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Abstract

In this article we describe some ways to significantly improve the Markov-Gauss-
Camp-Meidell inequalities and provide specific applications. We also describe how the
improved bounds are extendable to the multivariate case. Applications include explicit
finite sample construction of confidence intervals for a population mean, upper bounds on
a tail probability P(X > k) by using the density at k, approximation of P-values, simple
bounds on the Riemann Zeta function, on the series I%i;l::, improvement of Minkowski
moment inequalities, and construction of simple bounds on the tail probabilities of asymp-
totically Poisson random variables. We also describe how a game theoretic argument shows

that our improved bounds always approximate tail probabilities to any specified degree of

accuracy.



1. Introduction.

The Markov inequality, which states that for any random variable X and positive

numbers k,r, P(|X| > k) < EI,:S )

l‘l‘

is generally regarded as an inefficient bound to be used

only when a crude bound suffices. Gauss showed that if X is unimodal with a mode at

zero, then the bound can be improved to P(|X| > k) < gE(,jﬁz) when 7 = 2. The Camp-

r )r EiX|"
r+1 kT

Sellke and Sellke (1997) provide generalizations to these bounds by using moments of more

for all » > 0.

Meidell inequality generalizes Gauss’s result as P(|X| > k) < (

general even functions g(|X|). The Markov and the Camp-Meidell bounds are sharp in the
sense that without further restrictions, the bounds are known to be attained, although at

uninteresting distributions; see Dharmadhikari and Joag-dev (1988).

And so an interesting question emerges: for specific important distributions or specific
important families of distributions, can we significantly improve these probability bounds?
Our intention is to show that this is indeed the case and that, interestingly, a bit of
game theory shows that by a judicious choice of the number r, one can approximate the
probability P(|X| > k) to any degree of accuracy. For instance, we shall show that if
X ~ N(u,0%), then P(JX — u| > ko) < 51 for any k > 0; indeed, as we shall see,
this improvement over Gauss’s bound holds for a much larger family of distributions, and
is suitably extendable to the multivariate case. Our results also permit very significant
sharpening of the Jensen type bound E|X — u| < (E|X — u|")* for r > 1, and lead to
simple and useful bounds of the type P(X > k) < C(k)f(k) where C(k) is an explicit
constant and f(k) the density at k.

For discrete unimodal distributions, the Gauss-Camp-Meidell bounds are not applica-
ble. For this reason, we shall also provide appropriate analogous results for an important
discrete case, namely the Poisson distribution. Here there will be simple bounds using the

easily available Stirling and Bell numbers.

The results are illustrated with some other specific applications such as the number
of fixed points of a random permutation of 1,2, ..., n, approximation of multivariate prob-
abilities, and construction of explicit finite sample confidence intervals for a population
mean u. For example, we have the general result that in the entire normal scale mixture

family, X + 1.82% is always a 90% confidence interval for the population mean u, for



every n. We also give some analytic bounds on certain number-theoretic functions that

follow from our main theorem.

2. 2.1. The Markov Bound.

The precise question asked in this section is the following. Let a real valued random
variable X be distributed according to some specified CDF F'. For given r > 0, what is the
exact best possible value of a constant C(r) = C(F,r) such that P(|X| > k) < C(r)%
for any £ > 0, and how to find analytic good bounds on this best possible constant.
In addition, since we can choose r to be any nonnegative number, can we always well

approximate P(|X| > k) by a judicious choice of 77

Notation. The best possible constant will be denoted by
C*(r) = C*(F,r).

Theorem 1.

sup{z"” Pr(|X|>z)}

a) C*(’I‘) = 22 Er| X[ (2.1)
Sup{mr—i_lf(m)} def —
b) If [X| has a density f, then C*(r) < = msm— = C(r) (2.2)
¢) If F is symmetric and absolutely continuous with characteristic function ¥(¢), then
0 .
C*(r) is also equal to W supm>0{xr‘({"§";ﬁ(1 —(t))dt} (2.3)

Discussion. Part a) of Theorem 1 gives a general exact expression for C*(r), but the
criticism can be raised that it involves the very quantities one is trying to approximate
in the first place. This is true; however, if C*(r) is once computed, then the resulting
improved probability bounds may be useful to future researchers. Parts b) and ¢) provide
alternative ways to compute or bound C* (r). If a formula for the density is available, then
part b) is very useful as C(r) will often be closed form; we shall later see that this bound
on C*(r) is a pretty good bound considering its simplicity. In some problems, however,
a formula for a density will not be available; difficult convolutions (e.g., convolutions of ¢
densities) are instances of such cases. In such cases, part ¢) can become useful due to the

availability of a formula for a characteristic function.
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Proof of Theorem 1: Part a) is essentially a restatement of the definition of C*(r)
and does not need a proof. To prove part b), note that the supremum is attained at a

point =, = z,(F,r) such that P(|X| > z.) = %(‘”) and hence sup,-{z"P(|X| > z)} =

r+4+1
oIt it;l;{w f(z)}
- <

and so this proves part b).

