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Abstract

The number of fixed points in the matching problem is well known to have a limiting -
Poisson distribution with mean 1. Diaconis (1987) gives the upper bound £ for the total
variation distance where m is the length of the permutation.

We present exact integral representations, valid for every m, for the total variation
distance as well as the CDF itself of the number of fixed points Z,,. These integral repre-
sentations lead to sharper analytical bounds, series expansions, and very sharp numerical
approximations. Furthermore, they provide a direct proof that the first m moments of
Zm and the Poisson (1) distribution exactly coincide and they also show an interesting
sign-changing property for the Poisson approximation of the distribution of the number of
fixed points.

This sign-change result establishes zero to be the mode of Z,, for even m and 1 as the
mode for odd m, also an interesting oscillation property.-

Finally, we also study the case of random decks. In particular, we show that the
number of fixed points has exactly a Poisson distribution if the deck size m has a geometric
distribution, and we ask how to guess the size of the decks if we are told the observed
number of matches.
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1. Introduction.

This article is about the matching problem. The matching problem may be de-
scribed in many different ways and is a popular example in the theory of probability.
Mathematically, it can be formulated in the following way:

Let m > 1 be a fixed positive integer and let {m(1),7(2),...,7(m)} denote a random
permutation of {1,2,...,m} in the sense of being selected from a uniform distribution on
the set of m! permutations of {1,2,...,m}. Let Z,, denote the number of fixed points of
T, l.e.,

Zm = F#1: () = 1. (1)
The matching problem studies the random variable Z,,. It is well known that Z,, con-
verges in law to a Poisson distribution with mean 1 as m — co; furthermore, the Poisson
approximation is very accurate even for small m. Evidence of this may be seen in Bar-
bour et al, (1992), among a number of places. Somewhat more intriguing is the moment
matching property; even the first m moments of Z,,, are exactly equal to the corresponding
moments of the Poisson (1) distribution. See Diaconis (1987). We show in Section 5 that
even the exact distribution is Poisson if m is chosen according to a geometric distribution.
We also ask how to guess the value of m if one is told how many matches were obtained.
This seems like a fairly interesting question.

Bounds on the error of the Poisson approximation in the matching problem are readily
available; they differ in their complexity. An appealing bound is given in Diaconis (1987):
the total variation distance between the exact and the limiting distributions of Z,, is at
most 2%, for any m.

In this article, we first present an exact integral representation for P(Z,, < k) for
every m and k < m. Using this, we also present an exact integral representation for the
total variation distance between Z,, and the Poisson distribution with mean 1. Some
interesting consequences of these exact representations are the following:

a. For any m, P(Z,, < k) — P(Poi(1l) < k) is alternatively negative and positive for any
two successive values of k,0 < k£ < m;

b. The same is true also for P(Z,, = k) — P(Poi(1) = k);

c. The Poisson approximation to the distribution of Z,, satisfies several bounds; for
instance,

i. The total variation distance satisfies the sharper bound

m

drv(Zm, Poi(1)) < mTD)

for all m > 1, and

ii. The Kolmogorov distance satisfies the bound

m

21:12% |P(Zm < k) — P(Poi(1) < k)] < c(m)m7



where the constant ¢(m) < 3 for all m > 4;

d. The total variation distance admits an explicit series expansion, the first few terms of
which give a surprisingly accurate approximation essentially for any m:
2™ m*'+12m® +51m? 4 88m + 56
(m+1)!  m4+ 14m3 4+ Tim2 + 154m + 120’

drv (Zm, Poi(1)) & (2)

e. The most likely number of fixed points is alternatively 0 of 1. In fact, the mode of
Zm 18 0 for even m and 1 for odd m;

f. The first m moments of Z,, and the Poisson (1) distribution coincide; this is known,
but we give a direct proof using the integral representation for P(Z,, < k) itself.

The integral representation for P(Z,, < k) comes from a careful calculation. The
calculation is heavy at times and uses certain facts about Hypergeometric and incomplete
gamma functions; but at the end, things fall into place and a simple exact representation
arises. We attempted to find a simpler derivation of the final answer avoiding the Hyper-
geometric functions, but did not succeed. The very special facts about the Hypergeometric
and incomplete gamma functions used in this derivation are stated at the beginning for an
easier flow of the derivation. The literature on the matching problem is rich and old; one
may see Feller (1973) and Montmort (1980) for an entry and a historical perspective.

2. Poisson Approximation of the CDF.
We state the integral representation first.

2.1. Exact Expression

Theorem 1. Let 0 < k < m be a fixed integer. Then

(=1)m—*
Kl(m — k- 1)!

