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ABSTRACT. From k normal populations N(8,,67),...,N(8,,62), where the means

0,,...,0, € R are unknown, and the variances ©7,...,6; >0 are known, independent random
samples of sizes n,,...,n, , respectively, are drawn. Based on these observations, a non-empty
subset of these k populations of preferably small size has to be selected, which contains the
population with the largest mean with a probability of at least P* at every parameter
configuration. Several subset selection rules which have been proposed in the literature are
compared with Bayes selection rules for normal priors under two natural type of loss functions.

Two new subset selection rules are considered.
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1. INTRODUCTION

Let P,,...,P, be k normal populations N(8,,67),...,N(8,,0;), respectively, where the
means 0,,...,8, € R are unknown, and where the variances o7,...,6; >0 are known. Suppose
one wants to select, based on independent random samples of respective sizes n,,...,n, , a non-

empty subset of these populations which contains the population with the largest 0 -value, i.e. the
best population, with a high probability, where the size of the subset should be as small as
possible. Apparently both goals work against each other, similar as in testing hypotheses where
the goal is to keep both types of error probability small. As in the latter, a natural approach is to
control one of the two goals and then to optimize the other one.

The classical approach, due to Gupta (1956,65), is to consider subset selection rules S for

which the minimum probability of a correct selection (CS) is at least P*, where P is

predetermined. To exclude the possibility of simply selecting just one of the populations at
random, P* is assumed to be greater than k™. Among all subset selection rule S which satisfy

this P”-condition, an optimum rule would have the smallest expected size E,(ISI) for all

0=(9,,...,0,)e R*. Unfortunately, no such optimum rule exists (Deely and Johnson, 1997).

Therefore, attempts have been made in the past to find suitable.candidates which perform well in
terms of their expected subset sizes in comparison to the other rules.

By sufficiency, only subset selection rules have to be considered which depend on the k
sample means X=(X,,...,X,) with realizations §=(x1,...,xk)69(k. The underlying model
simplifies to X, ~N(8,,p;'), where p, =n,/c; denotes the precision of the sample mean from
population P, i=1,...,k, and X,,...,X, are independent. For notational convenience, let in the

1) £ 6y <...<0,, denote the ordered values of any 6€ R*. Further, let @ and @

sequel ©

denote the density and the c.d.f., respectively, of the standard normal distribution N(0,1).



For the case of 6] =...=6% =6” >0 and n, =...= n, = n,, Gupta (1956,65) has proposed
the following, now classical, subset selection rule.

S gupra (X) = {i’Xi 2 X —do/4ngi= 1,...,k}, where jcb"“ (z +d)p(z)dz=P" (1)
R

and X, = max{X,,.., X, }. Modifications of this rule to cases where not both, the variances and

the sample sizes, are common, have been proposed by Chen and Dudewicz (1973), Gupta and

Huang, W.T. (1974), Gupta and Huang, D.Y. (1976), and Gupta and Wong (1976). They are all
of the common form S (X) ={ilXi ZXj —ci,jj;ti, i= 1,...,k}, where the ci'j’s are positive,

and are chosen to meet the P"-condition in their given settings. Berger and Gupta (1980) have

shown that S;,,, and some, but not all, of its modifications of the type S to other settings are

minimax, in terms of the expected subset size, in the class of subset selection rules which satisfy
the P”-condition, and are non-randomized, just, and translation invariant. The definition of just
rules is given in Gupta and Panchapakesan (1979). Gupta and Miescke (1981) have shown that

for k=3, S; is optimum, in terms of the expected sample size, in the class of subset selection
rules proposed by Seal (1955,57), when the distances between ,,...,0, are larger than certain

positive constants. Similar results for a particular slippage configuration of the parameters had
been derived previously by Deely and Gupta (1968). Rules of this type have been the objects of
numerous investigations in the literature in the past. An overview and further references can be
found in the monographs by Gupta and Panchapakesan (1979) and by Bechhofer, Santner, and
Goldsman (1995), and recent results in Miescke and Rasch (1996).

The purpose of the present study is to look at the above mentioned subset selection rules
from a decision theoretic point of view, by means of comparisons with Bayes selection rules

under two natural type of loss function, one of which being closely related to the problem of

minimizing the expected sample size subject to the P* -condition.



2. LOSSES AND FREQUENTIST RISKS

Let 1.(0,s) be a given loss function for selecting the populations P, with ies at

0=(9,,...,0,) e R*. A non-randomized subset selection rule S is a measurable function from the

sampling space R* into the set {sl D+s c;{l,...,k}} , where the elements of S are the indices of

the populations that are selected. More generally, one could consider also randomized subset
selection rules S*, where at every X =x, population P, is selected by S with probability

P (X, i=1....k. However, since this does not lead to any further improvement, such

considerations will be postponed until the end.

