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Abstract

Over the years. substantial gains have been made in locating regions of agricultural genomes asso-
ciated with characteristics, diseases, and agroeconomic traits. These gains have relied heavily on
our ability to statistically estimate the association between DNA markers and regions of a genome
(quantitative trait loci or QTL) related to a particular trait. The majority of these advances have
focused on diploid species, even though many important agricultural crops are, in fact, polyploid.
The purpose of our work is to initiate an algorithmic approach for model selection and QTL de-
tection in polyploid species. This approach involves the construction of all possible chromosomal
configurations (models) that may result in a gamete, model reduction based on estimation of marker
dosage from progeny data, and lastly model selection. While simplified for initial explanation, our
approach has demonstrated itself as being extendible to many breeding schemes and less restricted

settings.



Detecting and locating genomic regions associated with quantitative traits is known as quantitative
trait locus (QTL) mapping. The statistical methods (1, 2, 3, 4, 5, 6, 7, 8) employed to identify
QTL are numerous, and rely heavily on the fact that the organism is diploid (i.e., homologous pairs
of chromosomes). In the QTL analysis framework, diploidy ensures that meiosis is understood and
that in most breeding schemes, molecular markers are at most single dose (one copy) and therefore
observable.

When, in fact, there are more than two homologous chromosomes (i.e., a homologous set of
chromosomes). the species is referred to as polyploid. While most animal species are diploid, there
are many important agricultural crops such as sugarcane, maize, cotton, potato, coffee, and wheat
that are polyploid. In some cases, such as the potato, the species is closely related to a diploid
species and standard diploid QTL analysis can be successful. In other situations, such as sugarcane,
there is no closely related diploid species making QTL analysis very difficult. This difficulty is due
to several inherent factors. First, the number of possible genotypes per marker and/or QTL are
much greater in polyploids than diploids simply because of the increased number of chromosomes
in a homologous set. Second, the number of copies of each marker and/or QTL (known as the
dosage) in the parents and progeny is not obvious, nbr are they observable. Third, the additional
doses (copies) of a marker can mask recombination information; and fourth, the meiosis process of
the species is usually unknown. Our task in this paper is to identify each these important aspects
of polyploidy and incorporate them into an algorithmic model selection process which will be used
in a single marker analysis for QTL detection.

Characteristics of Polyploidy. The two main characteristics that describe a polyploid are the
number of chromosomes in each homologous set (ploidy level), and the pairing mechénism during
meiosis. Unlike the diploid situation, where the meiosis process is known to involve the pairing

of homologous chromosomes, the process in a polyploid is uncertain. A common assumption,



and the one we will use throughout this paper, is that meiosis is simply an extension of the
diploid case and involves multiple pairings of homologous chromosomes. During polyploid meiosis,
pairs of chromosomes in each homologous set align and possibly exchanging genetic material (i.e.,
crossover). Each chromosomal pair then contributes one chromosome to the chromosomal set in
the gamete.

The probability of each type of gamete depends on the specific set of homologous chromosomes
(configuration), the ploidy level, and the pairing mechanism of the organism. Unlike the diploid
case, the pairing mechanism is important because there are more than two chromosomes in a set.
Pairing during meiosis can range anywhere between preferential (always pairing with the same
chromosome in the set) to completely random (equally likely to pair with any other chromosome
in the set). Species that display preferential pairing are known as allopolyploids while species
displaying random pairing are referred to as autopolyploids. Species intermediate to preferential
pairing and random pairing are often represented as % polyploid/random. Our work will be based
on a preferential pairing mechanism, thereby reducing the complexity of polyploidy. However, as
noted throughout, our methods are directly extendible to more complicated % polyploid/random
pairing mechanisms or the random pairing situation.