For part c), note that if F' is symmetric and absolutely continuous, then F(z) =
(e e]

. m .
5 + 5= [ 2284 (t)dt. Combine this with the familiar fact that [ $2%dy = 7 to get
-0

27r_
P(|X] > z)
1 T si
:2(1_F(x)):1——/Smt‘”zp(t)dt
T t
1 oosintar: 1 c>osimt:z:
_;/ tﬁ—;/ o)t

and this proves part c).

Example 1. Comparison to Camp-Meidell in the Normal Case. Recall that the

Camp-Meidell inequality says that (P|X| > k) < (Z7)" 25 if X is unimodal with a

mode at 0. Let X ~ N(0,0?) as an example. The value of C*(r) is the same for all & and

so let us take ¢ = 1. The following table compares C*(r) with C(r) and ( ~+1)7- Note that

C(r) has the closed form expression

2(7_+1)r—§16_r-§1

ral R 2

C(’f‘) - F( r-ZH) (24)
TABLE 1

r C*(r) C(r) ()"

1 426 736 5

2 331(< 3) 463 444

3 283 .361 422

4 251 305 410

6 212 243 397

8 187 208 .390



For 7 > 3,C(r) is smaller than the Camp-Meidell constant and for r > 4 it is quite
close to the exact best constant C*(r). Note that from TABLE 1, if X ~ N(u,o?), then
P(|X — p| > ko) < 55 for all k > 0. Since this bound will work for all scale mixtures as
well, one has the interesting consequence:

Proposition 1.

Let X, X2,..., X, be n iid observations from any distribution in the normal scale

mixture family with E(X}) = u, Var(X1) = 02. Then

X+ 2587 is always a 95% confidence interval for p
X+ 1.82-% is always a 90% confidence interval for
X+ .81% is always a 50% confidence interval for u

We simulated the coverage probability of the interval = + 2.58% for five normal scale
mixture densities when n = 10. s was used instead of ¢ as ¢ would usually be unknown
in an application. The simulated coverage probabilities (using a simulation size of 15,000)

are as follows:

Density : Coverage
Double Exp. .9752
Logistic 9721
t(3) 9732
t(5) 9712
‘9N (0,1) +-1N(0,9) 9774

The coverage seems very stable (between .97 and .98 in each case), but conservative.
What we are seeing is that t-intervals work well for many symmetric densities. But, of

course, a result such as Proposition 1 cannot be proved for the -interval.

Let us check the efficacy of the bound P(|X| > k) < C* (r)Ell:flr in but one case to

motivate our next Theorem. Take X to be N(0,1) and k = 2. Then P(|X| > k) = .04550.

The bound C*(r) EIXI" is listed below for several choices of r.

kr
T 1 2 3 4 6
Bound .16997 .08286 .05642 .04715 .04962
E|X|"

These numbers suggest that the bound C*(r) could be a very good approximation

kT‘
to P(|X| > k) if r is chosen properly. The next Theorem says that is indeed the case.
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Theorem 2.

Suppose for some rq > 0, 1_i_>m z™P(|X| > z) = 0. Let B(k,r) = C*(r)ELjflr. Then
=00
ig%B(k,r) = P(|X| > k) for any k£ > 0.
,

Proof: Consider a game with nature’s action space = © = [0, co|, statistician’s action

space = A = (0,00), and statistician’s payoff function L(f,a) = (£)*P(|X| > 6). This

payoff function is upper semicontinuous in @ for fixed ‘a’,inf sup L(6, a) is finite and the
a g

game has a value under the stated assumption
lim |z|°P(|X|>z)=0.
=00

Thus, inf B(k,r)

r>0

supz”" P(|X| > z)
= inf 20
>0 kT

= inf sup L(z,
s pe )

= inf L(z,
i L)

= max{sup infL(z,r),sup infL(z,r)}
<k T>0 >k r>0

= max{0,sup P(|X| > z)}
x>k

= P(IX|> k),

as stated.