Consider now a natural loss function, with some variations, that supports the goals given
in Section 1. One possible conflict, however, should be discussed first. It is not immediately clear
if situations where populations are tied for the largest parameter are statistically relevant or not.
One could argue that nothing in real life repeats itself in an identical manner. On the other hand,
two of the populations could indeed be associated with the same experimental setup. For the sake
of completeness, suppose that the occurrence of such ties is statistically relevant. Then several

variations of the natural loss function have to be distinguished.

L@9=X[a-Tg O ], )

ies

L,@9 =2[ a-Ii g0 ], w®c{ile, =0y,

ies

L,(0,)=2, a— 1{9 }(max{Gi}), 0eR*, T=#sc{l,.,k}, O<a<l
ies [k] tes

The first version, L,, rewards inclusion of all populations which have the largest parameter, the
second, L,, rewards inclusion of exactly one population that has been fagged as the best by a
given functiont, and the third, L,, rewards the inclusion of only one, but any one, population

which has the largest parameter. The choice of a=0 (a21) has been omitted since it supports
the selection of all k (only 1 of the) populations. A positive factor b could have been attached to

the indicator functions in (2), with the restriction of 0< a <b, but without gain of generality.



A modified version of L,, where the gain of including a best population depends on the
number of populations tied for the best, has been used in Gupta and Hsu (1977). L,has been
used only implicitly in the literature, as it can be understood from the respective contexts. L has

been used in Bratcher and Bhalla (1974) and in simulation studies of Gupta and Hsu (1978). In
the sequel, situations where populations are tied for the best will have probability zero, and then

distinctions between L,,L,, and L, will be irrelevant. L, proves then to be the most convenient

version, and will thus be used. Let it be called henceforth ”(0,a,a-1) loss”, and denoted by L.

The frequentist risk of a subset selection rule S under loss L is given by

k
R(.5) = Eg(LO.5(X) = X [a-T,,,0)| Bfi € S0} ©
i=1

=aE,(|SX0|)- Y Bie s},

ieA(9)
where A(8)={j 16,=0,}, 0€R*.On Q={6 16, ,; <6, € R}, this simplifies to
R(6,S) = aEQ( Neo) )— P,{i"(@ e S(X)}, where 6. o =0, 0eQ. )
The risk function of a subset selection rule S is not continuous on R*, since in (3) the

size of A(8) can drop down to 1 in every neighborhood of a point 6 € R* with Oy =0

Obviously, for every subset selection rules S, its minimum probability of a correct selection (CS)
must occur on €. This fact will be used later on in Section 3.
Some interesting features of this risk will now be discussed. Consider the following

scenarios, which may hold for any two given selection rules S, and S, .

(a) R(Q’Sl) < R(Qasz)’ g eQ ’ (5)
(b) P,{CS under S,(X)} > P,{CS under S,(X)}, 0eQ,
(©) B, (1S,(X))) < B, (IS, (X)), 0eQ.

Also, let (b’) be (b) with “>" replaced by “< “, and (¢’) be (c) with “< ““ replaced by “>”. Then

(b) and (c) together imply (a), (a) and (b’) together imply (c), and (a) and (c’) together imply (b).



Moreover, for a subset selection rule S, which is admissible, there cannot be a subset selection
rule S, which satisfies both, (b’) and (c’), with at least one strict inequality in (b’) or (¢’). In

other words, one can state the following.

Lemma 1. Let Q be the parameter space, and S be a subset selection rule which is admissible
in the class of non-randomized subset selection rules under loss L . Then there does not exist any
subset selection rule which is as good as S in terms of both, probability of correct selection and
expected subset size, and better in at least one of the two at some point in .

Since there does not exist a subset selection rule which minimizes the expected subset

size, uniformly in 8 € Q, subject to the P* -condition, it is reasonable to consider subset selection

rules which are admissible and satisfy the P*-condition. As it will be seen later, such rules can
be found in the class of Bayes subset selection rules.

Other loss functions for subset selection rules which have been used in the literature,
depend more smoothly on the distances of the selected parameters to the largest parameter, and
are discussed in Miescke (1999). A natural loss function in this class is the so-called “linear

loss”, which has been used in Miescke (1979), and is given by

L®©s) =] 6,-8-4], 8eR*, Pzscil,...k}, 0<A. (6)

ies
Although not a linear function of @, it increases linearly when non-largest parameters of
populations in the selected subset are moving away from the largest, hence its name. More
specifically, under this loss function, selection of a population with its parameter less (more) than

A away from the largest parameter is rewarded (penalized) on a linear scale.