P(Zm < k) - P(Poi(1) < k) = / =11 = )Rl (m + 1,8)dt, (3)

0

¢
where y(m + 1,t) is the incomplete gamma function [ e~?v™dv.
0

2.2. Certain Technical Facts

The derivation of the integral representation (3) requires a number of technical facts.
These are stated below.

Lemma 1.

Let pf@ denote the general hypergeometric series and

o T
o, z) = /e—tto‘—ldt,'y(a,x) = /e"tt""ldt
z 0



the incomplete gamma functions. Then

T(1+4,-1) _ < (<1)
= 4
ej! ; ! )
m—k—1 m ' m
Z < ,)t:’ = (1+t)m—tm—k< > 2F1(1,—k;m—k+1;—t)
- J k
j=0
(5)
0 [ o]
/e—ttm—k oF1(1, —k;m — k + 1; —t)dt = (m——k)!/e‘t(l—l-t)kdt (6)
0 0
1
/ettm"c oy (1, —k;m —k+ 1;¢t)dt = mj—l 2Fo(l,m+1m—-k+1,m+2;-1) (7)
0

1
2F2(1,m+1;m—k+1;m+2;—1)=(m—k)/ (1=t)™*1 [ Fi(m+1;m+2;~t)dt
0

(8)
1 1
VFa(m o+ Tim o+ 2 —t) = T Lo / (1+w)™e=$¥dy 9)
21
k
P(Poi()) > k) = ”Y(_*];'li) (10)

Remark.

In the above, (4), (5), (6), (7) and (9) may be seen in Gradshteyn and Ryzhik
(1980), (8) may be seen in Luke (1975), and (10) is well known. '

2.3. Proof of the Integral Representation.
We will now present a derivation of the integral representation in (3).

Proof of Theorem 1:

Step 1.

By using the usual formula for the probability of the occurrence of exactly j of m
events,

P(Zm=1j) = ]l Z il (11)
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Step 2.

Hence, by a change of variable, and (4),
m—

P(Zp > k) Zm],Z

=0 =0

-1

o]

,(m_] '/ ~tddt (12)

-1

('bll-—l

Step 3.
From (12) and (5),

P(Zm > k) = %/e—t{(1 )™ (’I’:) £k By (1, —k;m — k 4+ 1; —t) bt

o0

1
= 1 —_——_—_— —ttm—k F —k" _ .
ek!(m—k)!{/e 21 (1, —k;m — k + 15 —t)dt
0
0 B
+/ eTmTE 2Fy(L —k,m— k+ 15 ~t)dt} (13)
-1

Step 4.
By substituting successively (6), (7), and (8) into (13),

(e o]

P(Zp>k)=1- 1 e~ t(1 +t)kdt + (zym*
ek! kE(m —k—1)I(m+1)
0
1
/ (1= )™ *=1 By (m+1;m + 2% —t)dt (14)

0

Step 5.
By (9) and Fubini’s theorem,

1 1 1
1 t 1
/(1—t)m-k—1 Fi(m + Tim +2—0)dt = T /(1 pym—k- 16‘5(/(1+u)m6_5u du)dt
0 0 -1




1 2
- / (1 — £)m=h-1( / e~ $7 2™ ) dt
0 0
1
=(m+1) /t m=1(1 — )™ *=ly(m + 1, t)dt (15)
0

Step 6
Therefore, from (14) and (10),

P(Zm > k) = P(Poi(1) > k) + (-1

k!(m-—k—l)!o/t_m N1 =ty k=ly(m + 1, 8)dt,

on writing

i k —t,k v(k+1,1)
— = gt =1-1EFLY
ek/ 1+ t)*dt = / t .

0

(16)

Formula (3) follows.
Corollary 1.

If m is even, P(Z,, < k) is overestimated by P(Poi(1) < k) for all odd k£ < m and
underestimated by P(Poi(1) < k) for all even k£ < m. If m is odd, exactly the opposite is
true.

Proof: Follows from (3).

2.4. Bounds on the Error: Kolmogorov Distance

The integral representation (3) in Theorem 1 is especially suitable for bounding the
error of the Poisson approximation to P(Z,, < k). A simple bound is presented below.

Theorem 2.

a.
su P(Z, <k)— P(Poi(l) <k)| <c(m)———, 17
B [P(Zm < B) = P(Poi(1) < B)| < elm) ="y (1)
where
1 m 1
c(m)—ﬁ m—1 elzm (18)



b. The Kolmogorov distance between Z,, and the Poisson (1) satisfies the same

bound om
sup |P(Zm < k) — P(Poi(1l) < k)| <e(m)—r,
oup |P(Zn < K) = P(Poi(1) < K) < clm) gy
for all m > 2.
Proof:
a Step 1.