In addition to determining the probabilities of each chromosomal pairing during meiosis, the
ploidy level, k, is important because it determines the possible dosage levels of the marker and QTL
in both parents and progeny. The ddsage, denoted by d, is the number of copies of a particular
marker in a homologous set of chromosomes. If we consider a standard diploid backcross expéri-
mental design, there is at most one possible dose of each marker and/or QTL. For a polyploid, as
many as % copies of a genetic marker and/or QTL can be passed to the gamete. For example, in a
tetraploid (k = 4), as many as d = 2 copies of the marker or QTL can be passed to a gamete. One
key issue when considering dosage of QTL and/or marker for a polyploid is the fact that standard

laboratory procedures cannot observe the genotypic state (dosage) of either. With this as a con-



sideration, we restrict our attention to the even ploidy levels of 4,6, and 8. While there are species
with an odd number of chromosomes in a homologous set, these species are characteristically sterile
and not of general interest in the QTL setting.

The complications of polyploidy have restricted the use of DNA markers for genetic mapping,
as well as for identifying genomic regions responsible for quantitative traits. Wu et al. (9) derived
a theoretical approach for mapping single dose DNA markers in polyploids under the assumption
of preferential pairing. Ripol et al. (10) later developed theory for placing multiple dose markers
on previously estimated maps comprised of single dose markers, by first estimating the dosage of
the molecular marker, and then relying on this information to determine its chromosomal pairing
and relationship to known single dose markers. Furthermore, it was Guimaraes and Sobral (11)
who pointed out that the use of multiple dose markers improves the accuracy of detection of
pairing homologs and their organization into homology groups. Each of these works (9, 10, 11)
is an important contribution toward understanding genome organization and evolution. Equally
important in understanding history and its organization is the detection of QTL in association
with multiple dose markers. Some of the ﬁrsf efforts to map QTL in polyploids (sugarcane) were
performed by Sills et al. (12), and later extended by Guimaraes et al. (13). In these studies various
agronomically important traits were associated with single dose markers by means of multiple
regression model building, and maximum likelihood methods. In each of these QTL analyses fhe
model used to develop the likelihood function was limited to single dose markers. To date, no effort

has been made to employ multiple dose markers for QTL analyses.

Model Selection for QTL Analysis in Polyploids

The Experimental Model. Let us consider a pseudo doubled backcross population (14) that
is the result of selecting an informative parent, doubling half of its chromosomes to create a non-

informative parent, and then crossing the two parental lines. By construction of the experiment,



when the informative parent is crossed to the non-informative parent, pseudo doubled backcross
individuals result (14, 15). It is important to realize that the informative parent’s genetic consti-
tution (i.e., dosage of markers) is not known, but may later be inferred from the pseudo backcross
progeny. For our purposes, we assume the non-informative parent dosages are zero. From this
point forward we concentrate on one homologous set of chromosomes taken from a pseudo back-
cross polyploid organism. The extension to the remainder of the chromosomes sets is obvious, and
direct.

Similar to the diploid QTL analysis, we assume there are only two alleles at each marker and
QTL, and denote a molecular marker by M and a QTL by Q. Since we focus on a single marker and
single QTL analysis, each homologous set is a mixture of only four types of chromosomes. These
types ére denoted as MQ (both present), M (only M present), Q (only the QTL present), and 0

(neither M nor Q present). The number of each type of chromosome will depend on the ploidy level.

The Diploid Model. In a diploid, the pseudo-doubled backcross suites a standard backcross
design initiated from two inbred parental lines that differ in the trait of interest. The basic idea of
QTL analysis using single markers in diploid organisms is to associate observable marker genotypes
with measurable quantitative traits. Marker genotypes are observable, dosage of the marker and
unobservable QTL are known to be at most single, and quantitative traits are scored. The statis-
tical methodology for doing single marker QTL analysis includes t-tests, regression, and likelihood
ratio tests (see 16 for review). When the likelihood is employed, it is a function of marker genotypes
and varying mixtures of normal distributions that are controlled in number by the possible geno-
types of the unknown QTL, as well as the mating design. Since the diploid meiosis process (e.g.,
chromosomal pairing, crossing over, gametic probabilities) is well understood, the likelihood func-
tion is easily stated as a function of marker genotype classification probability distributions, and

numerically maximized with respect to parental means, variances, and recombination between the



marker and QTL. A test statistic can then be calculated for the purpose of detecting/locating QTL.