The frequentist risk of a subset selection rule S under loss L is given by



k
R'(8,5) = By(L'(8.5(X)) = 3, [8,,—6, 4] B, {i e S(X)} (7)
i=1

k
= [0y +7-A] E,51XN -, 16, +71R,{i S0}, 8e R,

where 7y is chosen to have 0, +y—A> 0. Situations where populations are tied for the best do

not cause the discontinuity conflicts that were observed under the “(0,a,a-1) loss”. Implications,
analogously to those below of (5), hold for the terms in the lower part of (7), by simply replacing

P, {CS under S(X)} in (5) by Z; [0, + Y1 Py {i € S(X)}. Clearly, the latter is not an expectation.

It should be treated as an inner product, where its Schur-type monotonicity is relevant for

performance considerations.

3. BAYES RISKS AND NEW RULES

Let X,,...,X, be the sample means, based on independent samples of sizes n,,...,n,,
from k normal populations P,,...,P, , respectively. It is assumed that X, ~ N(6,,p;'), where
p, =n,/ O'f denotes the precision of the sample mean X, and that Giz >0 is known, i=1,....k.
The performance of a selection rule S is measured by its expected loss, i.e. by its frequentist risk
R(6,5) =E4(1(8,5(X)), at parameter configurations 6 € Rk,

For admissibility considerations of subset selection rules S, the present framework will
now be extended to the Bayesian approach. Starting with the pioneering work by Dunnett (1960),
Bayesian selection rules have been studied at numerous occasions in the literature. An overview
of these results can be found in Miescke (1999). From now on, it is assumed that the parameters
9_ =(0,,...,09,), say, are a priori random variables which follow a known prior density m(8),
0 € R*. More specifically, it will be assumed below that a priori, ©, ~ N(u,,v{"), i=1,...,k,

where the prior mean W, € R and the precision v, >0, i=1,....,k, are known, and where



©,,...,0, are independent. A posteriori, given X=x , O, ~N(W,(x,),T"), with
W (x)= (p;x,+v,i,))/(p; +Vv;) and 1, =p,+v, , i=1...,k, and ©,,...,0, are independent.
Moreover, marginally, X, ~ N(i,,p;' +v;'), i=1,...,k, and are independent.

Let Q={6 16, _,,<6,,,0€ R} be that part of the parameter space where the largest of

the k parameters is unique. Since P{® e Q} =1, the parameter space can be replaced by Q,
which thus will be done now.
First, the “(0,a,a-1) loss” will be considered. Since all three loss functions in (2) are

identical on €, for convenience, L(8,s) =L,(8,s), 6 € Q, will be used in the sequel. It should
be noted that a—1<1(0,s) <(k—1)a holds, and that the two bounds can be attained. On Q, the
frequentist risk R(6,S) = E4(L(8,S(X)) of a subset selection rule S under loss L is given by (4),
and it inherits the two bounds from L. Likewise, the lower and the upper bound can be attained,
as it can be seen from (4) by using a no-data rule that selects 1 or k-1, respectively, fixed
populations.

The Bayes rules S™ for the normal prior density 7(8), 8 € R*, under loss function L,

minimize the posterior risk, i.e. the posterior expected loss, at every X = x € R*, and are

{il P{@i =®[k] |X=§} >a, i= 1,...,k} , if this set is not empty,

S™(x) = (8)

{i,} for any i, with P{@io =0 IX =5} = max P{Gj =0 I_X = 5}, otherwise,

j=1,..k
with the option to drop elements in the first set for which equality occurs. This follows from the

fact that the Bayes risk, which is the expected minimum of the 2*—1 posterior risks that are

associated with all non-empty subset selections s(X), is equal to

sX)*D 1 2x)

H(m,8") = E[min Z[a—P{®i=®[k]|_}§}]J. ©

The Bayes risk of any subset selection rule S, including S™, can be represented by



(,5) = E( Y [a—P{@i:G)[k]b(_}]j. (10)

ieS(X)

The lower bound a— 1 and the upper bound (k —1)a on the frequentist risk are inherited
by the Bayes risk, but may not be attained by the latter.

A classical approach to verify admissibility is the method by Blyth (1951). Similar as in
Miescke and Park (1999), it will be shown that all assumptions, including (a), (b), and (c), of
Theorem 13 in Berger (1985, p. 547), which provides admissibility, can be met. Although Q is
not convex, it differs from R* only by a Lebesgue null set, and thus is sufficient for the proof of
that theorem to remain valid.