By (3), for 1 <k < m —1 (and for k¥ = 0 also),

1

. 1 m—k—1,—m-—1
< k) — < = - t.
IP(Zn < K) = P(Poi(1) < K)| = ===, /(1 fym—k=lg=m=lo(m 1 1 $)d
0
. 1
~ kl(m—-k—-1)!{m+1) /(1 2 d
0
_ 1
T (m+ 1)k (m—Ek)!
m! 1
TR (m—k)! (m+ 1) (19)
as t™" ly(m+1,1) < Ly for0<t <1
Step 2.
By Stirling’s approximation, for any integer j,
eI < jI < eI jItE/2n eTH. (20)
From (19) and (20),
|P(Zm < k) — P(Poi(1) < k)|
Ty Vm enw (21)

SVar (mEymek (B JRm )

By calculus, for 0 < z < 1,2%(1 — 2)!7% > 1, and hence (Zk)m—F(L£)k > 9-m  Qubsti-
tuting this into (21), one has

. ym emm 2m
Pn < - PP 0] < T T

a local bound.



The uniform bound stated in the theorem follows from (22).

b We use part a to obtain part b

Step 1.
Clearly,
sup [P(Zm < k) — P(Poi(1) < k)| = max{|P(Zm = 0) — P(Poi(1) = 0)|
k>0
sup |P(Zm < k) — P(Poi(1) < k)|P(Poi(1) > m)}. (23)
1<k<m—1
Step 2.

By using (10), one obtains easily that

1
: S
P(Poi(1l) >m) < m 1)l (24)
Step 3.
P(Zy = 0) equals > (—jl!)j, which may be written as (1 — W) (pp 940 in
=0
Gradshteyn and Ryzhik (1980)).
Hence,
|P(Zm = 0) — P(Poi(1) = 0)|
1
= —/e”vmdv
em!
0
1
. 25
S mE) (25)
Step 4.

Combining (23), (24), and (25) with the result (17) in part a, part b now follows as
c(m)2™ > 1 for all m > 2.

We present below a brief computation on the sharpness of the bound of Theorem 2
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on the Kolmogorov distance. We denote the Kolmogorov distance by d.

Table 1
m di(Zm, Poi(1)) Bound in Theorem 2
5 .0113 .0201
6 .0032 .0056
8 .0002 .0003
10 5.46 x 10~6 1.09 x 108
20 3.22 x 10715 8.44 x 10~15

3. The Variatiovnal Distance

3.1. Exact Expression

Akin to the representation (3), the variational distance

dry(Zm, Poi(1)) = sup |P(Zm € B) — P(Poi(l) € B)|
BCZ,

also admits an integral representation. In fact, formula (3) is the building block of this
representation for the variational distance which we present below.

Theorem 3.

dTv(Zm, Poz'(l)) =

1 1

1 1

ooy} /e_ttmdt + '(‘;n-_—l)" /(2 - t)m'lt_m"lv(m +1,¢)dt (26)
0 0

Proof:

Step 1.
dTv(Zm, Poi(l))



k=0
1
11 et ) bfe_ttmdt_
L Pomy ey Rl ey

Step 2.

By formula (3), for 0 < £ <m —1,
P(Zn = k) — P(Poi(1) = k)
= {P(Zm < k) — P(Poi(1) < k)}
~{P(Zm < k—-1) = P(Poi(1) < k—1)}

_ (-
Tk (m—k—1)!

1
/t—m——l(l _ t)m—k—-l,y(m +1, t)dt
0

1
_1\m-k
G _( 1)1!)(m Ay /t‘"“l(l — )™ Fy(m +1,¢)dt
0

= % /(m — kt)t™™ N1 — )™ Ry (m + 1, t)dt,
0
on a few lines of algebra.
Step 3.
Therefore,

z—: |P(Zm = k) — P(Pot(1) = k)|
k=0

= /{mt‘m_l'y(m +1,t) Z— m(l — )™kt
0 k=0

e T

—t™™y(m + 1,t) kzﬂ o =)

}dt

1
1 —m—1 m—1
(m = 1) O/

on some more algebra.
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Step 4;
In (29), the term

1 1
/t—m_ly(m+ 1,t)dt = %/e't(l —t™)dt o (30)
0 0 '

by Fubini’s theorem.
Step 5.

If one now combines (27), (29), and (30), one gets the integral representation (26)
of Theorem 3 on some cancellation.

