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Abstract

As orthogonal wavelet transform concentrates most of the information of a signal
into a few large wavelet coeflicients and leaves the rest of the wavelet coefficients close to
sero. At the same time, it evenly distributes ii.d. Gaussian noise into i.i.d. Gaussian
noise. The true regression curve therefore could be recovered efficiently from the several
significant large wavelet coefficients only. This is the reason for the success of wavelet
shrinkage methods in nonparametric regression when the noise is Gaussian. Does this
method still work when the noise is non-Gaussian? As the true curve stores most of its
information in a few coefficients no matter what kind of noise is involved, this information
can be successfully recovered as long as the estimators keep the significant coefficients and
discard most of the noise. This indicates that the wavelet shrinkage methods should be
successful at least for some non-Gaussian cases. However, because an orthogonal wavelet
transform cannot keep i.i.d non-Gaussian noise in the wavelet domain from i.i.d. non-
Gaussian regression noise, technical difficulties appear in the statistical analysis. The
success of the wavelet shrinkage methods for non-Gaussian regression noise is demonstrated
in the example of the shifted exponential noise. In this case, the wavelet estimators achieve
“noise-free” reconstruction, near “idea” risk and adaptivity to wide function classes.
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An orthogonal wavelet ‘transform concentrates most of the information of a signal into a
few large wavelet coefficients and leaves the rest of the wavelet coefficients close to zero.
At the same time, it evenly distributes i.i.d. Gaussian noise into i.i.d. Gaussian noise. The
true regression curve therefore could be recovered efficiently from the several significant large
wavelet coeficients only. This is the reason for the success of wavelet shrinkage methods in
nonparametric regression when the noise is Gaussian. Does this method still work when the

noise is non-Gaussian? As the true curve stores most of its information in a few coefficients no

matter what kind of noise is involved, this information can be successfully recovered as long
as the estimators keep the significant coefficients and discard most of the noise. This indicates
that the wavelet shrinkage methods should be successful at least for some non-Gaussian cases.
However, because an orthogonal wavelet transform cannot keep i.i.d. non-Gaussian noise in
the wavelet domain from i.i.d. non-Gaussian regression noise, technical difficulties appear
in the statistical analysis. The success of the wavelet shrinkage methods for non-Gaussian
regression noise is demonstrated in the example of the shifted exponential noise. In this case,
the wavelet estimators achieve “noise-free” reconstruction, near “ideal” risk and adaptivity to

wide function classes.

1. INTRODUCTION

Consider the standard nonparametric regression problem
vi = flzi)+e, i=1,...,n(n=2"), (1)

where z; = and €1,..., €, are i.i.d. N(0,c?). Donoho and Johnstone(1994) proposed a

wavelet shrinkage procedure which consists of the following three steps:
(1). Transform the observed data into the empirical wavelet coefficients using the interval-
adapted pyramidal filtering algorithm [Cohen, Daubechies, Jawerth and Vial(1992)].

(2). Keep or throw away(set equal to zero) each empirical wavelet coefficient by using a hard

or soft thresholding rule with a specially-chosen threshold value.
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(3). Construct the estimator of the regression curve by transforming the estimated wavelet
coefficients back.

This procedure looks sirn'ilarv to the Four.ier series method (orthogonal series method).
However, they have significant differences in two aspects. First they have different bases.
Wavelet shrinkage procedures use a wavelet basis while Fourier series methods use a Fourier
basis. Second wavelet shrinkage procedures use “keep” or “kill” thresholding rules which are
nonlinear. On the other hand, Fourier series methods use rescale smoothing rules which are
linear.

The advantages of wavelet bases over Fourier bases come from the following facts:

(1). Wavelet bases are unconditional bases of various functional classes such as Holder,
Sobolov, Besov and Triebel etc., while Fourier bases are unconditional bases only for Sobolov
spaces. [Donoho(1993)]

(2). The special multiresolution structure of the wavelet basis has the localization property
in both time and frequency domains and results in the sparse reconstruction that makes the
wavelet transformation an efficient tool for data compression and de-noising. On the other
hand, Fourier bases lack the natural localization property.

(3). The wavelet transformation uses only O(n) operations which is faster than the O(nlog(n))
operations of the FFT.

The advantage of the nonlinear wavelet threshold methods over the linear Fourier series
smoothing methods is that the wavelet methods achieve or almost achieve the optimal rate
of convergence for wide function classes which the Fourler methods cannot do. One of the
consequences is that the wavelet thresholding method is adaptable to a wide range of spatial
and frequency inhomogeneous function classes to which the Fourier method cannot adapt.

For the wavelet shrinkage procedure, a proper threshold value is crucial from both a
theoretical and practical point of view. The fundamental rule for choosing a threshold value
is the Universal Threshold which is incorporated into the VisuShrink procedure of Donoho
and Johnstone(1994). The Universal Threshold value is set as Tyv = /2log(n)d, where &

is an estimate of the noise o which can be derived from the median absolute deviation of
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the wavelet coefficients at the finest resolution level J-1. The VisuShrink procedure has the
following properties simultaneously for various smoothness classes.

(1). Guarantees the noise-free reconstruction.

(2). The risk R, o(f, f) of f is within a logarithmic factor of the ideal risk Rn,o(DP, f):

Ry o(f, f) < (2logn+ 1) {Rao(DP, f) + 0}

There are also several other procedures that offer different threshold selections based
on different criterions. Some examples are RiskShrink in Donoho and Johnstone(1994),
SureShrink in Donoho and Johnstone(1995) and Cross-validation in Nason(1996). Also see
Abramocich and Benjamini(1996), Ogden and Parzen(1996), and Cai(1997) among others.
For the discussion of Gaussian noise with correlations, see Wang(1995) or Johnstone and
Silverman(1996). These methods are mainly based on Gaussian noise although some of
them may work for non-Gaussian noise. What happens when the noise are not Gaussian?
Neumann and Sachs(1996) showed that for the wavelet coefficients at coarser levels, the
non-Gaussian noise problems can be treated the same as the Gaussian noise case because
the central limit theorem plays a role. However, it is not clear how to deal with the wavelet
coeficients at the finest levels. Unfortunately for a real problem the wavelet coefficients at
the finest levels are the most important concern because 75% of all the wavelet coefficients
are on the two finest levels. The question then is whether the DJ VisuShrink procedure still
works for the nonparametric regression with non-Gaussian noise?