All Possible Polyploid Models. In the diploid there is only one model to consider, however,
in the polyploid setting one must model aspects of the chromosomal pairing, all possible gametic
configurations that may result from chromosomal pairing and crossing over, as well as all possible
dosages for both the marker and QTL. In order to consider all of the possible polyploid models
we break this process down, first focusing on a single homologous pair and then combining the
chromosomal contributions of each pair. In anticipation of later, more complicated expressions,
matrix representations of QTL and marker probabilities are used.

For each pair of homologous chromosomes, the probability of its contribution to the gamete can

be expressed using a matrix of the form

o | PO P@
P(M) P(MQ)
The rows and columns of the matrix C represent the possible dosage levels of the marker and QTL,
respectively. The elements of the matrix C are probabilities that depend on the configuration of
the paired chromosomes. For example, in the usual diploid backcross situation, the informative
parent (F;) has one chromosome containing M and one null chromosome, @, in the pair. The

elements of C are then

C=

Extending to the polyploid case, there are % pairs of chromosomes in each homologous set
making the probabilities of the overall contribution a function of —’29 C matrices. Since each pair
contributes to the gamete independently, the Kronecker product of the C;;1 = 1,... ,% matrices

yields a 25%% probability matrix for each order-specific contribution. Because we are not inter-



ested in what each chromosomal pair specifically contributes to the gamete but rather the overall
contribution of all % pairs, we simplify this matrix such that the simplified matrix has rows and
columns representing the gamete’s possible dosage levels for the genetic marker and QTL. Since
each chromosomal pair can contribute at most one copy of the marker and QTL, the collapsed (or,
simplified) matrix will be of dimension (% +1) x (% + 1), instead of 25%%.

The general algorithmic reduction of the full 925%% probability matrix is accomplished by mul-
tiplying each successive Kronecker product by a matrix A;:i=1,... ,% and its transpose. Each
A, is of dimension 2i x i+ 1 and consists of Inx2 along the main diagonal. The elements of A; may

be generalized by

1 if r=2c—1or2¢c—2
r=1,2,..,2tand c=1,2,...,1 + 1.

Ape =
0 otherwise

For illustration purposes, in the diploid setting, there is only one C matrix and A; = Iaxo.
Thus the gametic probabilities are simply C1. In a tetraploid, the maximum dosage of either the

marker and/or QTL is two, therefore gametic probabilities are AT((ATC1A;) ® Cy)Ay, where

1 00
010

A,
' 010

0 01

For any allopolyploid the following expression generates all gametic probabilities for allowable

configurations of maximum dosage %
G= Ai’%“(. .. (AT (AT ((ATC1A1) ® C2)A2) ® C3)A3) ® ... ® Ci)Ax.

Preferential pairing provides the most straightforward calculations as there is only one set of
homologous pairs, C;, so the matrix G represents the gametic probabilities for specific ploidy and

dosage levels. However, when pairing is random, there is more than one set of chromosomal pairs

8



possible, and the gametic probabilities for all configurations are more extensive. For each set, one
could construct the {C;} and produce the gametic probabilities as described. The overall gametic
probabilities are then obtained by multiplying each G matrix by the probability that that set of
chromosomal pairs occurs and summing the matrices together. A simple example of this process is
described in the Appendix.

With an end goal of assessing all possible polyploid models, we assume the ploidy level of the
species has been previously studied and is known in advance, and that the dosage of both the
marker and QTL is unknown. Realizing that the dosage levels regulate the final gametic probabil-
ities, it is necessary to compute the resultant gametic probabilities for each possible dosage level
of both QTL and marker and then, attempt to find the best model via model selection. For the
pseudo doubled backcross under consideration, the maximum dosage of either QTL or marker is %
and these copies are restricted to 12"- of the éhromosomes in the homologous set. The remaining g
chromosomes are § (null) chromosomes. For each combination of dosage levels, there is often more
than one configuration of chromosomes possible. We, however, consider only the configuration
that maximizes the number of MQ chromosomes in the homologous set. Under our preferen-
tial pairing mechanism this configuration maximizes the information concerning the recombination
fraction (see Appendix). Thus, the number of models that we consider is (g)2 which is less than
the total number of models. For example, with k = 8, we consider 16 models instead of the full

26 models (Appendix, Table 3). The extension to all models, however, is straightforward and direct.

