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Abstract

Wavelet shrinkage estimation for the nonparametric regression problem with given
‘noise that is not necessarily Gaussian, is discussed. The procedure provides a method to
shrink wavelet coefficients based on a threshold value which depends on both the noise
distribution and the underlying mother wavelet. Point process theory and domain of
attraction theory play a crucial role in the derivation. This method extends DJ’s wavelet
method for the case when the regression noise follows i.i.d. Gaussian distribution. The
risk of the new procedure is compared with the ideal risk. It is shown that for any noise
which belongs to the maximum domain of attraction of the Gumbel distribution, the
risk of the new constructed estimator is within a log term of the ideal risk. Therefore,
wavelet shrinkage method is successfully applied to a wide family of Non-Gaussian noise
distributions. The constructed estimator is proved to be “noise-free”, and has the ability
to adapt to broad function classes. Further more, its risk is closed to “ideal” risk. This
procedure can also be similarly extended from the Gumbel distribution to other heavy
tailed noise distributions.
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ABSTRACT. Wavelet shrinkage estimation for the nonparametric
regression problem with given noise that is not necessarily Gauss-
ian, is discussed. The procedure provides a method to shrink
wavelet coefficients based on a threshold value which depends on
both the noise distribution and the underlying mother wavelet.
Point process theory and domain of attraction theory play a crucial
role in the derivation. This method extends DJ’s wavelet method
for the case when the regression noise followsi.i.d. Gaussian distri-
bution. The risk of the new procedure is compared with the ideal
risk. It is shown that for any noise which belongs to the maximum
domain of attraction of the Gumbel distribution, the risk of the
new constructed estimator is within a log term of the ideal risk.
Therefore, wavelet shrinkage method is successfully applied to a
wide family of Non-Gaussian noise distributions. The constructed
estimator is proved to be “noise-free”, and has the ability to adapt
to broad function classes. Further more, its risk is closed to the
“ideal” risk. This procedure can also be similarly extended from
the Gumbel distribution to other heavy tailed noise distributions.

1. INTRODUCTION

Suppose we are given data
(1) vi = f(z:) + &, i=1,...,n(n=27),
where z; = ﬁf, €1,...,€, have mean zero, variance o2, and f is the
function to be estimated from the data. A variety of nonparametric
methods have been proposed in the literature. Most of them are based
on smoothing techniques, such as kernel estimation, spline smooth-

ing, or Fourier series expansion. Although these methods use different

smoothing techniques, most of them estimate the function f through
1 .
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a linear combination of the observation data {y;}. In recent years,
wavelets have been successfully used for function estimation. These
methods have been quickly developed and are becoming more and more
important in nonparametric estimation. The method based on the

wavelet transform can be described as follow:

(1) Transform the observation data y; into the wavelet domain.

(2) Keep or discard the resulting wavelet coeflicients by hard or soft
thresholding.

(3) Transform the estimated wavelet coefficients back into the original

domain to form the estimator.

This approach differs significantly from the linear smoothing meth-
ods mentioned before in that it uses the data nonlinearly. It has been
proved that this approach has various optimal or near optimal proper-
ties in comparison to the linear methods when the noise {€:} are i.i.d.
and normally distributed [6, 9, 7]. Due to the special multiresolution
structure of the orthogonal wavelet basis, after the orthogonal wavelet
transform on theiobserva,tions with i.i.d. Gaussian noise, the wavelet
coefficients are still i.i.d. and Gaussian. Therefore, the optimal proper-
ties of wavelet shrinkage method have been proved through normal re-
lated minimax theory, Bayes theory, and decision theory [6]. However,
when the noise is i.i.d. and non-Gaussian, we lose the i.i.d. property
of the noise coefficients in the wavelet domain. Even worse is that the
wavelet basis itself is involved in the transformed noise distributions.
Therefore, the distributions of the empirical wavelet coefficents now

become very complicated, and this makes the selection of threshold
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values much harder, Wu(1998a). Through computing the wavelet co-
efficients’ distributions, Wu(1998a) constructed the wavelet shrinkage
estimator for the i.i.d. shifted exponentially distributed noise, and he
showed that the new estimator has some noise-free visual advantages,
it can adapt to broad function classes, a,nd its risk is close to the ideal
risk. Hence, the wavelet shrinkage method can be effectively used to
estimate regression curves for non-Gaussian noise, and the new shrink-
age estimators share similar properties of those when the noise is i.i.d.
Gaussian.

