 e} =o(n™"). (38)
When s is large enough, v7 — 2,07 > 0. Therefore, from (37) and (38), when
s is sufficiently large,
2
P{p? — pors 153 <0} =o(n?). (39)

Besides, 77 = v? — E(Var(X;;|6;)) by (12) and

Y A ,(2s+1)1'1 (e~ (@a—0)/o1)st1
E(Var(X;|6;)) = /_oo(xiz—9i) G2 o, (1 + e @a—0)/o)2s12

o /_":0 22 (2€8J!r)21)! ((1 fez)2>5+ldx. (40)

9

d.’l?il




We have
Lemma 5

[t L o(@).

/ s (22:) 1)1 ((1 i;)?)sifx
- 2/ S+2 ((1fez) ) de

B 2/ S +/ / ,(2s +1)! ( e* >s+1d
N \/BREE (82 \(1+ e®)? o
= T1 + T2 + T3

Proof.

By Stirling’s formula, when s is large enough,

25+ 1)1 [v/8=% i
T, = QE_)/ $2(e—> dr
0 ( )

(s1)? 14 e*)?
+/glogs
< 9.926+1). /511 _2—2(s+1)/
o 0
3/2
< \/—1<810gs>

)

Using the same approach as in the proof of Lemma 2, we have

2s+1 e® s+l
r = 22 [ ()
2 Tog s 1+ea:)2 z
(23+1). slege

< 2 (s)? ((1+ \/% )s \/—ﬁ

- o)

25+1
T, = / (
3 1+ e%)?

25"'1 / 2,~(s+1)z g

3

Moreover,

s+1
) dz

10

(41)

(42)

(43)

(45)



This completes the proof of Lemma 5.
From Lemma 5, we observe that when s is sufficiently large,

E(Var(X.)6:)) = o(\/@) (46)

and therefore, by (37), (39) and the definition of 77, for € > c\/A where ¢ > 0,
P{|#? = 72| > €} = o(n7Y), (47)
and furthermore,
P{o}/7? <v}[(27))} = o(n7"). (48)

Next we investigate the overall integrated risk E|R(d™*)(x)) — R(d(x))|. Let
P, ; be the probability measure generated by the past observations X;j;,¢ =1,...k,
j=1...Mandl=1,...,n

EIR(d(" (%)) — R(d(x))]

< zz [ Paslit =31 = jHpu(a) — 3(@) 1 (2)dx
- Z [, Pl = 1.7 = 0} w:) — bol F ()
+i / Paa{i® = 0,8 = 700 — (z;)| £ (x)dx
+;]zl [ Pl =i = g}ii(es) — o5(a) | (x)dx
< 23] / Pral164(@) — )| > o) — Bl () — ol il

23 [ Pl - oe)) > BE 0y 0 g )

i=17=1
X fi(zi) fi(z;)dzidz;
= Il + I2. (49)

For any ¢ > 0, and ¢,5 =1,...,k, let

{Xi ={z; : |pi(z;) — o] < €},

(50)
Xy = {(zi, z;) li(z:) — ‘Pj(xj)l < €}

Then we have

Iy = ZZ:/Xi P s{10i(x:) — wi(z:)| > loi(z) — Ool}lpi(zs) — Oo| filws)dz:

11



+az/ Pus{lfia) = ou(z] > lpi(wi) — GolHipil:) — Goli(zi)da
S 22/& sz(.’ﬁz)diliz
+2Z:/an,s{|¢’i(f”i) — wi(zs)] > e}pi(z;) — 6ol filws)dz;. (51)

By Lemma 2, when s is large enough, |p;(z;) — 2] < 20”/ . From now on,
we always set € = 160*/ %82 £2. Therefore, for sufficiently large s,

|z: — 00| < |ilz:) — @] + |i(w:) — Oo| < 2e (52)
on A; and
i(zi)dz; < / i(zi)dz;
[, i@ o ang
1
d.’l?i
/{Izi—901§2e} V27T
4e
= . 53
\/_2?’7'1' ( )
Thus,
8k
o \/27r'rz

2 ; /RPn’S{l(ﬁi(xi) — @i(z:)] > eHlpa(ms) — wil + | — Ool]fi(zi)dz:. (54)