Remark.

Theorem 2 says that P(|X| > k) is always reproduced exactly by the bound B(k,r)
if r is chosen properly. The question arises if a guide exists for choosing r. Part b)

of Theorem 1 gives an indication. A guide to choosing r is to find the value of r that

minimizes —= sup z"+1 f(z). Here is a quick test case.
rk >0
z

Example 2. Choice of the optimal r.

Let X have the standard double exponential density f(z) = %e"“". Then the bound

B(k, ) equals Tr,f—,,—r, which is minimized when r = k. On the other hand, = SL;}ZS ' f(x)
T

6



1 r41 (r+1)"e” "
2e r kT

3.13,4.10,5.09 for £ = 1,2, 3, 4,5 respectively. So in thls case, the approximation to the

, which is minimized when log(1 4+ r) — = = log k. This equals 1.24,2.17,

optimal r is quite good for moderate or large k.

2.2. Applications in Mathematics.

The inequality of Theorem 1 which states that if X ~ F, then Prp(|X]| > k) <
C*(r)gfklrilr can lead to useful and interesting bounds for mathematical functions. The
method is to select a specific F, derive explicitly the above inequality for that F', and then
sum the inequalities for the values of k in a given set, say, 1 < k < n. One can then further

select optimal or special values of r to get a more refined inequality.

2.2.1. Bounds on the Riemann Zeta Function.

Let X have the Geometric distribution with parameter p, i.e., P(X = z) = pg®,z > 0,
where ¢ = 1 — p. Then, from Theorem 1 it follows that

(—_r)rq1+[ﬁ5]

@ = P(X > k) < 089 - , (2.5)
where [-] denotes the integer part.
From (2.5),Vr > 0,0 < g < 1,
k41
7:17 = . I+gg]’
(%)Tq Tog q
and in particular, if q is written as ¢ = e™® for some positive number «, then
1 e—(k+1)a
FZ (@yre e (2:6)
[84
o Z e —(k+1)a
1 k_
Z kT —a(1+[ D
Q ea[ﬁ]
= 2.7
(ex — L)rr’ (2.7)

on summing the geometric series of the numerator.
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In (2.7), if we now let & = (> 1), then for the Riemann Zeta function (), we get

the simple bound:

1 e”
— 2.
for any a.

The following table illustrates the sharpness of the bound.

TABLE 2

o 2 5 8 10
C(e) 1.645 1.037 1.004 1.001
Bound (2.8) 1.157 1.007 1.000 1.000

2.2.2. Exponentials of Primes

A classic result in number theory is that the sum of the reciprocals of primes diverges.

It is clear that Y e~ *P converges for A > 0. Accurate analytic bounds on this sum could

P
be of interest since there is no analytic formula for this convergent sum. One such bound

is obtained below by using part b) of our Theorem 1.

Towards this end, choose f(z) to be the exponential density Ae~*?. Then, by part b)
of Theorem 1, for all z and r > 0,

1 rATertl

- > —Az
zr — (r+1)rtl ¢
1 rA" e Tl
S>1-—<1—-——"— ¢ 2.
A (r+1)rtt € (2.9)
If we now use the Euclid identity
1
= , (forr>1 2.10
) =Ily=g (orr>1) (210)

1
C(r H 1 _ rAT er+l e—)\p)

P G A
,,,)\r r+1 N
—Ap
ZH +1 (r+1)+1°¢ )
p

,r)\r r+1

—Xp
Z 1+ r+1 Ze ’



resulting in the analytic upper bound

Vr>1,> e < %(g(r) ~1). (2.11)
p

By choosing 7 appropriately in (2.11), reasonable sharp bounds are obtained. We will not
report them here, because we wish to emphasize the analytic nature of the (2.11) bound.

2.3. CDF vs. Density.

The normal distribution N(u,0?) has the very useful property P(|X — p| > ko) <
-24’,0& for k£ > 0. Such bounds are useful because the tail probability is usually more clumsy
than the density as a function of k. It is a pleasant consequence of part b) of Theorem 1
that we can establish such bounds in much greater generality; specific examples are given

following the next result.
2.3.1 A Tail Bound.

Proposition 2.