In this paper, we will show how to construct wavelet shrinkage es-
timators when the regression noise has any kind of distribution that
belongs to a large distribution family. Our method takes the advan-
tage of extreme value theory, Poisson processes, and combines them
with the theory of optimal recovery. Since this method only requires
the information of the domain of attraction of the noise distribution,
it works for a wide distribution family which contains almost all of the
interesting distribution in statistics. To give a clear idea about this
method and its power, we will demonstrate it through discussing the
following special family:
the distribution function F(z) of the noise {¢;} has the following tail

expression
(2) F:{F:P(ei>z)=K:c°‘e_A”ﬁ a>0,8,K,A>0}.

This is a rich family that includes most of the interesting distribution
functions in statistics, such as normal, gamma, weibull, double expo-
nential and so on. We will prove that any noise distribution belonging

to this family can be effectively estimated by the wavelet shrinkage
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method through selecting a proper threshold level. And it works for
a wide range of smoothness spaces that the regression curve belongs
to, such as the Besov class, or the Triebel class, only if the wavelet
basis is an unconditional basis [6]. These cover most of the traditional
functional classes such as Holder classes and Sobolev classes [5].

Our first result is summarized in the following theorem.

Theorem 1. If the noise in (1) belongs to the tail distribution family
F, then the optimal threshold values for the wavelet shrinkage procedure
are equal to
1
_ okt  (log(n)\?
) =2 o (o} (24)7 (14 o),
where a; is the mazimum absolute value of the mother wavelet function

and S is the vector size of the mother wavelet.

When the noise distribution is Gaussian, the above formula will re-
duce to 1/2log(n) except for the constant term from the mother wavelet
function. The soft thresholding estimators are constructed by applying
the expression Ty, (v) = sgn(y)(Jy| — Ax)+ to the empirical wavelet co-
efficients. 'We recover the regression function f (t) by using the inverted
wavelet transformation. In this paper, we will focus on using the soft
threshold method. The corresponding hard threshold method can also
be similarly used.

The constructed estimators have two properties similar to those of

Gaussian noise as described in [5].

1. With high probability, f (t) is at least as smooth as f, with smooth-

ness measured by any of a wide range of smoothness measures.
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2. f (t) achieves almost the idealized mean square error over a wide

range of smoothness classes.

To precisely express the properties of the constructed estimators,
we first need to specify the range of the smoothness space. For an
orthogonal wavelet basis of L?[0,1] with Dth highest derivative and M
vanishing moments, let S represent the scale of all the Besov spaces
By [0,1] and all the Triebel spaces F; [0, 1] which embed continuously
in C[0,1], so that » > 1/p, and for which the wavelet basis is an
unconditional basis, so that v < min(D,M). The smoothnesses of
these function classes are measured by the norms ||.||sy or ||.||Fy . This
covers a large number of function classes, the traditional Holder classes

and Sobolev classes are the special cases By, , and F}, respectively.

Theorem 2. Let f(t) be the estimated function constructed by our pro-
cedure on [0,1]. There exist universal constants (m,) with 7, — 1 as

n — oo so that
Pr{|flr < fllr VF € S} 2 m.

In words, f(t) is simultaneously as smooth as f in every smoothness

class F taken from the scale S asymptotically.

This theorem says that if the function f is identically equal to zero
on [0,1], which means that the signal is a pure noise, then with high
probability, our estimé,tor is zero since ||0||7 = 0. From the visual or de-
noising point of view, our estimator is “noise-free”. For the estimation
of an one dimension parameter ¢, a noise-free estimator is similarly

expressed as |0] < |6].
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The second property is expressed in term of adaptivity. Let F[0,1] be

a function class and let Fi; denote the ball of functions {f : || f||l= < C}.