Moreover,

L, = 222/ P o{|@i(z:) — wi(z)] > lpi(z:) 2%( )IH%(%) o)
1_1: 1k x fi(z;) fi(z;)dzdz;
+ZZZ/ n,s{ltﬁi(xi) — ()| > lpi(zi) ; @i (z;)] M) — o3|
; 11 | X fi(x:) fi(z;)dzidz;
223 [ fw)as)ded

i=1 ]:

IA

k

m;g@mwm>mm>ﬂmm¢mm
x fi(z:) fi(z;)dzsdz;. (55)

12



From (28), when s is large enough, |p;(z;) — z;| < € and |pj(z;) — ;| < e
Therefore, when s is sufficiently large,

{(zi, ;) : |oi(ms) — @j(z5)| < €} T {(wi,75) : |z — 4] < e} (56)
Thus, similar to (53),

[, esledda; < = (57)

7 min(7;, 75)

We observe that

2

IzSZ:Z\/T

T mln(n, 7;)

22;2;/ P o{1@i(z:) — wil@i)| > }[I@z(wz) pil + 05 (25) — msl
o i ) o (58)
From (54) and (58), it suffices to analyze the limiting behaviors of
Jr Pos{|@i(z:) — wi(zi)| > 5}fi(zi)dzs,
Jr Prs{|0i(z:) — @i(zi)| > $Hoi(w:) — il folmi)des. (59)
We first analyze [ P s{|@:(2:) — @i(zs)| > §}fi(wi)dz;. Denote

Vi =A{z; : loi(z:) — 65| < 5},

By Lemma 2, we know that when s is large enough, |p;(z;) — z;| < §. Therefore,
for sufficiently large s, we have

R-Y,CR-Z (61)
and
Pre{|1(a:) = pi(ai)| > 5} filw)dm
[, Puli@) - soi<xi>|>f}fxxilei,a?)hz-wim,n?)dxi)dei

‘I.

[, Pacllgn(a:) = wu(ad] > 51l o (6, 7)),
fi(@:10:, 07 ) hi (0: 124, l)d:m)d(?

IA IA
o 5
TN N

Z;

+), (/ Poo{I@i(2:) = 6] = 2} filail, o Bl ndwz)de
fz :Ez|91,az)dmz> hi(0;| s, 72) d6;

VAN
=]
TNy
_\

13



IA

IA

(A

IA

IN

I IA

+/ (/ P, {|¢i() — 6] > <, f—2&f/(s+1)>0}fi(:1:i|9i,ai2)dxi>
R\JrR 4’
Xh,,; (01|y1, Tf)d@
+/ (/ Po {07 —262)(s 4+ 1) < O}fi(wi|9i,Uf)da:i)hi(eimi,Tf)d@i
R R

(2s+l)62

2 [ 7 e b0y i, 77 ) s
26
+/ </ P {|(zi7? + -T—lﬂi)/l?f — 0] > i}fi(.’liiWi,U?)dxi)hi(9i|y’i’7-i2)d0i
+o(n™)
(Zs+1)e

26— 128(e+1)20* 2

+/R(/RPn,s{|xi—9i|_——}fz(xzwz, Z)dg;z> e (0], 72) 6

+ 1)7;
+ [ ([ Puslli -6 > (o ofe Sl 7)) (Bl s, 72) 0
R R

1667
+o(n™%)
O(s™h)

/ Puolls 01 2 S5 7o 2 VIO il oF ) Bl 7F)

( z
Al -”ns{ PP ICNE ~|9i,a?>dwi)hi<ei|ui,n-z)dez-
( %

>
Rl v}

2
Y

b

1
[ Pl - 0] 2 D2 52168 > 12 (20D o o))

Xh (9 |,u'u zz)dez
+ [ ( / Poo{9/67 < u3/<2af>}fi(xi|ei,a?)dxi)hi(eilm,ﬁ)de

+o(
5™ +/ (o
(@i —0:]> —%%
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Using similar approach, we can obtain

[ Pasllés(en) = @] > SHenlwi) -l filwidds = o) +OG). (63)

At the beginning of this paper, M is assumed to be an odd number. However,
from the proof we can see that this condition can be dropped. In other words, no
matter M is even or odd, the asymptotic property will hold true. Combining (49),
(54), (58), (59), (62) and (63), we finally obtain the asymptotic property of the
derived selection procedure.