There are other difficulties appearing when a regression problem has an i.i.d. non-Gaussian
noise. The wavelet coefficients of our observations through the orthogonal wavelet transform
are no longer independent, and they are also not identically distributed at different levels.
Even worse is that we cannot ignore the wavelet basis itself when we select the optimal
threshold value. The wavelet functions influence the selection of the threshold value.

In this paper, we will try to shed some light on wavelet thresholding estimation for non-
parametric regression with non-Gaussian noise. We will use wavelet shrinkage methods to
estimate the regression curves when the noise is i.i.d. and shifted exponentially distributed.

The rest of the paper is arranged as follow: Section 2 briefly introduces wavelet and wavelet
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estimation in regression. The basic results of our study are in Section 3 while some exten-
sions and discussion are in Section 4. Numerical simulations are displayed in Section 5. The

final conclusion is left to Sectior 6. Relevant proofs are put in the appendix.

2. WAVELET ESTIMATION FOR NONPARAMETRIC REGRESSION

2.1  Wavelets

For any function < satisfying the condition [ #(z) dz = 0, we call 1 the mother wavelet. The
most useful wavelets in functional analysis and statistics are given by ¥; x(z) = 2‘31/)(21' z—k),
4,k € Z where (¥; 1); sez consists of an orthonormal basis for the space L?(R). The mother
wavelet 1 is described by two parameters M = the number of vanishing moments, and 5 =
the support length. A function f € L%(R) can then be written in the form of a wavelet

decomposition

fl@)= D bixthin()

j.keZ

with 0,5 = [ f(2)¥;x(2) dz, the wavelet coefficients of f. The oldest known wavelets are

generated by the Haar function

|
—
s

<
<

= O

z <
z <
0, otherwise.

2)

The most popular wavelets are Daubechies wavelets whose mother wavelets have different
compact supports and finite vanishing moments. Unfortunately, all well known compactly
supported mother wavelet functions (except for the Haar function) do not have closed-
form analytic formula. However, they can be computed with arbitrarily high precision by
a numerical method which is called cascade algorithm. Therefore, a compactly supported
mother wavelet function can be expressed by a numerical vector @ = (ay,a2,...,an). See
Daubechies(1991). This vector play an important role in computing the thresholding level
later in this paper. By modifying some of the 1; s, we can form an orthonormal basis for

the function space L[0, 1].
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2.2  Woavelet Estimation

Given the observations y = (Y1,Ys,...,Y,) in the regression model (1), we can derive its
wavelet coefficients w = {wy,ws, ..., wn) by the discrete wavelet transformation which can
be written as an orthogonal matrix W such that w = Wy. If § = Wf and z = We, where

F=GE) G - FED) €= (e, ez, .‘, €n), then we have
wi=80;+z, 1=12,...,n
In order to reflect the special wavelet structure, the coefficients are written as
wik =0k + 25, j=0,1,...,J=1, k=0,1,...,2 -1,

the left one is denoted as w_j . Define the soft threshold function T(a,b) = sgn(a)(|a| -
b)+. For each wavelet coefficient w; , we can apply this function with threshold value b =
2log(n)é to get an estimator §; = Ty (wi, b) of 6;. The Donoho and Johnstone VisuShrink

estimator is then constructed by transforming 6; back to give
F=wTe.

The risk of f is evaluated by E||f — f||> which can be approximated by %E“f - fl¢, =
%Zf’:l(f(a:,) — f(z:))?. In practice, a fast O(n) algorithm is used to carry out the matrix

transformations W and W7 .

2.3  Threshold rule

The essential part of the wavelet thresholding method is how to select the threshold value.
Two different criterions have been used to construct wavelet threshold estimators. One is
de-noising, to get a “noise-free” and “good visual” estimator; the other is to minimize the
mean-squared error. The optimal estimators under the first rule are, with high probability,
as smooth as the true underlying function and can achieve near ideal risk. The VisuShrink
procedure is a typical example under this rule. Two examples under the second rule are the
SureShrink method and the Cross-Validation method which try to find the best bias-variance

trade off to obtain the minimum mean-squared error based on the observed data.



3. NONPARAMETRIC REGRESSION WITH NON-GAUSSIAN ERRORS

Since the discrete wavelet transformation is orthonormal, Gaussian noise contaminates
all wavelet coefficients equally so that after the discrete wavelet transformation the noise z
in the wavelet domain remains i.i.d. normal. However, when the noise in the model (1) do
not follow a normal distribution, its corresponding noise in wavelet coefficients z, will not
keep the i.i.d. property. They are in general no longer independent and also do not have
the same distribution any more at different wavelet resolution levels. The Haar wavelets are
an exception. Under the Haar wavelet transform, i.i.d. observations with any noise distri-
bution will keep the i.i.d. property among their wavelet coefficients in each resolution level
although the wavelet coefficients have different distributions at different resolution levels.
Even though things become more complicated and harder to analyze for the non-Gaussian
noise problems, we still hope that we can use the wavelet thresholding procedure to solve
the problem. Then the main question is whether we can keep using the threshold values
derived for Gaussian noise and if we have to use different threshold levels, what kind of
property does the new thresholding estimator have. We will answer these questions through

the following scenario.