Since the error E||f — f ||z depends on f, we use the worst behavior of

our estimator to evaluate the performance, namely
supn” E||f — fllii;
Fe .

and we try to do as well as we can to achieve to the minimax mean

square error
inf supn' E|| f — |,
f Fc

or at least we try to get close to the optimal rate. According to the

Parseval relation
E\f - fl3, = El6: - 63,

we can equivalently consider the estimation of the sequence §; instead
of discussing the estimation of the function f directly.

The risk performance can also be evaluated by using the “ideal risk”
as a benchmark, see [7]. Assume w; = 6;+¢€z; (i =1,...,n). The ideal

estimator is defined as
Tpp(w,0) = (fiwi)iey, d: € {0,1},

where &; = 1(g;|>¢)- This estimator pretends that the unknown param-
eters 0; are given, and then it retains or throws away w; by comparing
the signals with the noise level. It yields the ideal risk

(4) R(DP,0) = min(8},¢%).

=1

As (6;)%, is what we want to estimate, we do not have this kind of “ora-

cle” information in practice. Hence, in general the ideal risk R.(DP,0)
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cannot be attained for all § by any estimator. However, we can com-
pare the risk of an estimator with the ideal risk to assess how well the
estimator does. The following theorem shows that our threshold esti-
mators are always within a log term of the sample size to the ideal risk

for a broad class of functions.

Theorem 3. For each ball Fo arising from an F € S, there is a con-

stant C1(Fg, ) which does not depend on n, such that Vf € F¢

supn™'E||f — f|l; < Cilog(n)*/’R.(DP,0).
Fe

The estimator f which is constructed through observations only per-
forms close to the ideal risk over every Besov, Triebel class with the

scale S.
For practical problems, we can modify the threshold values according

to the following formula.

Corollary 1. Ifthe noise in (1) belongs to F, then the threshold values

given in (8), for the wavelet shrinkage procedure, can be replaced by

(5) M = 25 max {4} <logg"k)> " (14 0(1)),

where a; is the mazimum absolute value of the mother wavelet function
and ny is the sample size on the kth resolution level of the wavelet

domain.

In the next two sections, we introduce the extreme value theory and
the optimal recovery theory, respectively. These are then applied in
Section 4 to prove our main results. Section 5 contains some discussion

of several related issues. We leave some proofs to the appendix.
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2. EXTREME VALUE THEORY

2.1. Domain of atrractions. The asymptotic distribution of the prop-
erly normalized maximum term of a sequence of random variables has
‘been widely studied in the literature see [16, 22]. Gendenko(1943) has
completely characterized the possible nondegenerate limiting distribu-

tions and their respective domains of attraction for i.i.d. sequences.

Lemma 1. Suppose {X,, n > 1} is an i.i.d. sequence of random vari-

ables with common distribution F(z). Set M, = V2, X; = max{Xy, Xa, ..., X.}
The distribution function of M, is F™(z). If there exist a, > 0,

b, € (—00,0), n > 1 such that

M0 < o) = Fr(auz + ba) = G(2),

an
then the normalized mazimum term M’c‘;—bﬁ converges weakly to an non-
degenerate distribution G(z) and G belongs to one of the following three

classes:

(i)
5. (z) = {0 z <0,

exp{—z7%} z2>0,
for some a > 0;

(i)

1 z >0,

Uolz) = {exp{—(—w)“"} z <0,

for some a > 0;
(iii) A = exp{—e™*} z € R.