Corollary 2.
For all m > 2,

m

dry (Zum, Poi(1)) < (—nf—ﬁ)—, (31)

Proof:
From (26), dpv(Zm, Poi(1))
1

1
1 [ 1 1. om
S:njo/t dt+(m—1)!(m+l)0/(2—t) 1dt_(m—l—l)!°

The proof of Theorem 3 shows that the phenomenon of alternative under and overesti-
mation for the CDF that was described in Corollary 1 is true for the individual probabilities
as well. Here is the statement.

Corollary 3.

If m is even, P(Z,, = k) is overestimated by P(Poi(1) = k) for all odd £ < m and
underestimated by P(Poi(1) = k) for all even k£ < m. If m is odd, exactly the opposite is
true.

Proof:
Follows from (28).

Corollary 3 and the analytical bound (28) lead to the following result on the most
likely number of matchings, i.e., the mode of Z,,.
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Corollary 4.
If m is even and > 4, the mode of Z,, is 0; if m is odd and > 5, the mode of Z,, is 1.

Proof:
Let m be even. Then, by Corollary 3,
P(Zm =0) > P(Poi(1) = 0) = e~ = P(Poi(1) = 1) > P(Z, = 1).
For k > 2, '
2m e !

P(Zm = k) < |P(Zm = k) — P(Poi(1) = k)| + P(Poi(l) = k) < CFSVAE

by bound (28).

But e,;! < & " for k> 2 and m+1)' < £~ for m > 4, and so P(Zg, =k) < et for
all £ > 2. This shows that 0 is the mode of Z for all even m > 4. The argument for odd
m > 5 is similar and so we omit it.

3.2. Series Expansion

Formula (26) leads to a useful series expansion for the total variation distance.
The first term of the expansion is (m T and the first five terms provide an excellent
approximation to the total variation distance essentially for all m. The expansion is given
below.

Proposition 1.

_ 2m 1 —1)7
drv(Zm, Poi(1)) = 255 = o 2 T 77 (32
1=

where

2
¢j = /:rm(2 —z)ldz.
1

Proof: Step 1.

w .
In the exact formula (26) for the total variation distance, write e~% as Y (—1)? ';—J,—

and v(m + 1,¢) as Z (——%ﬁ% (see pp 941 in Gradshteyn and Ryzhik (1980)).
Step 2.
Integrate each term in formula (26) term by term. This results in
1
o .
: (=1 1 / : -1
= — t7(2 — )™ dt). 33
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Step 3.

1
In the integral f t7(2 — t)™~'dt, make the change of variable £ = 2 — ¢, and then do

an integration by parts This leads to (29) with the first term as ( +1),, the calculation is
omitted.

If one computes the first five terms in the series expansion (32), then the following
highly accurate approximation obtains:

om m* + 12m?3 + 51m? + 88m + 56

drv (Zm, Poi(1)) ‘
7V (Zm, Poi(1)) (m + 1) m® + 14m3 + 71m? + 154m + 120

(34)

We are now n a position to compare the exact variational distance in (26), the analytical
bound £y +1), in (31), the approximation in (34), and the previously known bound Z;
(e.g., stated in Diaconis (1987)). A short summary is presented below. The approximation
(34) is very accurate even for m = 3.

Table 2
m Approximation (34) Exact Value (26) Bound (31) 2;":
3 23492 23747 33333 1.3333
5 .03436 03379 .04444 26667
6 .01011 .00951 .01270 08889
8 .00059 .00042 00071 .00635
10 .00002 .000008 .00003 .00028

4. The Property of Matching Moments

The number of fixed points Z,, has the striking property that its first m moments
coincide with those of the Poisson distribution with mean 1; the earliest reference we know
of is Frobenius (1904). It is a positive feature of our integral representation (3) that it
provides a direct proof of this moment matching property without requiring group theoretic
methods. We present this below.

Theorem 4. |
Let X ~ Poi(1). Then for all 0 < r < m, E(Z7) = E(X").

Step 1. »
To prove that the first moments of X and Z,, match, it will be enough to show that

iP(Zm > k)= iP(X > k);
k=0 k=0

13



likewise, to prove that the second moments match, it will be enough to sh_q_;v,v that
oo . o«
> kP(Zpn > k) = Z (X > k).
k=0 k=0
Most generally, we shall need to show that for all r < m,
o ]
D k(k=1)...(k—1+2)P(Zn > k) Zk(k—l (k—r+2)P(X > k). (35)
k=0

Step 2.

Since P(Zm > k) =0 for £ > m, (35) is the same as

S h(k—1).. (b1 + 2{P(X > K) = P(Zn > K))

k=0

=—ik(k—l)...(k—r+2)P(X>k). (36)
k=m

Step 3.