For the nonparametric regression model (1), instead of having a Gaussian noise, we con-
sider the following exponential distributed noise: Let €1,...,¢e, be ii.d. exponential dis-
tributed with mean 0 and variance o2, that is, let the density function f(z) = £ exp{—(Z +
1)}z4o>0. From the wavelet transformation, we get a coefficient sequence in the wavelet

domain
Wik =0ix+ Zig, k=0,..,2-1, j=0,...,J-1,

and w_1,0. We estimate the wavelet coefficients (6;,x) with the soft threshold rule

05,5 = sgn{wj k) (lwikl = A)+

and consider the risk measure

R(0,0) = B ~ o3, = 5 B - 6"

=1
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In the rest of this section we will focus our attention on the Haar wavelets and discuss the
general situation in the next section. The main feature for the arbitrary wavelets already
appear in this special case and the results and proofs are more transparent.

For the above shifed exponential noise and Haar system, we have the following theorem.

Theorem 1. Within each wavelet coefficient resolution level, the noise terms {Z;} are
independent and identically distributed. At the finest level, the noise variables Z;_; 4, k =
0....,27=1 — 1 are i.i.d. and also have the same density function

fZJ_l,k ((L‘) - \/50" 1z‘>0 + \/-2—0_ 1:l:<()

In order to exclude the noise in the reconstruction, an appropriate threshold value must
be determined. This is the crucial step in the wavelet thresholding procedure. Unfortunately,
the choice of the threshold values depends on the tail behavior of the empirical coefficients.
Therefore, the optimal selection of the threshold value has to be determined case by case
and level by level. The following theorem gives the optimal choice of the threshold value fo;

the case we are discussing here.

Theorem 2. Under the principal of de-noising, the optimal threshold value at the finest
resolution level j = J — 1 is equal to 2~ 2log(n)& (1 + o(1)), where & is an estimate of 7.

From Lemma 1 in the appendix, we can see that with these threshold values, we can almost
surely throw away all the noise at each finest resolution level asymptotically. Therefore every
sample in the wavelet transform in which the underlying signal is exactly zero will, in high
probability, be estimated as zero. On the other hand, the noise is almost surely to be present
if we choose the threshold value 1/2log(n)é, which is the optimal selection of the Universal
Threshold value based on Gaussian noise. To increase the de-noising quality in finite sample
problems, we can use 2log(n)é instead of log(n)é(1+0(1)), where the small order in 1+0(1)
is usually taken to be klog(log(n)) with a positive constant of k.

Figure 1 displays an example of wavelet estimation using two thresholding values on a
simulated data set ( n = 1024) and Haar wavelets. The underlying function is the Blocks

function which was used in Donoho and Johnstone(1994). The noisy version of the Blocks
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function is generated by adding exponential noise E(0,1) and then normalized to have signal-

to-noise ratio |[signalllsn/||noise|l2n = 7. The estimators of the Universal Threshold value
2log(n)é derived from Gaussian noise and our new threshold value 2log(n)é are compared

here. The DJ’s Universal method can not give us a noise-free estimate because the noise

here has a heavier tail. More numerical simulation results are given in next section. The

software used in this paper is S+Wavelets StatSci(1993).

«©
<
<
(aV]
[aV]
(e} o
C}J [aV]
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Noisy signal Noise-free signal
<+ <
A oV
= o
(\'! [qV]
00 02 04 06 08 1.0 00 02 04 06 08 1.0
DJ’s Universal threshold New threshold

Figure 1. n=1024,wavelet=Haar, snr=7

The following theorem says that the risk will always be close to the ideal oracle risk if we

use the thresholding procedure under the new threshold selection

Theorem 8. The mean squared error of our new procedure at the finest resolution level

satisfies

~

Bli— oz < log)® [o? RS o
” ”'..’nl—- 9 2 +Zmln(i’0') (3
e
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where n; = 2 is the sample size at the finest resolution level and @ is the true wavelet
coefficients in the finest resolution level .

We can similarly prove that the above results will also apply to the other finest resolution

levels:

Corollary 1. Under the de-noising rule, the threshold value at each resolution level k& =
J=2,J-3,...is 255—]log(nk)&(1 + 0o(1)), and its corresponding risk is within a square of
log term of the ideal risk.

In words, the soft threshold estimator based on our new selection of the threshold value
guarantees that its risk is at most within a factor of essentially ([oq") of the ideal risk with
help of the oracle (see Donoho and Johnstone 1994). Hence, for the non-Gaussian cases, the
thresholding method with the new threshold value can also enjoy all the optimal properties

such as the noise-free and near ideal risk.

4. DISCUSSION

4.1 Oracle and ldeal risk

Suppose we have the observations w = (w;)l.; according to
w; =0; +ez; (i: 1,...,71),

where z; have mean zero and variance 1, and ¢ > 0 is the known noise level. We want to

estimate the object 8 = (6;) with {3-loss. We consider a family of diagonal linear projections
Tpp(w g) = ((5 w,), 1 é; € {0, 1}

Such estimators 'keep’ or ’kill’ each coordinate. If we had complete information about (6;)7,,
which is called the “oracle” in Donoho and Johnstone(1994), then the ideal projection rule is
to set §; = 1(jg,|>¢) So the ideal diagonal projection retains or throws away 6; by comparing

the signals with the noise level. This yields the ideal risk

(DP,0) Zmzn UL €
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As (6;)"_, is what we want to estimate, we do not have such an “oracle”. Hence, in
general the ideal risk R (DP, 8) cannot be attained for all # by any estimator. However, our

threshold estimator gets close to it within a squared log term.