®,, U, and A are called the extreme value distributions.
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The independence requirement of the stochastic sequence {X,} can
be weaken by assuming that {X,} is strictly stationary and that the
dependence between X; and X; decreases in some fashion as [¢ — j|
increases. The simplest generalization of Gnedenko’s results is that of
m dependence, which requires that X; and X; be actually independent
if [ — j| > m see Watson(1954). Loyes(1965) considered the same
problem under the strong mixing assumption for stationary sequences.
The sequence {X,} is said to satisfy the strong mixing assumption if
there is a mixing function g(k) tending to zero as k — oo, and such

that
|P(AN B) — P(A)P(B)| < g(k)

when A € F(Xi,...,Xp) and B € F(Xptkt1, Xpths2,..-) for any p
and k; F(.) denotes the o-field generated by the indicated random vari-
ables. Leadbetter(1974) proposed condition D, a distributional mixing
condition that is weaker than most of the classical forms of dependence
restrictions, involving only sets of the form {X; < ¢, X; <¢,..., Xn <
c}, and generalizes the mixing function to a mixing sequence.

The condition D(u,) will be said to hold for a given real sequence

{un} if for any integers
I€<u<- < <1< <gp<n
for which j; — 1, > [, we have
| Py ipriireopr (Un) = Fi i (Un) Fli i ()] < 0ty

where a,,;, — 0 as n — 0 for some sequence I, = o(n).
Besides the condition D, the following condition is also necessary for

generalizing the i.i.d. results. Various forms of such a condition were
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used in the literature, for example, Watson(1954), Loynes(1965), and
Leadbetter(1974) .

The condition D'(u,) will be said to hold for the stationary se-

quence {X,} and sequence {u,} of contants if

[n/k]
‘limsuanP{Xl > Up, X; > Uny =0 ask —co

To better understand the domain of attraction for dependent se-
quences, we introduce an i.i.d. sequence {Xn} having the same com-
mon distribution function F' as each member of the stationary sequence
{X.}. The sequence {X,} is called the independent sequence associ-
ated with {X,}. Set M, = max{X1, Xz, ..., Xn}. The following result
and its proof can be found in [16, 22].

Suppose that D(u,), D'(u,) are satisfied for the stationary sequence
{X,}, when u, = z/a, + b, for each z ( {a, > 0},{b.} being given
sequences of constants). Then P{a.(M, —b,) < z} — G(z) for some
non-degenerate G if and only if P{a,(M, —b,) < 2} = G(z). The
problem of the extreme value of a stationary sequence is then reduced to
a problem of the extreme of an 1.i.d. sequence according to the lemma.
Intuitively, from the view point of point processes, the conditions D(uy)
and D'(u,) guarantee that the exceedances of the level u, by {X,}
follow a Poisson process when n is large. In this, the condition D(u,)
provides the independence associated with the occurrence of events in a
Poisson process; the condition D’(u,) limits the possibility of clustering
of exceedances so that multiple events are excluded in the limit. In

summary, the conditions D(u,) and D'(u,) ensure that the extremes
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of the stationary sequence {X,} have the same qualitative behaviour

as those of the associated i.i.d. sequence.

2.2. Extreme value theory for moving average processes. The
domain of attraction of a stationary sequence can be easily solved if the
conditions D(u,) and D'(u,) are satisfied. But it is in general tedious
and not obvious to verify these conditions. However, if a strictly sta-

tionary sequence {X,} has representation as a moving average process:
Xn = § ¢j—n Zja

where the noise sequence {Z,} are i.i.d. and ; are constants, the prob-
lem will be changed dramatically. Now the tail behavior of {Z,} and
the coefficents 1; of the moving average completely determine the limit
~ behaviour and properties of the extreme value. This has been widely
studied in the literature. Rootzen(1978) studied the extremes of mov-
ing average of stable processes; Davis and Resnick(1985) discussed the
extreme of linear processes with regularly varying tails; Rootzen(1986)
showed the extreme results when the tail distribution of the noise se-
quences belongs to a special exponential family. Extremes of moving
averages of exponential and subexponential noise were investgated by
Davis and Resnick(1988), Goldie and Resnick(1988), or [11]. Some
of their results are expressed in the following two lemmas when the
noise distribution belongs to the maximum domain of attraction of the
Gumbel distribution A = exp{—e~*}.