Let X have the CDF F(z) and let |X| have the density function f(z). Suppose f

is one differentiable and ¥ (z) = —”]fég(c“)”) is increasing for > 0. Then for any k£ such that
b(k) > 1,
k
P(|X|> k)< ————f(k 2.12
(1X] > k) ¢(k)—1() (2.12)
Remark.

Suppose X has a symmetric log concave density; the normal and the double exponential
are of this kind (although ¢ densities are not). Then v (z) is automatically increasing for
z > 0, being the product of two positive increasing functions and so the bound (2.12)
applies. We will shortly see that bound (2.12) can hold even absent log concavity.

Proof of Proposition 2: sup{z" ! f(z)}
From part b) of Theorem 1, P(|X|> k) < Z=°

2.1
rk” ’ (2.13)

for every r > 0.

Now z"*! f(z) is maximized when ¥(z) = r + 1 (note there is at most one such z if
¥(+) is increasing). The trick is to choose r appropriately. Choose r to be such that this =
is equal to the given k, i.e., r = (k) — 1.



Then from (2.13),
kHLf (k)
k"
kf (k)

Yk -1

P(1X]> k) <

which proves Proposition 2.

Corollary 1.

From (2.12), on lengthy but straightforward calculations, one gets the following nice

bounds:
a) Let X have the ¢ density f,(z) with « degrees of freedom.

Then for all £ > 1,

P(X > k) = — 5y fa(k) (2.14)

b) Let X have the gamma density f, \(z) = e—mxa_lr)f:v)‘
Then for all £ > E(X) = ¢,

k

P(X > k) < s5——Ffan(k) (2.15)

kA

¢) Let X have the F density f, g(z) with degrees of freedom o and B. Then for all

k>1,
2k k
P(X > k) < %f&ﬁw) (2.16)
d) Let X have the Beta (o, 8) density f, g(z). If 8> 1, then for all k > “TFT
k(1 -k
P(X > k) < e +(5 — 1; — afa’ﬂ(k) (2.17)

2.3.2 Bound on P-values.

The tail bounds in Corollary 1 are specifically useful in finding bounds on P-values
for some common tests, e.g., the ¢, F', and chi-square tests. Note that unlike the normal
table, statistics texts never give tables of CDF's for these distributions and some software
packages, e.g. SAS, report all P-values below .001 as .001. Analytical bounds such as those

in Corollary 1, if they could be made better known, may be useful in some applications.
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As a case in point, consider computation of a two-sided P-value for the student ¢ test.
The following table illustrates the bound obtained from equation (2.14) when the obtained

value of the ¢ statistic is 3 and 4, respectively.

TABLE 3
Degree of Freedom 10 15 20 25 30
True P-value .013 .009 .007 .006 .0054
Bound (2.14) .016 .011  .009 .007 .0066
True P-value .0025 .001 .0007 .0005 .0004
Bound (2.14) .0028 .001 .0008 .0006 .0004

3. Application to Multivariate Probabilities.

The result of Theorem 1 clearly can be applied to univariate functions of a multi-
variate random vector. Important special classes in the multivariate case are the spher-
ically symmetric unimodal and normal scale mixture classes. The latter is a subclass of
the spherically symmetric unimodal family. We will characterize the best constant C*(r)
of Theorem 1 for each of these families when the event in consideration is of the form
A ={X :||X|| > k}, where || - || denotes Ly norm. It will be seen that C*(r) is signifi-

cantly smaller for the normal scale mixtures. The following lemma is needed.

Lemma 1. Let Zpyx1 be any random vector and let C%(r) have the property

EllZ|I"
k'r

P(|Z1l > k) < C ()

for all £ > 0. Let ¢ > 0 be any nonnegative random variable independent of Z and
let X = 0Z. Then P(||X]|| > k) < C*Z(T)E—”k)‘-fﬂ for all k > 0. Hence, in particular,

C}‘g(r) < C*Z(r).
The proof of Lemma 1 is clear on using the fact F||X||" = E(¢")E(||Z||")-

Theorem 3.

a) Let X have a multivariate normal scale mixture distribution, i.e., X has a density
which is a mixture of N,(0,0%I) densities. Suppose f,(z), F,(z) denote respectively

the pdf and the CDF of a x%(p) distribution and z, = z,(p,r) denotes the unique

11



Ch(r) < 2 ) o5y (z4) = C 1y (7) (3.1)
XV = rasr(tgy)™ T NAD

2 r+p.rto € T;p def—

<— 2 e

b) Let X have a spherically symmetric unimodal distribution. Then

r
T+ p

Cx(r) = (——)%. (33)

Proof:

The proof of (3.1) is a repetition of the proof of part a) of Theorem 1 if we note
X = oZ where Z ~ Ny(0,I),0 is independent of Z, and so Lemma 1 is applicable. The

bound (3.2) follows on an evaluation of sup,-o{z? ! f,(z)} and then some algebra.