4.2 Haar function

Consider the model (1) again: the wavelet coefficients are always i.i.d. normal only if the
regression noise are i.i.d. normal distributed and it does not matter which wavelet basis is
used. Unfortunately, this property cannot be shared by any other noise distribution. For any
i.i.d. non-Gaussian regression noise, the wavelet coefficients of the regression observations
are not i.i.d. in general. At most they are uncorrelated within each resolution level. However,
there is one exception: if we use the Haar wavelet basis, then in the model (1) with any
distribution of i.i.d. regression noise their wavelet coeflicients are still i.i.d. within each
resolution level. In other words, among all noise distributions, the Gaussian distribution is
the only one that preserves the i.i.d. property from regression noise to wavelet coeflicients,
for all wavelet basis. On the other hand, amongst all commonly used wavelets, the Haar
function is the only wavelet that preserves the i.i.d. property from regression noise to wavelet
coefficients in each resolution level, no matter what kind of a distribution the noise has.
This can be easily checked by looking at the length of the support of a mother wavelet (see

Daubechies 91).

4.3 Threshold selection with general wavelet basis

For Gaussian noise, we know that the wavelet basis itself has no influence on the selection of
threshold value. We do not have to modify our procedure if we want to use a different wavelet.
However, when the regression has non-Gaussian noise, things will be totally different. The
wavelet basis will be involved in the selection of threshold value. Theoretically we need to
modify the threshold values if we want to change the wavelet basis. Furthermore since the
wavelet coefficients in general have different distributions at different resolution levels, we
also need to change the threshold values at different resolution levels. Therefore, when we go
from Gaussian noise to non-Gaussian noise, not only are the wavelet coefficients no longer

1.1.d., but also the wavelet basis itself plays a role in the threshold value selection.
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In Section 3, we investigated model (1) for the exponentially distributed noise with a Haar
wavelet basis. The Haar wavelet transformation keeps the 1.1.d. property within each wavelet
resolution level for any i.1.d. regression noise distribution. Now we continue our discussion of
Section 3: we keep the i.i.d. exponential distributed noise, but we change from Haar wavelet
function to a general wavelet function like D4 or S8 of Daubechies wavelets. The follow

theorem tells us how the wavelet basis affects the selection of threshold value:

Theorem 4. To achieve the optimal de-noising, the threshold value at each resolution

level bk =J-1,J-2,J-3,...18

Bt .
A =272 1r§1ia<)%{a,}log(nk)0'(l + o(1)),

where a;, 1 < ¢ < S, are the absolute value of the components of the underlying mother
wavelet function. The corresponding risk of the new thresholding estimator is still within a

squared log term of the ideal risk.
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Figure 2. n=1024, wavelet=58, snr=7
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Figure 2 shows the noisy Jumpsine function with exponential noise (0, 1) normalized to
have signal-to-noise 7. Daubechies’s S8 wavelet is used for both the DJ-Universal estimator
and our-new threshold estimator. The data size is 1024.

For non-Gaussian noise, the wavelet basis has some effect on both the selection of the
threshold value and its induced risk. However, this effect is limited to within a constant
factor. It is not large enough to give a different rate. A brief proof of this result is given in

the appendix.
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00 02 04 086 0.8 1.0 00 02 04 086 038 1.0
Heavisine Doppler

Figure 3. Four functions with n=2048, snr=5

5. SIMULATION AND CONCLUSION

5.1 Simulated results

Some numerical simulations are conducted to compare the performance of our new threshold
rule with the DJ-Universal, the DJ-Minimax, as well as the DJ-Adaptive( hybird of SURE
and Universal) methods. Figure 3 displays four functions, Blocks, Bumps, HeaviSine and
Doppler, which were used in Donoho and Johnstone(1994,1995). Figures 4 and 5 are the

noisy versions with the four functions added with Gaussian noise N(0,1) and Exponential
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Figure 4. Four functions added with Gaussian noise N(0,1), n=2048 and snr==§
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Figure 5. Four functions added with Ezponential noise E(0,1), n=2048 and snr=5
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Figure 6. Threshold estimators for the Ezponential noisy data

distributed noise E(0, 1) respectively. The signal-to-noise ratio is set to be 5. More noisy
spikes are seen from the Exponentially distributed noise than those from Gaussian noise,
even though they have the same standard deviation. Figures 6-9 show the results of the four
wavelet threshold estimates for the four functions added with Exponential noise E(0,1)
which are displayed in Fig.4. In order to save space, we omit the displays of the estimates
for the Gaussian noise N(0,1) cases. These can be found in Donoho and Johnstone(1994).

For the Blocks function, we use the Haar basis functions. The two new estimators are
constructed based on the threshold values which are determined by log(n) and 2xlog(n) with
the level adjustments of Theorem 2 and Corollary 1. For the functions Bumps, HeaviSine
and Doppler, we use the wavelet function S8. The new estimators 1 and 2 are constructed
respectively with 1.517166*log(n) and 2xlog(n) based on the Theorem 4. From the pictures
we see that the reconstructed estimator based on the Adaptive method displays a lot of noise.

The Universal estimator shows much less noise while there are still some blips left. The New
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Figure 7. Threshold estimators for the Ezponential noisy data

threshold 1 gives us an even better display which is based on log(n) for the Blocks function
and 1.517166*log(n) for the other three functions. The New threshold 2 gives us an excellent
"noise-free’ estimator which is constructed from 2#log(n). From visual assessments of quality
of fit, the new estimators dominate the DJ-methods when the noise follows an Exponential
distribution.

However, this is only the first half of the story. It is known that an estimator which is
visually preferable shows the worse numerical result when the noise are Gaussian. This is
described as the divergence between the usual numerical and visual assessments of quality
of fit, see Donoho and Johnstone(1994). Now we look at the second half of the story. Table
1 and 2 give the results of the numerical study. The only difference between Table 1 and
Table 2 is their signal-to-noise ratio. Table 1 contains the simulation results when the signal-
to-noise ratio is equal to 7, and Table 2 is the results when the signal-to-noise ratio is 5.
The columns for Universal, Minimax, Adaptive in the tables are the results of Donoho and

Johnstone’s three estimators. The columns listed as Newl, New2 and New3 correspond
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Figure 8. Threshold estimators for the Ezponential noisy data

to our new estimators based on log(n), 1.517166 % log(n), and 2 % log(n). For each of the
several sample sizes, each of the four functions, and each of the two noises, 100 replications
were performed. The average root mean squared errors and their standard deviations are
tabulated. The dark numbers are the smallest average root mean squared errors for each
row.