Before we introduce the lemmas, we need to define a function class
and conditions on the tail of the distribution F' and the coefficents ;.

First, a distribution F' with support (0, c0) is subexponential, if for all
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n>2,

1—-F™(z
©) i Ty =
where F™ is the n—th convolution of F'. The class of subexponen-
tial distribution functions will be denoted by S. Second, we need the
following tail balance condition:

(7) fim 2Z>2) _ g BES2)

e P(Z[>0) 7 e P(Z[>) 7
where 0 < p < 1, p+ q = 1. Finally, for the coeflicients 1;, let
kt = card{j : ¥; = 1}, k= = card{j : ¢; = —1}, and assume that

(8) ' Z |4;]® < oo for some & € (0,1).

P
Without loss of generality we assume that max; [#;| = 1, since other-
wise we can rescale the process X,, to X,/ max; |1;|. The lemma below

is proved in Davis and Resnick(1988) in a more general situation.

Lemma 2. Assume that Fz belongs to both the mazimum domain of
attraction of the Gumbel distribution and the subezponential distribu-

tion class S. Then there ezxist constants ¢, > 0 and d, € R such tﬁat
n(l — Fz(cpx + d)) = —InA(z), = € R.

Furthermore, assume that conditions (6)-(8) hold. Then the point pro-

CEeSS

Ze(n_lk,C;l(Xk—dn)) — k+N]_ + k_Nz

k=1

in Mp(R4 x E) with E = (—o0,00]. Here

N; = Z E(triin)s ¥ = 1,2,
k=1
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are two independent Poisson random measure PRM(|.|u;) on Ry x E,
p1 has density fi(z) = exp{—z} and p2 has density f>(z) = (¢/p) exp{—z},

both with respect to Lebesgue measure.

The two independent processes kT Ny and k™ N, are due to the con-
tributions of those Z, for which ¢, = 1 or ¥, = —1. Based on the
above lemma, we obtain the following result for the point process of

exceedances of ¢,z + d, by the linear process {Xx}:

Lemma 3. Under the conditions of above lemma, the point process of
ezceedances of c,x + d, by the linear process {Xy} converge weakly in

M,(Ry) asn — oo:

Z €n—lkl{c;1(xk__dn)>x} —> Z(k-*.CT';I- + k—eTk—)’
k=1 k=1

where {T} and {T; } are the sequences of the points of two indepen-

dent homogeneous Poisson processes on R, with corresponding inten-

sities exp{—z} and (q/p)exp{—=z}.

Therefore, the limit process of the point process of exceedances is the
sum of two independent compound Poisson processes with the cluster

sizes z%, z~.
3. RISK ESTIMATION IN OPTIMAL RECOVERY
Consider the regression model in the wavelet domain
(9) Y,=0,+vZ;, 1=1,...,n,

where the noise {Z;} have mean zero and variance one and v is the
noise level. In general, {Z;} have the same distribution on the same

resolution level but they are not independent of each other, and their
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distributions are determined by the distribution of the regression noise
and the mother wavelet. It is usually very difficult to find the exact
distributions because of the complicated form of the distributions ex-
cept in two special cases which give the simpler i.i.d. distributions.
The first case is when the regression noise is Gaussian which leads to
all Z; i.i.d.. The other case is when the mother wavelet is the Haar
function which results in the i.i.d. distribution for those Z; on the
same resolution level, see Wu(1998a). In order to-estimate the risk of
our threshold estimator and at the same time to escape the situation
of the complicated distributions of Z;, we now turn to a simpler ab-
stract model '(called optimal recovery problem) in which the noise is
deterministic.. We will explain its relation with the regression problem

(9) later. Let
(10) yr = 01 + duy,

where I belongs to an index set Z, § > 0 is the known noise level and
ug is a nuisance term known only to satisfy |ur] <1, VI € Z. We want
to estimate (f1) based on the observations (yr). The performance will
be evaluated by the worst case error
M;5(8,8) = sup ||6(y) — 9|l
luri<1

under the side condition that the estimator is noise-free. Then
(11) 1611 <1611, VI €T
The best performance is defined by the minimax error

M;3(6) = inf sup M;5(9,6),
g o
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where © is the set of all possible 8. This is the smallest risk an estimator

can be uniformly over § € ©.