For part b), note that X again has the representation X = 0Z where Z is now uniform

in the unit ball B = {z : ||z]| < 1} and o is independent of Z. It is easily verified that
Ap—1(B r_  Ap_1(B :

P(||Z|| > z) = p/\pl(gg))(l — 2P) and E||Z]|" = (r——fzﬁj’ where \,(B) is the volume and

Ap—1(B) the surface volume of B. Expression (3.3) will therefore follow from the general

result (2.1) in Theorem 1.

It is interesting to see the effect of the dimension on the value of the best possible
constant C*y(r). Here is a brief report. Even in 5 dimensions, C* (r) < .44 for r = 2 for

the entire normal scale mixture class!

TABLE 4
Normal scale mixture

p=2 p=3 p=4 p=25 p==6
Cy(r) C(r) Cy(r) C(r) Cz() C(r) Cz(r) C(r) Cxr) Cr)

.368 541 .396 .610 .420 672 .440 729 457 781
.308 407 330 448 348 486 364 521 379 .554
271 .336 287 .364 .302 391 315 415 328 439
224 292 235 277 .246 .292 .255 307 264 321
195 219 .204 230 211 241 218 251 225 .261

oW =
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TABLE 5: CB{ (r)
Spherically symmetric unimodal

T p=2 p=3 p=4 p=2>5 p=
2 .5 .543 D77 .606 .630
3 465 .5 .530 .b55 Y4
4 444 474 .5 .523 .543
6 422 444 465 483 .5
8 410 428 444 .460 474

4. The Poisson Case.

The Poisson case, by virtue of well known Poisson approximations in many inter-
esting problems, deserves special mention. The technical aspect is a bit different though,
because one is interested in P(X > k) for integer k£ and so computing C*(r) involves

sup k" P(X > k), Z being the positive integers.

keZ
To find sup k" P(X > k), note that
keZ
Step 1. K P(X > k) .
(k—1)"P(X >k—-1) —
P(X =k) k
< -1 .

Pxsh = 51 (4.1)

Note: we may take k > 2 in (4.1)

Step 2. By a well known integral representation, if X ~ Poi(\), then P(X > k) =
A

f etk dt

%——, and so (4.1) is equivalent to

e~ A)\k k
<(
k

A
[e~ttkdt
0

e L
PN {(k—fl> - 1} (4.2)

[ e Mukdu
0

13



1
Step 3. Since fe‘)‘"uwdu is decreasing in z and so is (-Z5)" for positive 7, there is a
0

unique (usually nonintegral) root z*(r, \) > 2 of

—AAz
Ty S 1o, (4.3)

A
fe~ttzdt
0

and argsup{k"P(X > k)} = [z*(r, \)], the integer part of z*(r, \).

One then has the following result, with S2(n,%) denoting the Stirling numbers of the
second kind (see Bryant (1993)), and B,, the nth Bell number.

Theorem 4. Let X ~ Poi()). Let £k > 1. Then for all n > 1,

ﬁi‘ﬂﬂn,ﬁAi

P(X > k) < C*(n, A)Mk—n,

where
[z (n, V]"P(X > [z*(n,))])

C*(n,A) = 5

n .
Proof: Use the fact that if X ~ Poi()), then E(X™) = Y S2(n,i)A* (see DasGupta
i=0

(1998) for one reference).

Example 3. Fixed Points in a Random Permutation. Let m,, denote a random
permutation of {1,2,...,m} and let Z,, denote the number of its fixed points, i.e., Z, =
#{i : (i) = 1}. It is well known that as m — 00, Z,, £ Poi(1). Diaconis (1987) gives the
total variation bound

m

drv(Zm, Poi(1)) < ol (4.6)

n

If we now use the fact that ) Sa(n,¢) = By, the nth Bell number, then (4.5) and (4.6)
)

together imply the simple bozunds:

B, 2™

For every n, P(Z,, > k) < C*(n,1) o T — (4.7)

14



For instance, for n = 2, 3,4,5, 10, B, equals 2,5, 15,52,115975 and C*(n,1) can be com-
puted as .161,.129,.103, .089,.050. Thus, for instance, with n = 5,

4.628 2™

(4.8)

for any m, any k£ > 1.