From the tables, we can see that Table 1 and 2 give us similar features:
First let us look at the comparison between the two categories of the DJ-methods and our
new methods:
(1). The new estimators are better for all cases studied and every large samples ( n > 2048
) when using £(0, 1) noise.
(2). The new estimators completely dominate the HeaviSine case and the Doppler case for
large samples ( n > 1024 ) .
(3). The DJ-estimators win all Blocks and Bumps studied when the noise is N(0,1). They

also control the small sample studies of Doppler.
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Figure 9. Threshold estimators for the Ezponential noisy data

Second, we can see the divergence phenomenon between the usual numerical and visual
assessments among the three new estimators with the exceptions of HeaviSine where New
2 and New 3 dominates the N(0, 1) noise and E(0, 1) noise categories.

Third, amongst the DJ-methods, the Adaptive Hybird method totally controls the Bumps
with N (0,1) noise case and small samples of F(0, 1) noise. It is also competitive or close
to the best for the Blocks case with N (0, 1) noise. However, it did poorly for the Blocks
case with £(0, 1) noise, especially, it is the worst for large samples. The Minimax method
shows the power in Doppler and HeaviSine with N (0, 1) noise. The Universal method wins
HeaviSine with £(0, 1) noise.

Finally, the differences can partially be explained by the two different categories of the
underlying functions, Blocks and Bumps versus HeaviSine and Doppler:

Blocks and Bumps have many features in the high resolution levels which favors the small

threshold values. On the other hand, HeaviSine and Doppler have less or no features in the
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high resolution levels which results in the advantage of the large threshold values.

In summary, the DJ-methods lose power for the Exponential noise study, because their
methods are all based on the Gaussian noise. Without the normality assumption, Stein’s

unbiased estimator, minimax estimation or minimax Bayes estimation at least need to be

justified or modified if they are still to work for non-Gaussian noise.

n Universal Minumazr Adaptive New 1 New 2 New 3
E(0,1) 256 0.986(0.112) 0.719(0.076) 0.725(0.085) 0.746(0.081) 0.962(0.111) 1.191(0.137)
Blocks 512 | 0.776(0.078) | 0.602(0.056) | 0.682(0.063) 0.606(0.058) | 0.767(0.072) | 0.950(0.087)
Haar 1024 0.607(0.036) 0.514(0.035) 0.658(0.059) 0.500(0.032) 0.605(0.034) 0.718(0.035)
2048 | 0.465(0.027) | 0.413(0.029) | 0.628(0.052) | 0.412(0.026) | 0.478(0.027) | 0.567(0.028)
4096 | 0.412(0.016) | 0.397(0.018) | 0.621(0.035) | 0.392(0.015) | 0.458(0.015) | 0.581(0.015)
N(0,1) [ 256 | 1.268(0.124) | 0.806(0.078] | 0.643(0.056) | 0.888(0.089) | 1.236(0.119) | 1.536(0.123)
Blocks 512 0.979(0.072) 0.653(0.048) 0.552(0.037) 0.706(0.053) 0.966(0.069) 1.208(0.078)
Haar 1024 0.750(0.041) 0.527(0.030) 0.494(0.027) 0.565(0.032) 0.733(0.034) 0.865(0.034)
2048 | 0.559(0.022) | 0.417(0.017) | 0.434(0.017) 0.453(0.018) | 0.584(0.022) | 0.698(0.022)