We now investigate the soft threshold estimator
07 (yr) = sgn(yr)(lurl = )+, VI ET.

Lemma 4. The estimator 9?) automatically satisfies the noise-free

side condition (11), and its risk has the following upper bound

M5(6®),6) <Y " min(63,48%).
I

Proof. If ) (y;) = 0, then it is obvious that (11) holds. For those I € T
that é.(,s)(yf) # 0, IGA?)(yI)I = |yr| — 8. According to (10), |lyr — 61| < ¢
and this immediately leads to |07 > |yr| — & = Ié?)(yl-ﬂ.

To prove the risk inequality, we first verify that sgn(égfs)(yz)) =
sgn(fr). If éffs)(yz) > 0, then 8; = y; — duy > yr — 6 > 0. Simi-
larly, If ég‘g)(yz) < 0, then 0; = y; — du; < —6 — dusy < 0. Because éga)

and 0; have the same sign, then
160 (ur) = 621 < 167 (wn)| — 16111 < 6.

From the equation éﬁs)(yf) = yr — sgn(yr)d, we have the inequality
|é§5)(y1) — y7| £ 6 which immediately leads to

10 (yr) = 01l < 167 (9r) ~ yal + yr — 01] < 26,
The above two inequalifies then give
167 (ur) ~ 61| < min(|61], 26).

Squaring and summing across I € T gives the needed inequality. O
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Lemma 5. If § is any estimator satisfying the side condition (11),
then Ms(0,6) > M;(6©®,8) V8. If the equality holds for all 6, then
g =60,

The soft threshold estimator (%) is therefore the unique optimal es-
timator under the noise-free restriction.

How is the performance of the risk Mg(é(‘s),G) when it is compared
with the best risk M3 (©)? It turns out that the error of 0@ simulta-
neously approaches this minimum over a large class of ©. A set O is
called solid and orthosymmetric if § € © implies (s;0;) € @ for

all sequences (s7) with |s;| < 1,VI.

Lemma 6. If © is solid and orthosymmetric, then ) is near minimaz

M;s(89),0) < 4M;(0),V9 € O.

We omit the proof of the above two lemmas, interested readers can
find the proof in [5].

In summary, the soft threshold estimator does a great job for the
optimal recovery problem (10). It is noise-free and approaches simul-
taneously to the minimax risk for a large class of functions. In the next
section, we will combine the results in Section 2 and Section 3 to solve

the regression model (9).

4. RISK ESTIMATION IN STATISTICAL ESTIMATION

The problem (9) is the transformed version in the sequence space of
the regression problem (1) through a wavelet basis. It is easy to see
that the noise {Z;} in (9) is the moving average of the noise (&) in

(1). The regression problem (9) and the optimal recovery problem (10)
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are connected together through the following lemma with any mother

wavelet, such as coiflets, daublets, or symmlets.

Lemma 7. Assume {¢;} are i.i.d. and belong to the family F in (2).
Then the noise (Z; x) has the following property on each resolution level

k=1,2....
(12) T = Pr{l(Zix)lig, < Ae VE} =1, np — oo

where Ay, is determined by the ezpression (8).

In other words, with probability 1, the statistical problem (9) is
asymptotically equivalent to the optimal recovery problem (10) with
noise level d,, = Ax. Therefore, we could solve the statistical problem

(9) through solving the deterministic problem (10).

Proof. Let V,, = max{e;, €2,...,€,}. According to the distribution as-
sumption on ¢; and Lemma 1, there exist constants ¢, > 0 and d,, € R

such that

c'l(V,; —dp) > A n— o0, or

n

P (c_l(Vn —dn) < :1:) = P(V, <u,) = Az),

n

where u, = ¢,z + d,. First, we need to compute the constants ¢,
and d,, from the distribution of ¢. From the tail distribution of ¢; and

nF = exp{—z}, we have
Ku® exp{—Auf} = S)—(P%——ﬁ.