Polyploid Model Reduction. Having formulated all possible polyploid models, we now reduce '
the potential pool of models by estimating the dosage of the observable marker in the informative
parent. The progeny that result from the described pseudo doubled backcross cquld be easily de-
scribed solely by what was passed to them from the informative parent, if thaf information was

observable. Even though we know that the informative parent has a marker, we do not know the



dosage of that marker, denoted das. Relying on the backcross offspring, we can infer the dosage of
the marker in the informative parent, which in turn provides additional information that reduces
the pool of models from which we will eventually select the best model. Letting n denote the

number of progeny, the probability of observing ng progeny with no marker given the dosage dy is

. n _
PI‘(D@'D, dM) = Bln(n(b; n, de) = (Il@) pg&(l - de)n ng7

where pg,, = (1/2)%. This conditional probability is a result of our pseudo doubled backcross

design and our preferential pairing mechanism. Under a random pairing situation, this procedure

(k—du\ [ K
Pdu =\ g2 /k/2'

Employing this probability allows us to determine the dosage, das, of a marker in the informative

would follow similarly, except

parent, via a Bayesian approach. A priori we assume each possible dosage level (d =1,..., %, k
assumed known) is equally likely, and use Bayes Theorem (17) to compute the posterior probability

of each dosage level,

Bin(na ng, de)
k/2 o :
Zd:l Bln(n’ Ny, pd)

If a particular dosage level has a posterior probability greater than an arbitrary cutoff, in our

Pr(dm|n, ng) =

case we selected 90%, we then restrict our attention to only those models with that dosage level. If
no dosage has probability greater than 90%, we select successive dosage levels based on the largest
posterior probability until the sum of the probabilities is greater than 90%. By eliminating models
that are highly unlikely given the observed number with no marker present, we have reduced the

potential models that need to be considered.
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Model Selection and Parameter Estimation. With the dosage of the marker at least partially
resolved, and a potential set of models available, the aim becomes selecting the single best model
that will in turn provide the maximum likelihood estimates in the single marker QTL analysis. The
form of the likelihood is similar to that of the diploid case except that there are now % + 1 dosage
levels of the QTL that lend % + 1 possible phenotypic means. For example, assuming an additive
dosage effect on the phenotypic mean and using I; 4, and I; p to indicate the dosage level of the
QTL and marker, respectively,
1 if individual ¢ has QTL dosage dg

e

1 if individual ¢ has the marker
Iiv=
0 otherwise

for each individual ¢, the likelihood is

n k/2

L(y;r,p1,p2,0%) = [T T1 (P(QdQ)N (yi;NdQ,az) (1 — Line) +p(MQay)N (yz’;udQ,a2) Ii’M)Ii,dQ
i=1 dg=0 _

where p(Qq) is the gametic probability of no marker and d copies of the QTL, and p(MQyq) is
the gametic probability of at least one copy of the marker and d copies of the QTL. Recall that
the probabilities p(Qq) and p(MQq) are elements of the matrix G and these elements are a func-
tion of the recombination fraction r (Appendix). For the additive dosage effect, the mean of the

quantitative trait distribution for a specified QTL dosage is

_ (k—dg)pa+tdgu
Hdg = % »

and depends on the ploidy level of the organism, as well as the respective means of the informative
and non-informative parents, p; and po, respectively. The variance, 02, is assumed equal in both
parents, but could easily be considered as two separate parameters. Utilization of the EM-algorithm
(18) maximizes the likelihood function in a fashion similar to the diploid situation, only now the

expectation step, or the E-step, involves a multinomial rather than binomial distribution.
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Single Mafker QTL Analysis in Polyploids:

As just demonstrated. the real complication arising from polyploidy is not the QTL analysis itself,
but rather the model upon which the likelihood function is based. Selection of the single best
model to represent the polyploid situation under investigation allows one to proceed with such a
formulation of the likelihood function. This likelihood function, when coupled with a standard
test statistic (i.e., LOD score or likelihood ratio test) can then be used to test various statistical
hypotheses concerning QTL detection and effect, as well as QTL location. Relying on Monte Carlo
resampling procedures, the distribution of the test statistic can be estimated and the meaning of
statistical significance understood for the polyploid at hand. It is expected that ploidy level, marker
dosage, and pairing mechanism of homologous chromosomes will add to the genetic specificity that

complicates the asymptotic distribution of the test statistic.