4096 | 0.484(0.022) | 0.379(0.014) | 0.406(0.015) 0.436(0.014) | 0.544(0.013) | 0.629(0.012)
E(0,1) | 256 | 1.850(0.167) | 1.234(0.109) | 0.856(0.072) | 1.422(0.118) | 1.830(0.135) | 2.181(0.149)
Bumps | 512 | 1.384(0.100) | 0.964(0.065) | 0.764(0.059) | 1.031(0.069) | 1.845(0.087) | 1.595(0.092)
S8 1024 | 1.087(0.057) | 0.763(0.041) | 0.684(0.046) | 0.789(0.040) | 0.982(0.047) | 1.152(0.053)
2048 | 0.736(0.028) | 0.583(0.023) | 0.557(0.044) | 0.549(0.020) | 0.661(0.022) | 0.767(0.024)
4096 | 0.550(0.015) | 0.477(0.016) | 0.490(0.046) | 0.438(0.014) | 0.485(0.013) | 0.541(0.014)
N(0,1) [ 256 | 2.085(0.145) | 1.282(0.107) | 0.889(0.074) | 1.583(0.107) | 2.022(0.112) | 2.955(0.127)
Bumps | 512 | 1.600(0.106) | 1.076(0.070) | 0.735(0.035) | 1.164(0.071) | 1.520(0.081) | 1.788(0.087)
S8 1024 | 1.266(0.050) | 0.862(0.038) | 0.721(0.028) | 0.895(0.082) | 1.129(0.038) | 1.521(0.042)
2048 | 0.857(0.027) | 0.625(0.022) | 0.509(0.016) | 0.601(0.019) | 0.748(0.021) | 0.869(0.021)
4096 | 0.618(0.014) | 0.486(0.013) | 0.440(0.010) | 0.453(0.011) | 0.531(0.012) | 0.604(0.013)
E(0,1] | 256 | 0.489(0.01) | 0.497(0.064) | 0.495(0.087) 0.460(0.057) | 0.441(0.043) | 0.448(0.038)
Heavisine | 512 | 0.420(0.034) | 0.441(0.050) | 0.425(0.056) 0.399(0.045) | 0.375(0.085) | 0.381(0.033)
58 1024 | 0.957(0.032) | 0.400(0.043) | 0.366(0.052) 0.361(0.035) | 0.329(0.028) | 0.826(0.026)
2048 | 0.811(0.019) | 0.355(0.026) | 0.315(0.035) 0.218(0.022) | 0.295(0.018) | 0.293(0.017)
4096 | 0.284(0.015) 0.529(0.019) 0.291{0.041) 0.292(0.014) 0.270(0.012) 0.268(0.012)
N(0,1) [ 256 | 0.509(0.037) | 0.437(0.045] | 0.471(0.038) | 0.424(0.044) | 0.439(0.040] | 0.457(0.087)
Heavisine | 512 | 0.485(0.025) | 0.382(0.028) | 0.408(0.028) | 0.365(0.027) | 0.374(0.028) | 0.394(0.028)
S8 1024 | 0.359(0.020) | 0.225(0.020) | 0.841(0.021) 0.221(0.020) | 0.320(0.020) | 0.380(0.019)
2048 | 0.308(0.016) 0.295(0.016) 0.301(0.016) 0.295(0.016) 0.293(0.016) 0.298(0.016')
4096 | 0.279(0.011) | 0.272(0.012) | 0.275(0.011) 0.274(0.011) | 0.270(0.011) | 0.278(0.011)
E(0,7) | 256 | 1.127(0.099) | 0.812(0.070) | 0.743(0.087) | 0.879(0.077] | 1.116(0.093) | 1.303(0.089)
Doppler | 512 | 0.833(0.051) | 0.648(0.044) | 0.674(0.052) 0.681(0.039) | 0.799(0.036) | 0.878(0.034)
58 1024 0.644(0.031) 0.543(0.032) 0.532(0.089) 0.510(0.028) 0.580(0.027) 0.6'55(0.026')
2048 | 0.486(0.019) | 0.449(0.020) | 0.435(0.032) | 0.399(0.017) | 0.421(0.016) | 0.454(0.017)
4096 | 0.871(0.014) 0.875(0.018) 0.367(0.040) 0.324(0.014) 0.825(0.012) 0.345(0.012)
N(0,1) [ 256 | 1.292(0.106) | 0.875(0.072) | 0.822(0.123) | 0.975(0.076) | 1.254(0.085) | 1.429(0.071)
Doppler | 512 | 0.951(0.060) | 0.690(0.047) | 0.712(0.059) 0.736(0.040) | 0.860(0.037) | 0.942(0.040)
58 1024 | 0.718(0.029) | 0.546(0.024) | 0.551(0.084) | 0.532(0.023) | 0.636(0.023) | 0.712(0.019)
2048 | 0.525(0.016) | 0.425(0.016) | 0.403(0.027) | 0.396(0.015) | 0.448(0.014) | 0.485(0.015)
4096 | 0.387(0.012) | 0.338(0.012) | 0.336(0.011) | 0.318(0.011) | 0.339(0.012) | 0.366(0.011)