After taking natural log transformation and solving the linear equation,

v = (log(n) + z + alog(u,) + log(K)> !

A
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and
log(un) = (loglog(n) — log(A))/B + o(1).
Then
log(n)\ ¥ (- =+ §(loglog(n) — log(4)) +log(K) ) *
w = (52) (” ) log(m) )
. (log(n)\® z + %(loglog(n) — log(A)) + log(K)
N ( g ) (H : Blog(n) )

- (loﬁn)>% Fog * <logf§n)) o)

It is easy to see from the equation u, = ¢,z + d, that

= Fiog (zoﬁn)) and

o= () 1,

Next we will compute the probability m,. For this purpose, let ng =
Zik

and let N(z) be the number of Z; upcrossing the level

k—J
277 maxicigs{ai}

¢nZ + dn. Then, by using Lemma 3,

mp = Pr{l|Z}ilix < ez +dn}

= Pr(N(z) =0) = exp{—e™" — %e"""} = exp{—%e"“}.

If we choose z = loglog(n) and let n — oo, then 7 — 1. Now if we

substitute Z?, by Z;x and notice that

cnloglog(n) + d, = (logfin)) ? (1+ %gli)ogg%) + o(1),

then we know that 7% = m,. That is the end of the proof of the Lemma.

a
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Proof of theorem 1:  Let u, = (‘—"QA@) g (1 - %i"g"(n’—;l). Accord-

ing to Lemma 3, with z = —loglog(n),

= Pr{l|Zllip < cnz + dn}

= Pr(N(z) = 0) = exp{~ 3¢}

= exp{—-%el"glog(”)} =n"7 =0
since 0 < p < 1. Hence
(13)  Pr{l|Zislliy > 25" max{aiun} = Pr{|Zlliz 2 un} = 1.
From the above lemma, we have

E—J lo 1 logl n
(4) PrilZiulie <27 parlad(ZAmhr + BE) 1,

The theorem is proved by combining equation (13) and (14). O

Now we use &,, = A as the threshold value to construct the threshold

estimators on the kth resolution level

~ A

(15) bip=00" (), 1<i<ng, k=1,2,....

T

Then the results of optimal recovery in Section 3 will be applied in here

now.

Theorem 4. With n, defined by (12) and for V0,

Prilfiz] <10ix) 1<i<my, kE=1,2,...} > m.
Proof. Let Qo = {w : [[(Zip)llig < Axy k= 1,2,...}. For all w € Qq,
the statistical problem y;x = 6ix + vZi is equivalent to the optimal

recovery problem y;x = 0 + Axu;. By Lemma 4, we have |éik] < |0:k-

Therefore, 3y C ; where

Q= {w: 0] < 10a] 1 <3< ne
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This means Pr(Q;) > Pr(q) > m, and thus the proof is finished. U
The mean squared error M,(8,6) = E||6— 0”,2% of (15) will be evalu-
ated and compared with the ideal risk R(DP,#) in (4). The following
theorem gives an upper bound of the risk for our estimator. We realize
that this bound is not sharp, however it does tell us that our estima-
tor’s risk is within a log term of the ideal risk simultaneously for a large

class of functions, such as the Besov spaces.

Theorem 5. Let © be solid and orthosymmetric. Then the estimator

0 of (15) asymptotically approaches the ideal risk; i.e.

M, (6™ 6) < Zw me(a 0 v%) < 2 max {a,}(loﬁn))%Rc(DP, 9)

forV0 € O and e =v.

Proof. We use the same argument as that used in the proof of the
above theorem; the statistical problem is asymptotically equivalent to
the optimal recovery problem with § = ;. Therefore, Lemma 4 applies

here and
M,(8™,0) = E|0™ —o|

z Z min(6%, 402)2)
Z 4/\ﬁ Z min(6%;, v°
k3§
2 max {az}(log(n)) Z gk+1=7 Z min(6%, v?)