Results

A simulation study was performed to assess the power of this model selection procedure. Motivated
by an example in sugarcane, an octaploid (1 < dar,dg < 4) was simulated using the pseudo modified
doubled backcross, as previously described. For each combination of dys, dg, 7, and n (number of
progeny), we generated 1000 data sets which contained the quantitative trait value and the marker
genotype for each progeny. The quantitative trait distribution had a common variance of 0% = 1.0
and a mean which depended on the dosage of the QTL. The non-informative parental mean was
set to —2.0 and each dose of the QTL increased the mean by 2.0 (additive). We investigated four
progeny sizes n = 50,100,200, and 500 and three recombination rates r = 0.01,0.25, and 0.35. In
total, 16 x 4 x 3 = 192 different parameter combinations were investigated.

For each parameter combination, the percentage of data sets which resulted in the correct

dy and dg estimate (Table 1), and the percentage of sets which also correctly estimated the

12



recombination fraction (Table 2) were recorded. Tables 1 and 2 summarize the results for dy =
1.2.3.4. and dg = 1,2,3,4 and r = 0.01, 0.25, and 0.35. We assumed the recombination fraction
was estimated successfully when the maximum likelihood estimate was less than 0.05 when the true
value was r = 0.01, between 0.125 and 0.375 for true value r = 0.25, and between 0.225 and 0.475
for true value r = 0.35.

Each of the 1000 simulated data sets per parameter combination and sample size were analyzed,
via the procedure described, for the purpose of selecting the best model, and thus formulating the
likelihood function. Since the estimation of the dosage level is the limiting factor in the process
we first spend some time considering the effect of dosage estimation on the general process of
model selection. For all marker dosage, das, and QTL dosage, dg, combinations, the probability of
correctly identifying the dosage levels was 97% or higher when n = 500 and 80% or higher when
n = 200 (Table 1). When in fact the sample size is 50 or 100 our ability to correctly estimate dosage
of marker and/or QTL greatly decreased as the dosage level of both marker and QTL increase.
This point emphasizes the importance of sample size when mapping in polyploids. If one is going
to rely on multiple dose markers and multiple dose QTL, then large sample sizes must be employed.
In general, as the dosage level of the marker increases, a corresponding doubling of the sample size
maintains the same level of power to detect the correct model. In this simulation, when dy = 4,
there was some increase in power over dy; = 3 strictly because only models with dyr < 4 were
considered (border effect). In situations where the dosage levels were not identified correctly, there
was a tendency to overestimate both d i and dg, with the QTL dosage more likely to be identified
correctly. This overestimation can largely be attributed to the fact that pg,, = (1/ 2)%M . For a given
du, pdy,+1 is much closer to pg,, than pg, 1. Lastly, and as one would expect, as the distance or
recombination, r, increases between the QTL and marker, the probability of correctly identifying
the dosage levels decreases.

When the motivation for model selection in polyploids is to test for QTL detection and/or

13



location, the estimate of recombination when coupled with an appropriate map function will supply
a relational distance between the marker and QTL (i.e., how far the QTL is from the marker).
As with all maximum likelihood estimation, estimates of r tend to be underestimated when the
sample sizes are small, and in polyploids this situation is even more pronounced when dys >> dg,
and when the linkage is weak (r = 0.35) (Table 2). When sample sizes increase, the power to
estimate r correctly is greater when, in fact, dg > dys. As is the case in this simulation, preferential
pairing ensures that each informative chromosome from the informative parent is paired with a null
chromosome, and as a result, only chromosomes which contain both a marker and QTL provide
information on recombination. When the dosage levels are unequal, there will be some chromosomes
containing just an M or @, and thus provide no information about r. Unequal dosage levels can
even mask recombination, the effect of which is even more severe when there additional copies of
the marker since dg is observed in the quantitative trait distribution means. Lastly, as the linkage
between the marker and QTL weakens (i.e., the QTL is further in location from the marker),

regardless of marker and/or QTL dosage, the power to estimate r decreases dramatically.