Table 1. Average root mean square errors of estimation with SNR=7

5.2 Conclusion
For nonparametric regression with non-normal noise, the problem becomes very compli-
cated, because within each resolution level we lose the independent property and among the

different levels, we lose the identical distribution property. The wavelet basis itself is involved
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in the selection of the threshold value. We have to adjust the threshold values according to
the tail behavior of the empirical wavelet coefficients at each resolution level. We showed
the selection rule of the optimal threshold value through the shifted Exponetial distribution
and proved that for non-Gaussian noise regression, the wavelet shrinkage procedure enjoys
the adaptive proi)erty for various smoothness classes and the risk is within a log factor to
the ideal risk. In words, the wavelet shrinkage procedure can be applied to non-Gaussian
noise with certain adjustment of the threshold value. For a general discussion of estimat-
ing nonparametric regression with i.i.d. non-Gaussian noise through wavelet thresholding

method, see Wu(1997b).

n Unuversal Minimaz Adaptive New 1 New 2 New 3
E(0,1) 356 | 0.995(0.121) | 0.726(0.083) | 0.735(0.096) | 0.755(0.091) | 0.968(0.114) | 1.164(0.121)
Blocks 512 | 0.761(0.054) | 0.607(0.058) | 0.695(0.084) | 0.609(0.050) | 0.755(0.054) | 0.911(0.060)
Haar 1024 0.590(0.033) 0.509(0.033) 0.6‘28(0.086') 0.491(0.030) 0.571(0‘029) 0.6'53(0.030)
2048 | 0.461(0.024) | 0.431(0.026) | 0.6221(0.058) | 0.412(0.023) | 0.470(0.022) | 0.539(0.021)
4096 | 0.402(0.014) | 0.395(0.018) | 0.625(0.087) | 0.386(0.013) | 0.483(0.013) | 0.483(0.013)
N(0,1) [ 256 | 1.244(0.103) | 0-813(0.073) | 0.730(0.114) | 0.893(0.081) | 1.182(0.088] | 1.387(0.076)
Blocks 512 | 0.944(0.068) | 0.640(0.047) | 0.615(0.054) | 0.696(0.050) | 0.926(0.063) | 1.113(0.060)
Haar 1024 | 0.722(0.036) | 0.515(0.030) | 0.482(0.028) | 0.539(0.027) | 0.665(0.029) | 0.767(0.028)
2048 0.548(0.024) 0.415(0.021) 0.430(0.020) 0.447{0.021) 0.551(0.020) 0.615(0.016}
4096 | 0.462(0.012) | 0.371(0.012) | 0.413(0.011) | 0.416(0.011) | 0.491(0.010) | 0.533(0.009)
E(0,1) 356 | 1.626(0.147) | 1.119(0.105) | 0.826(0.079) | 1.249(0.102] | 1.557(0.119) | 1.795(0.133)
Bumps | 512 | 1.268(0.093) | 0.908(0.065) | 0.761(0.061) | 0.950(0.062) | 1.194(0.072) | 1.386(0.080)
58 1024 | 0.981(0.048) | 0.797(0.036) | 0.678(0.042) | 0.793(0.082) | 0.894(0.037) | 1.082(0.041)
2048 0.6'92(0.028) 0.558(0.024) 0.528(0.036) 0,514(0.021) 0.6038(0.023) 0.6'88(0.025)
4096 | 0.507(0.015) | 0.452(0.015) | 0.453(0.040) | 0.408(0.013) | 0.441(0.013) | 0.490(0.013)
N(0,1) ["B56 | 1.829(0.120] | 1.253(0.093) | 0.868(0.066) | 1.380(0.087) | 1.715(0.100] | 1.970(0.108)
Bumps | 512 | 1.469(0.071) | 1.008(0.051) | 0.783(0.093) | 1.061(0.047) | 1.841(0.053) | 1.558(0.061)
58 1024 | 1.117(0.048) | 0.794(0.084) | 0.654(0.022) | 0.795(0.029) | 0.988(0.037) | 1.141(0.038)
2048 0.793(0.028} 0.589(0.023) 0.519(0.029) 0.553(0.019) 0.6'71(0.021) 0.775(0.025)
4096 | 0.563(0.014) | 0.451(0.018) | 0.404(0.010) | 0.414(0.011) | 0.480(0.012) | 0.539(0.011)
E(0,1) 256 | 0.417(0.058) | 0.449(0.084) | 0.426(0.099) | 0.420(0.079) | 0.390(0.063] | 0.385(0.053)
Heavisine | 512 | 0.373(0.035) | 0.423(0.054) | 0.378(0.046) | 0.378(0.048) | 0.345(0.040) | 0.343(0.036)
58 1024 | 0.329(0.027) | 0.377(0.039) | 0.881(0.082) | 0.339(0.031) | 0.305(0.024) | 0.300(0.022)
2048 | 0.298(0.019) | 0.851(0.026) | 0.302(0.029) | 0.813(0.021) | 0.285(0.017) | 0.280(0.016)
4096 | 0.277(0.012) | 0.326(0.016) | 0.288(0.048) | 0.290(0.014) | 0.267(0.011) | 0.264(0.011)
N(0,1) ["256 | 0.418(0.031) | 0.390(0.040) | 0.400(0.037) | 0.384(0.038) | 0.377(0.087) | 0.384(0.036)
Heavisine | 512 | 0.370(0.023) | 0.854(0.028) | 0.360(0.026) | 0.847(0.029) | 0.344(0.028) | 0.353(0.026)
58 1024 | 0.322(0.019) | 0.309(0.021) | 0.812(0.020) | 0.303(0.021) | 0.298(0.021) | 0.303(0.021)
2048 | 0.284(0.015) | 0.281(0.015) | 0.281(0.015) | 0.282(0.016) | 0.276(0.016) | 0.278(0.015)
4096 | 0.267(0.011) | 0.266(0.011) | 0.265(0.011) | 0.268(0.011) | 0.263(0.011) | 0.264(0.011)
E(0,1) 256 | 1.058(0.103) | 0.779(0.075) | 0.792(0.099) | 0.829(0.073) | 0.998(0.066) | 1.105(0.061)
Doppler | 512 | 0.741(0.046) | 0.604(0.045) | 0.631(0.057) | 0.607(0.089) | 0.668(0.032) | 0.725(0.034)
58 1024 | 0.585(0.026) | 0.517(0.029) | 0.522(0.044) | 0.476(0.026) | 0.519(0.022) | 0.560(0.020)
2048 | 0.442(0.019) | 0.429(0.024) | 0.411(0.038) | 0.377(0.020) | 0.382(0.017) | 0.404(0.017)
4096 0.347(0.014) 0.865(0.017) 0.344(0.032) 0.817(0.015) 0.311(0.013) 0.323(0.013)
N(0,1) [ 256 | 1.179(0.086] | 0.812(0.059) | 0.861(0.093) | 0.885(0.057) | 1.062(0.045) | 1.166(0.046)
Doppler | 512 | 0.893(0.042) | 0.624(0.035) | 0.643(0.026) | 0.632(0.026) | 0.713(0.027) | 0.785(0.030)
58 1024 | 0.641(0.029) | 0.506(0.026) | 0.528(0.032) | 0.485(0.023) | 0.551(0.022) | 0.596(0.021)
2048 | 0.472(0.014) | 0.40000.014) | 0.403(0.013) | 0.369(0.014) | 0.401(0.013) | 0.438(0.013)
4096 0.357(0.010} 0.322(0.011) 0.832(0.018) 0.804(0.011) 0.321(0.011) 0.337(0.010)

Table 2. Average root mean square errors of estimation with SNR=5
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6. APPENDIX
Proof of theorem 1:
It is easy to see that
j—J
Zik = 27 [(exgi-igr + €xzi-igz + ..+ €(2k+1)27~i=1)

—(€(ak+1)27-3=141 + €2k41)27-i-142 + ... + €k+1)27-4)],

are identical and independently distributed for a given j because of the i.i.d. assumption on
(e:)7~, . Now we want to compute the distribution of the coefficient noise at the finest level.

For the Haar wavelet transformation,

(€3k41 — €2k42) Lk =0....,2771 — 1.