IN

IN

<
—  1<igS A
log(n
< 211213%{(1 4 E E min(6%;,v
' log(n),2
= 2rna,x{a,}( )ﬁR,,(DP,Q).D

1<i< A
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5. DISCUSSION

5.1. Data driven threshold value selection. Donoho & Johnstone(1995)
proposed a data driven threshold selecting method, called the SureShrink
method, which is based on Stein’s unbiased estimate of the loss func-
tion. They search for the optimal threshold to achieve the best mean
squared error in the range between 0 and /2logn. Nason(1996) used
the cross validation method with the quantity 1/2logn with possibly a
level dependent adjustion. We see that for the Gaussian noise problem,
the universal threshold, v/2logn plays a fundamental role in wavelet
thresholding estimation. Qur new threshold value plays a similar role
for the non-Gaussian noise problem. We can use it to determine the
range for which the data driven methods can start to search for the op-
timal threshold value that obtains the best balance between bias and

variance.

5.2. Correlated regression noise. Wang(1995) used a fractional Gauss-
ian noise model to approximate long dependent data. Through the
wavelet transformation, he converted the fractional Gaussian noise
model to a sequence series in the wavelet domain and found the level-
dependent threshold values. A thresholding estimator then can be
constructed by using the three steps precedure which we gave in the
introduction. Johnstone and Silverman(1994) also discussed the cor-
related noise problem and showed that although the correlation coef-
ficients are involved, the methods for an i.i.d. Gaussian noise can be
similarly extended to the correlated Gaussian noise. We can also apply

our method to solve the correlated noise problems. Since our method
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requires very limit information about the noise distribution, we can es-
tablish the noise-free threshold values for the correlated noise and then
construct a wavelet estimator. It is very interesting to compare these

methods. We will report the results of the comparison later.

5.3. Minimax risk. The relationship among the risk of the wavelet es-
timate, the ideal risk, and the minimax risk is well known for the Gauss-
ian noise problem; see Donoho(1995), Donoho and Johnstone(1994),
and Donoho, Liu, and MacGibbon(1990). We cannot give similar
bounds in this study. The relationship between our new risk and the
minimax risk is still unclear bsince it is very difficult to find the minimax
risk for an arbitrary noise distribution. The possible solution is first to
consider a noise which has a spherically symmetric distribution, and

try to find a lower bound to the minimax risk based on the ideal risk.

5.4. Density estimation. We are now applying this method to den-
sity estimation. Since our method requires very limited information
about the underlying density function, our result is very promising; see
Wu(1998b). Also our method can explain the comparison as discussed
in [9](pp 327). The key point is that the best threshold value depends
on the underlying density itself. . Different density functions require

different threshold values.

6. APPENDIX

Proof of theorem 2:
We will prove the theorem for an arbitrary Besov space B [0, 1]; all

the Triebel spaces F [0,1] follow similar arguments. The threshold
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wavelet estimator has the following expression

200 -1 J-127-1
Ft) =" Biwpior®)+ Y > dipthin(t),
k=0 R JZ]o k=0
while the corresponding true function is
2901 oo 27-1
&)= Bioawiok(t) + Y > ctipthia(?).
k=0 J2jo k=0

The norms of the estimator and the true function have the following

expression in the Besov space

J—1 :
1FllF = 1Bioellis + (Z(?S(Z laj,m)%)q)

j2io k

Q|-

I lr = 1Biokllsp + (Z@”(Z I%xl”)b")

i2Jo k
According to Theorem 4, |Bjo| < 1B8iok| and |&;x| < lajsl for V&, 5
with a probabilty that tends to 1 as n — co. Therefore, || Flle < 1 fle-
(|

Proof of theorem 3:

By the quasi-orthogonality property [Donoho(1995)]:
n B f - flly < 1EI6" - 0|3,

where «; is a constant which does not depend on n and f. Using

Theorem 5 we have the upper bound. O
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