Theorem 1 The selection procedure d("’s)( ) defined in (26) is asymptotically
optimal with a convergence rate of order o(%) + O(*%2). That is,

E|R(d™(x)) — R(d(x))| = 0(%) L o(oEs

)- (64)

Theorem 1 establishes the rate of convergence of E|R(d™*)(x)) — R(d(x))| as
both 7 and s go to infinity in an additive form. This implies that E|R(d™*)(x)) —
R(d(x))| will converge to 0 when both n and s go to infinity.

S

4 Simulations

We carried out a simulation study to investigate the performance of the selection
procedure d™*)(x). The overall integrated risk E|R(d™*)(x)) — R(d(x))| is used as
measure of the performance of the selection rule.

We consider the following case in which k = 3, that is, we have 3 logistic pop-
ulations II;, II; and II; and we would like to use the proposed selection procedure
to select the best population compared with a control.

The simulation scheme is described as follows:

(1) For each 4, generate past observations as follows:

for I=1,...,n
(a) first generate ©; from normal distribution with density N(u;,77), (65)
(b) then generate X;; from logistic distribution L(6;, 0;).

(2) For each i, generate current observations ©; from N(u;, 72) and (Xj1, - .., Xin)
i.id. from L(Gl, 0;)-

(3) Based on the past observations X;;;, and the present observations, we construct
d(x) and d™*)(x). Then compute the losses L(d(x)) and L(d™*)(x)).

(4) Repeat Steps (2) and (3) 1000 times. Calculate the averages of the conditional
losses L(d(x)) and L(d™*)(x)), respectively. Denote the averages to be R(d(x)) and
R(d™)(x)). Then compute the absolute difference

~ ~

D = |R(d™)(x)) - R(d(x))!. (66)

15



(5) Repeat steps (1), (2), (3) and (4) 5000 times. The average of the Ds in (66),
denoted by D(n,s), is used as an estimator of the differences E|R(d™*)(x)) —
R(d(x))]-

Tables 1, 2, and 3 give the results of simulation for the performance of the
proposed empirical selection procedures. We choose 8y = 0.5, u; = 0.4, uz = 0.5,
ps =06, 71 =7 =73 =1, and 07 = 02 = 03 = 1. The related figures are also

attached.
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Table 1

when s =5

D(n, s)

0.08509841
0.04994583
0.02375784
0.01263961
0.00738123
0.00651246
0.00519491
0.00415648
0.00381372
0.00361584
0.00347570
0.00338605
0.00316974
0.00309849

19

Performance of the selection rule

SE(D(n,s))

0.027865659
0.017846225
0.009525936
0.006187404
0.003425718
0.003046143
0.002195022
0.001433615
0.001086059
0.000818471
0.000713619
0.000689365
0.000642861
0.000627380
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Table 2

when s = 10

D(n,s)

0.07304765
0.03923180
0.01681043
0.01064427
0.00517343
0.00325936
0.00216874
0.00157431
0.00128317
0.00107369
0.00098735
0.00089170
0.00084682
0.00081364

20

Performance of the selection rule

SE(D(n,s))

0.019237152
0.012678379
0.008253716
0.004316348
0.002579812
0.001308793
0.000845426
0.000393872
0.000251801
0.000137618
0.000113625
0.000093612
0.000079186
0.000072564
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Table 3

when s =50 |

D(n, s)

0.05812975
0.01450924
0.00810957
0.00496331
0.00156783
0.00084367
0.00058916
0.00033976
0.00026253
0.00023609
0.00019546
0.00017925
0.00013687
0.00012795

21

Performance of the selection rule

SE(D(n,s))

0.010374924
0.007316987
0.003264550
0.001684319
0.000873342
0.000439320
0.000231186
0.000124923
0.000095978
0.000075646
0.000057012
0.000043645
0.000037202
0.000030269
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Figure 1: Graph for Table 1
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Figure 2: Graph for Table 2
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Figure 3: Graph for Table 3
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