Discussion

Model selection for QTL analysis using a single marker has been presented for a pseudo dou-
bled backcross polyploid organism defnonstrating preferential pairing during meiosis. Clearly, the
assumption of preferential pairing and known ploidy level affects the power by increasing or de-
creasing the number of potential models. Thus, for a polyploid with a smaller ploidy, the power
for all possible parameter configurations will be higher than what has been described. When the
assumption of preferential pairing is lifted to accommodate random pairing, the results may be
very different in that, the ploidy level not only alters the number of potential models, it can also
affect the probability of an informative pairing. Extensions to include this work are in progress and

will be presented in the near future.
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Given our mating design and simulation, we assumed an additive QTL mean model with the
effect of the QTL being a single value, and a variance of 1.0. In doing so. we realize that we
have limited our simulation space, and for completion, a range of QTL effects, along with varying
variance parameter values must be considered. We fully expect the statistical power of what we
described to be affected as both QTL effect and variance change. Clearly, as the QTL dose means
become more disparent it will be easier to estimate the correct dosage of the QTL. Additionally,
our model selection process is simplified because the number of parameters for each configuration
is the same. A more flexible approach is to only use an order restriction on the means. In other
words gy < p1 < ... < pdg, Where the subscript represents the dosage of the QTL, however, this
alters the number of parameters in each configuration. If a non-additive model is employed, a
model selection criterion such as the BIC (19) could be used to select the model.

As demonstrated by Ripol et al. (10) placing multiple dose markers on an existing framework
of single dose markers allows the estimation of a genetic map for any polyploid. As shown in many
diploid studies, given that a genetic map exists, the genetic distances between markers can easily be
exploited for the purpose of QTL mapping using interval mapping methodology (3). The limiting
factor in extending what has been successful in diploid QTL mapping, to what needs to be done in
polyploids, has been the development of models which reflect the polyploid nature of more complex
organisms. Our goal in this paper has been to describe all the tools necessary to investigate QTL
mapping in polyploids by initiating the simplest situation of single marker QTL mapping, and
setting the stage for interval mapping or composite interval mapping (6, 7). We anticipate that
(composite) interval mapping will present an entirely new set of challenges when coupled with the
complexities of random pairing and non-additive models.

Finally, in addition to the particularities of the polyploidy and the complications that arise in
attempts to model it for QTL mapping, questions with regard to linkage between markers and QTL

arise. These questions have great potential to further our understanding of genome organization
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within and between species, as well as provide us with an evolutionary time line for polyploidization.
Some of these questions are: If a molecular marker is found to be tightly linked to a QTL, should
the dosage of the marker agree with the dosage of the QTL? In which situations is the linkage
more strongly effected? Should the models which are controlled by dosage levels be weighted for
the purpose of representing more realistic results? Would models with dosage levels more similar
to each other be more likely, especially with strong linkage? Answers to these questions may aid in
our understanding of the genetics, evolution, and comparative organization between well mapped
diploids and sparsely investigated polyploids. QTL mapping in polyploids may enable us to create
links between evolutionarily related species, many of which are diploid, which in turn will allow us

to broaden our understanding of genetically diverse and distantly related species.
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Appendix

Given the described pseudo doubled backcross, our preferential pairing mechanism assumes that
each informative chromosome (MQ, M, Q) is paired with a non-informative chromosome ((). Be-

cause of this. there are only three pairing configurations we need to consider. The matrix C for

each of these pairs is:

Possible Pairing Configurations

MQ x @ Mx0 Qx0
o[ v ] o] [
Ir $(1—r) 10 0 0

Notice that only the MQ X (§ pair provides any information concerning r. Since we consider, for a
given djs and dg, only the configuration which maximizes the number of M@ chromosomes, our
simulations use only the configurations which provide the most information concerning r. This not
only reduces the number of models we consider (one model for each dys, dg combination) but since
we are looking at the most opportunistic setting, it provides us with a upper limit on power for the

selected progeny sizes.