By representation (3) in Theorem 1, the left side of (36) equals

LSRRI 2)k, D k —5 0/ ym—k=1 pmm=lo(m 1 p)de
—_ = (—l)m—k 1 m—k—1 ;—-m-1
_g(k—r+1)!(m-—k—1)l 0/(1-15) ’°» £y (m 4+ 1, t)de
( l)m —k | m—k—1y;—m—1
/{Z i 1)!(1 ~t) B ly(m 4+ 1, t)dt (37)

[T eme y(m+1,t)dt
0/ (m —r)!

1

_ 1 /’y(m—i-l,t)dt

(m—r)! g+t
0

(38)

as the quantity within {} in (37) equals —t—

(m )t

14



Step 4.
On the other hand, by virtue of identity (10), the right side of (36) equals

ks k+1,1
—Zk(k—l)...(lz—r+2)7(——;-—)
k=m )
— —v, k
= Z(k—r+1)!/e vidy
k=m 0
L
= — i el e vty
k!

= —/v""le—”P(Poz’(v) >m —r)dv
0

= —ﬁ /fu"‘lv(m —r+1,v)dv, (39)
0

again, due to the general identity (10) that P(Poi(v) > s) = ﬂ%lv) for any v, any s.

Step 5.
The expressions in (38) and (39) are equal by integration by parts and induction.

This establishes the moment matchihg property stated in Theorem 4.

5. The Case of Random Decks

~ Feller (1973, pp 112) gives some interesting variations of the matching problem, one
of which considers the target deck (which would be {1,2,...,m} in our notation) as being
constructed at random. Below we provide a collection of results for the case of random
decks; a particular amusing result is that if in the standard matching problem m is chosen
according to a Geometric distribution, then the number of matches has exactly a Poisson
distribution.

5.1. Distribution of Fixed Points

Theorem 5.

a. Suppose, in the matching problem, the size of the decks m, i.e., the length of the
permutation, is chosen according to a geometric (p) distribution with mass function
p(1 —p)™, m > 0. Then the number of fixed points has a Poisson (1 — p) distribution;

b. Suppose the size of the decks m is chosen according to a uniform {1,2,..., M} distri-
bution. Then the number of fixed points Z has the distribution

15



P(Z';’k) = Mokt2 . P(Zpp4r = k) + simmrn LS k< M;
P(Z=0)=1-Y PZ=k. . . (40
. B k=1 o
c. Suppose the size of the decks 'f;n;.'is chosen according to a Poisson (M) distribution.
Then the number of fixed points Z has the distribution

B A o
CP(Z=k) = %/e't.t%_l‘J(k ~1,2V4) dt, (41)
0

where J denotes the usual Bessel J function;

, The special value P(Z = 0) is tabulated below for geometric, Poisson, and Uniform
decks with the same expected deck size = 5, 10, 25,50. The limiting value is e™! = .36788.
‘Note how interestingly, the convergence to the limiting value is from opposite directions
for uniform and geometric decks and that the Poisson deck converges the fastest. Also,
note that the fixed points of a uniform deck behave, asymptotically, like the fixed points
of a nonrandom deck with deck size M + 1; that is what equation (40) says. The proof of
Theorem 5 uses the results in Section 2; we are going to omit the proof.

Table 3: P(# fixed points = 0)

Expected Deck Size Uniform Decks Poisson Decks Geometric Decks

S 315 .36708 .43460
10 .34146 .36788 .40289
25 35731 .36788 .38230
50 .36260 .36788 37516

5.2. Guessing the Deck Size from Number of Matches

An intellectually interesting question is to ask how the unknown size of the decks
can be guessed if we are only told the observed number of matches. It is intuitively clear
that it is not easy to accurately estimate the deck size given the number of matches. Still
it would be interesting to see some explicit formulas and computations. For the case of
geometric decks, one can obtain the following neat formula from part a of Theorem 5.

16



Corollary 5.

Suppose m, the size of the decks, is chosen according to the geometric (p) distribution
with mass function p(1 — p)™, m > 0. Then the conditional expectation of m given that k

matches were observed equals &k + ﬁl—;p—)_z..

For uniform or Poisson decks, there is no such simple formula. But still it would be
interesting to see some numbers. We took the pre-data expected deck size to be 50 in the

table below.

k Uniform Decks
0 50.36

1 49.51

2 50.01
10 54.01
20 59.01

Table 4

E (Deck Size|k matches were observed)

Geometric Decks

49.02
50.02
51.02
59.02
69.02
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