As a numerical test, if m = 52 and k = 3, the correct value of P(Z,, > k) is .0189882
and 4828 + 27 = 01904.

The table of C*(n, A) below is provided for future use.

TABLE 6: C*(n, \)
Poisson Distribution

n A=1 A=2 A=3 A=4 A=5 A=10
1 264 323 385 425  .448 .546
2 161 216 .265 .297  .320 .399
3 129 175 207 232 281 318
4 103 143 170 190 .206 .266
5 .089 119 141 1589 174 .229
10 .050 .070 .084 .093 .104 138

5. Application to Bounding The Mean Absolute Deviation.

The bound
supz" P(| X — p| > z)

ElX —ul”
—-——| # where C’;(r) — 220

kT EIX —puf

is useful to find a family of upper bounds on the mean absolute deviation E|X — p| where

P(IX — p| > k) <CL(r)

p = E(X). Problems in which the mean absolute deviation arise are plentiful and are
beautifully chronicled in Diaconis and Zabell (1991) with much other information. The
bounds are given below. Some notation is given first:
Let p = P(X = p)(= 0 if X is continuous)
sup z" P(| X —pi>z)

CZ(T) = =20 EX—ul" (5.1)

a(r) = 25 (1-p)' 7 (Ca(r)* (r>1)

Theorem 5. For all » > 1,
1
ElX - pl <a(r)(E|X —pl")7 (5.2)

15



Remark. (5.2) is of use if and when a(r) < 1. We will see illustrations following the

proof.

Proof: The main idea is to use the bound P(|X — u| > k) < C;(T)El);:“lr with two

different values of r for k near 0 and k away from 0.

Step 1. Fix any § > 0, to be suitably chosen later. We have

o0
HX—M=/ P(|X — p| > z)dzx
0

) oo
=< Ci(r1)E|X — p|™ /0 ledx + Ch(r2) E| X — p|™ /5 — dx
(where 0 < r; <1 < 7y < 00)
C*(ry)ét—m C*(rg)817T2
=L BIX—pr+ ——E|X -yl _
e | X — pl™ + — | X — p (5.3)
In particular, for all 6 > 0, all ro > 1, by taking r; =0,
C*(rg)6t T2
EIX — 4l <801 - p) + 20 gy (5.4
y —

1
Step 2. For a,b > 0, the function ad + b6'~"2 is minimized when § = (M> =,

a

Step 3. Hence, from (5.4),

C*(ro)E|X — p|"™
E|X — p| < inf {5(1 —p)+ s(r2)E| d 51_”}

§>0 reg — 1
. T9 1—L * <1 o 1,
= (- p) T () (BIX — ) (55)

on some algebra, as stated in (5.2).

Example 4. Efficacy in Some Common Cases The bound (5.2) is useful when an
exact expression for F|X — | is clumsy or absent, but a simple expression for E|X — u|" is
available (e.g. if 7 is an even integer). The following are some illustrative values for some

interesting cases; they could also be used by future researchers.
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TABLE 7: The Coefficient a(r)
Negative Binomial (K, 1) distribution

r m=1 m=2 m=3 m =4
2 .866 713 .622 .560
4 .364 321 .289 .266
6 231 210 430 .443
8 170 .158 .352 .358

TABLE 8: The Coefficient a(r)
Binomial (n, ) distribution

4 1.102 .607 .700

6 .937 ATT 1.040

8 .849 1.055 1.011
References

Bryant, V. (1993). Aspects of Combinatorics, Cambridge University Press, New York.

DasGupta, A. (1998). On a differential equation and one step recursion for Poisson mo-

ments, Technical Report 98-02, Department of Statistics, Purdue University.

Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications,

Academic Press, New York.

Diaconis, P. (1987). Method of moments in probability and statistics, AMS Short Course
Lecture Notes, Volume 37, AMS, Providence, Rhode Island.

Diaconis, P. and Zabell, S. (1991). Closed form summation for classical distributions,

Statistical Science, 6, 284-302.

Sellke, T. M. and Sellke, S. H. (1997). Chebyshev inequalities for unimodal distributions,
Amer. Statistician, 51, 1, 34-39.

17