Example of computing configuration probabilities. The following is an example demon-
strating the matrix multiplication procedure to obtain the probabilities for each contribution to
the gamete under both preferential pairing and random pairing. Consider the configuration of the
informative parent being Ms@Q where k = 6. This would mean there is 1 M) chromosome, 1 M

chromosome and 4 ¢ chromosomes.
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Preferential Pairing. Under the preferential pairing mechanism, each informative chromosome
pairs with an ( chromosome. Thus, we only need to consider two C matrices and these matrices

represent the M@ x 0 and M x @ pairs. The Kronecker product of these two matrices is

fi-nr) 0 ir 0

l1-r) r o $0 B -y 0 3 0
Ir i(1-r) $ 0 Ir 0 31-n 0
r 0 31-7) 0

For the purpose of collapsing the previous matrix to a 3 x 3 matrix, we multiply by A2, and its

inverse, where

The resulting matrix is

N

(1-r) ir 0
! 0

LS

r 4l(l—r) 0

A=

Random Pairing. In this case, there are two situations for possible C matrices. The one de-
scribed in the preferential pairing section, and one in which the two informative chromosomes pair
(MQ x M). The later pairing occurs with probability % while the previous pairing will occur with

probability %. As a result, the overall configuration probabilities are
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T1-r) ir 0 000 f1-r) ir 0
4 1
5| 4 P 0t 0T 0w i 0
i %r %(1—7‘) 0_ _0 0 0_ ] %r $1-r) 0

where the second matrix on the left is computed in a similar fashion as the first.

Summary of Contribution Probabiliies. Table 3 summarizes the contribution probabilities
associated with the 16 models considered in our octaploid (k = 8) simulations. Whether dosage of

the marker is observed or not, we only need to know the probabilities associated with each dosage

of the QTL and the presence/absence of the marker. Using the fact that
dg\ 14
p(Qa) + p(MQa) = ( ;) 2

Table 3 only displays p(Qq)-
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Table 1: Simulation results for a pseudo doubled backcross of sample size n

50, 100, 200. and 500. Each cell (dy, r and n) represents dg = 1.2,3, 4, respectively,

and contains the percentage of correct dosage level identifications.

Progeny Size

dy T 50 100

1 .01 0.992 0.983 0.956 0.890 0.999 1.000 1.000 0.996
.25 0.968 0.933 0910 0.863 0.997 0.995 0.996 0.982
.35 0.838 0.921 0.905 0.855 0.998 0.998 0.994 0.991

2 .01 0.863 0.955 0.925 0.843 0.958 0.981 0.977 0.972
.25 0.828 0.839 0.817 0.744 0.936 0.952 0.952 0.944
.35 0.797 0.809 0.762 0.746 0.938 0.932 0.939 0.929

3 .01 0.664 0.722 0.778 0.815 0.805 0.881 0.903 0.942
.23 0.616 0.632 0615 0.722 0.786 0.823 0.813 0.928
.35 0.627 0.613 0.587 0.728 0.813 0.818 0.814 0.925

4 .01 0.799 0.805 0.827 0.763 0.882 0.908 0.939 0.925
.25 0.779 0.793 0.751 0.428 0.880 0.891 0.889 0.588
35 0.772 0.769 0.757 0.403 0.880 0.872 0.878 0.539

Progeny Size

dy T 200 500

1 .01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.25 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 .01 0.994 0.994 1.000 0.996 1.000 1.000 1.000 1.000
.25 0.992 0.995 0.990 0.992 1.000 1.000 1.000 1.000
.35 0.983 0.988 0.987 0.988 1.000 1.000 1.000 1.000

3 .01 0.946 0.963 0.973 0.986 0.994 0.995 0.998 0.998
25 0.930 0.926 0939 0.978 0.993 0.993 0.993 0.997
35 0.914 0.925 0.921 0.978 0.989 0.991 0.988 0.996

4 .01 0.955 0.957 0.987 0.964 0.997 0.999 1.000 0.997
.25 0.042 0.943 0.950 0.803 0.992 0.991 0.994 0.977
.35 0.948 0.953 0953 0.812 0.996 0.994 0.998 0.979
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Table 2: Simulation results of sample size n = 50,100,200, and 500. Each cell
(dys. v and n) represents dg = 1,2, 3,4, respectively, and contains the percentage of

correct dosage level and recombination fraction identifications.