1
Zy1k = 7§

Obviously they are i.i.d. and have the same density function. Let

Zl = %(61 - 62)

Zg:‘-fg

then the joint density function of Z = (71, Z3) can be derived from the exponential dis-

tribution of ¢; and e;. After integrating with respect to Z3, we get our desired density

function.
fz (1) = g e-(ﬁij;iﬁz+2)1\/§zl+z2+a>0132+a>0 dzs
= \/go_(e—@lzoo + Cﬁ'—:xlzmo)
We can easily get the cumulative distribution function of Zy_; &, for k =0...., 2J-1 1.
2= V4TS
F(z) =2 —Lico+ (1~ £ ) Leso-

The following lemmasays that @alog(nl) is the smallest level that all the noise in the finest
resolution level cannot cross over. Therefore, following the lemma, the proof of theorem 2

becomes obvious.
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Lemma 1. Ifn; = % — oo, then

Pr(, max_ {21} >ﬁv(log(m)ﬂog(log(nl))—zog(z))) 0.

and
Pr(maxocs<n,~1{Zs-11} > 5C o(log(ny) —log(log(ny)) —log(2))) — 1.
Proof:
V2
Pr(, max_| {Zs-16} £ =50 (log(n1) +log(log(n)) — log(2)))
I:F —o(log(n1) + log(log(ni)) —log(2)):|
_[ L~ Zx(1og(n1)+ogltog(ny )~ tog<2>>] '
=1{1-
2
= (1 ) ~ T 5 1.
nllog ny)
So
Pr( {271k} > ﬁo(log(m) + log(log(n1)) — log(2)))
0<k<nl 1 2
=1-Pr( max {Z } < —\/—5—0'(10 (n1) + log(log(ny)) — log(2)))
= o<hem 1 J-1k5 S gl\n1 gLeoginy g
—+0
Similarly,

Pr(, max_ {Zr-14} < */go(zogw — log(log(n1)) — log(2)))

]:F (=—0c(log(n1) — log(log(n1)) — 10.‘7(2))}

[1 1~ - (tog(n1)~log(log(n1)) - tog<z>>] ‘
5°

(1 log ) ~ gloa(m) ni -0
1

21
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Hence,

."Pr(0<k<a;lx {Z1-14} > ‘\-/—Za(log(nl) —log(log(ny)) — log(2)))

=1- Pr( <{nax {Z5-1x} < \—é——%o‘(log(nl) log(log(n1)) — log(2)))

~ 1

Proof of theorem 3:
It is enough to consider the univariate case. Let w = 6 4+ JZ, where f;(z) = —T_l”>° -+

ef; 1z<o. The thresholding estimator of § is § = sgn(w)(Jw| — ). We want to compute

its Lo loss:

E(0-6) = E((w=A=0) Lysxr+ (w+ =0 lycor+ 61ly2cs2)

w—8

1 Su-
= / (’w—)\—-g)z\—/-_ig[ \/—le<9 +e—\/:—5_8-1w>9] dw
w>A

1

+/ (w+ A= 0)2—=—[eV2* T 1y cp + e~V T 1y sg] dw + 2 Ely2c a2
w -\ \/55 -

— 0+ (i; - ..2‘/—..2.95)3-%—5“—9) + (55-; + ?96)6“’?“*”)11919

s loeem €+%%M£W”w%%mfmA

s Jpere o & - oo g0,
82 V2,0~ (r-t)

= 0%1pacrz + N lgaspa + 67 + ((-2— - ——95)

“ o (52 2 2 2
(& gy B0 _ )10y — (54 L) (28000 - mF 040 1,

(%'i - ﬁ%) ( FO+0) _ o= 0-0) > log<-a

Therefore,
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. ! .
By taking A = "—‘i}.’;—ll(l +o0(1)) and 6 = 7”;-, we finish the proof of theorem 3.
Before we start to prove Corollary 1, first we introduce a lemma. Its proof is straight-
forward according to the property that the sum of i.i.d. exponential rv’s has a gamma

distribution.

Lemma 2. If (X;)5., are i.i.d. and exponentially distributed with mean 0 and variance

1, then X = Zf___l X; has the density function

z k k-1 .
fete) = e @

Qutline of the proof of Corollary 1
By using the result of Lemma 2, we can easily prove that the Z; . have the following

distribution:

o L—m—le—y

L-1
B 1 L+m—-1\ 1 L+m—-1/ Yy
Fz,u(a) =1 2m2=0 < m > (2) 7iz (L —m — l)!dy’

where [ = 27-1-7 £ =0,1,2,...,2 — 1l and j = J — 2,J — 3,.... Therefore, as n = oo, it

is easy to show that

' log(n) + Llog(log(n))
pr (mkaxZJ,k > oL —0

and

pr (mkaij,k > tog(n) —\/lio%(log(n))> =1

Similarly, we can finish the proof of theorem 4 through the following lemma:

Lemma 3. At the finest resolution level, Z;_; r have the following density function :

vz + Zf:ll ai = f; P

b
aj }1\/2_’-1;-1-2?;1 ai—Zfix bp>0

(ezp{—

V2z + 215;1 ai — 2521 by )
& } '\/2$+Z;‘g;1 a‘—Z:::l b"<0'2’

+ exp{
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where a; are positive components and b; are absolute value of negative components of the

underlied mother wavelet, and

§y—-1
1 _ aj h . .
¢ = —g——— where 7 # j

[1:2,(aj —ai)

b2t
S
[Tp2: (b = 6)

ch = where p # |

and we assume that a; #a;fori#j,1<i,j<Syand b #£b, forp#1,1<p, 1 <5,

Remark: When there exists one pair or more pairs of a;,a; or b;,b, such that a; = a;
or by = by, the distribution of Z;_; ; will be slight different, but it will not affect our ﬁnal
results.

We omit the tedious proof (Wu 1997a). The kéy fact 1s that for any positive constants
w1, wa, . . ., wg with the assumption that w; # w; for 7 # j, where 1 < ¢, j < 51, the weighted
sum of exponential random variables y; ~ E(0,1), Z = Z?zl w;y; has the following distri-

bution function:

The proof can also be found in Wu(1997b).

[Received February 28, 1998. .]
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