Progeny Size

dvy T 50 100

1 .0 0.971 0.909 0.825 0.727 0.995 0.968 0.927 0.857
25 0.920 0.771 0.666 0.516 0.991 0.950 0.868 0.795
35 0.869 0.720 0.627 0.519 0.983 0.941 0.849 0.780

2 .01 0.742 0.929 0.867 0.733 0.900 0.978 0.951 0.901
.25 0.583 0.772 0.666 0.553 0.821 0.935 0.902 0.840
.35 0.548 0.703 0.597 0.522 0.793 0.899 0.847 0.797

3 .01 0.607 0.641 0.751 0.736 0.688 0.833 0.894 0.907
.25 0.327 0.453 0.518 0.525 0.537 0.723 0.758 0.826
.35 0.298 0.403 0.455 0.494 0.537 0.684 0.755 0.782

4 .01 0.729 0.713 0.684 0.507 0.806 0.793 0.834 0.735
25 0.142 0.357 0.429 0.259 0.405 0.583 0.692 0474
35 0.199 0.324 0.378 0.200 0.351 0.531 0.620 0.393

Progeny Size

dy 7 200 500

1 .0 1.000 0.993 0979 0.928 1.000 1.000 0.999 0.983
.25 1.000 0.994 0.976 0.938 1.000 1.000 1.000 0.999
.35 1.000 0.986 0.956 0.912 1.000 1.000 1.000 0.995

2 0 0.967 0.994 0.997 0.975 0.999 1.000 1.000 0.999
.25 0.949 0.993 0.983 0.974 1.000 1.000 1.000 0.999
.35 0.952 0.98 0.963 0.957 0.998 0.981 1.000 1.000

3 .01 0.865 0.945 0.973 0.981 0.981 0.993 0.998 0.997
.25 0.781- 0.894 0.930 0.950 0.968 0.991 0.993 0.997
.35 0.754 0.873 0.907 0.942 0.953 --0.989 0.988 0.996

4 .01 0.841 0.893 0.951 0.881 0.944 ©0.979 0.996 0.986
.25 0.619 0.774 0.882 0.776 0.868 0.966 0.988 0.977
.35 0.583 0.737 0.825 0.743 .- .0.828 0954 00988 0.974
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Table 3: Contribution probabilities of specific parental configurations.

Dosage Probability of Gamete
M Q 0 Q Q2 Qs Q4

1 1 B(1—-r1) .5r

1 2 25(1 —r) .25 25r

1 3| .125(1—71) 125(2 — 1) 125(1 +7) 1257

1 4| .0625(1—r) .0625(3 — 2r) 1875 0625(1 +2r)  .0625r
2 1| 25(1-r) 257

2 21 .25(1-r)? Sr(l—r) 2572

2 3| .125(1—r)? 125(1 — r?) 125r(2 — 1) 12572

2 4 ].0625(1 —r)? 125(1 —7) .0625(1 + 2r — 2r?) 1257 062572
3 1| .125(1-7) 125r

3 2| .125(1—r)? 25r(l—r) 12572

3 3| .125(1—r)® 375r(1 —r)? 375r2(1—r) 12573

3 4 ].0625(1 —7)® .0625(1 —r)%(1+2r) 1875r(1 — 1) .0625r2(3 — 2r)  .0625r°
4 1| .0625(1—r) 06257

4 2 |.0625(1—r)? 125r(1 — 1) 062512

4 3 |.0625(1—r)3 1875r(1 — r)? 1875r2(1 — ) 062573

4 4 |.0625(1 —r)* 25r(1 — )3 375r2(1 —r)? 25r3(1 —r)  .0625r%
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