In the present setting, the frequentist risk of every subset selection rule S is a continuous

function of 0 € Q. This follows from the fact that under loss L , the risk of S at any 6 € Q2, with

0. =6

i@ = Yo which is given by (4), can be written as

k
R(8,5) =2y, P{i e S(X)} - P,{i*(®) e S(X)}, (11)
i=1

where Pg{r € S(_)g)} is continuous on , r =1,...,k, since the underlying distribution is a regular
k -parameter exponential family. It follows that all Bayes rules for the prior density m(0) are
admissible on  under loss L in the class of non-randomized subset selection rules. Moreover, a
subset selection rule S which is admissible on Q must be admissible on R*, which can be seen

easily from (3), and the fact that Pg{r € S(_X)} is also continuous on R*, r=1,...,k.
The set N={x | x,; = Xy} is a Lebesgue null set in R*, which has no effect on the

frequentist and Bayes risks considered below. Therefore, the sample space can also be replaced
by Q, as long as Bayes risks for prior density 7(8) on R* are under concern. This proves to be

convenient and will thus be done in the sequel. For n=1,2,..., let the prior density 7 2 be the



£

density of N(i,,v;')X...xN(,,v;'), with g, =0 and v,” =n/p,, i=1,...,k . Furthermore, let

T, be the improper prior density given by 7, (8) = n*’x_(8), i.e.

k
T, (8) =(2m)™*"? H o) exp(—;’—ief j, fe R*. (12)
n

i=l
(a) The Bayes risks r(ﬂ::,S) of any subset selection rule S, and thus also r(n:,S““) of S™,
which is the Bayes rule with respect to w_ (as well as the generalized Bayes rule with respect to
Tcn* ), are finite for all n=1,2,..., since the loss function L, given by L,in (2), is bounded by
a—-1<L(9,s) <k(a-1).
(b)  For any convex set K< R* that is non-degenerate, i.e. that has a positive Lebesgue

measure, there exists a Q >0 and an integer M such that for n> M,

[m@de>Q. BGE
K

This follows from the fact that ©t; < ®, for every integer n>1.
(c) To prove that a subset selection rule S is admissible on €2 under loss L in the class of all

non-randomized subset selection rules, it is sufficient to show that

lim [r(;,8)—r(n;,8™)] = lim 0**[x(x,,8)—r(m,,S™)] = 0. (14)

The Bayes risk of the Bayes subset selection rule S™ for prior ®,, n=12,..., will now

be examined in details. After rewriting (9) in terms of integrals, one has for n=1,2,...,

(5= [ min 3, [a— [T p,[i/(m+D1"x, —x,) +p, " z])(p(z)dz] (15)

o @2 icsx) R je

k .
x [ Lip, / (n+ 11" ¢([p, / (n +1)1"x, ) dx,,

r=1

The minimum in (15) is taken pointwise, at every x € Q, over the 2¥ — 1 non-empty subsets of

{1,...,k} . A change of variables x, =+n+1z_, r=1,...,k, leads to the alternative representation

10



r(nn,s“n) = | min z l: a—J'H(I)(pjl/z[nl/Z(Zi _Zj)"' pi.1/2z])(p(z)dZ:I (16)
ies(z)

o (20

k

X Hprllz(p(pruzzr) er *

r=1
The Bayes risk of any subset selection rule S can be seen in the same way to have,

analogously to (15) and (16), the two representations for n=1,2,...

1(x,,S)= J D [ a—JHCI)( pj”z[[n/(n+1)]”2(xi -x;)+p,"* z] )(p(z)dz] (17)

Q ieS(x) R jH

k
x [ 1ip, /(m+11"0(lp, / (n+1)]"*x, ) dx,

r=l

= J Y l: a—-fH@( pj”z[n”z(zi —z)+p, " z] )(p(z)dz} ﬁp,"z(p(pr”zzr) dz, .

Q ieS((+)"?2) R i
As in (15) and (16), x plays the role of the k sample means X =x€Q, and z= (n+1)"?x .

An interesting subset selection rule is the generalized Bayes rule S for the Lebesgue

measure used as non-informative prior on RE . It selects, at X€E R, any subset which achieves

r(x):= min z {a—J.HCD(pj”Z[Xi —x;+ pi"’zz])(p(z)dz}. (18)

s ies(x) R i

Lemma 2. For every subset selection rule S, and for every n=12,...,

0<1(x,,S)-(a-1) (19)

< _[ D [ I—JH®( pj”z[n”z(zi —z)+p;"” z] )(p(z)dz} lrjprm(P(Prer) dz, .

Q ieS(@+1)"z) R
Proof: It has been shown already that r(w_,S)>a—1 holds. As to the second inequality, there
is at least one term in the (first and) second sum of (17). Thus, the sum plus (1—a) is less or

equal than the sum of each term plus (1— a).

11



The limiting behavior of the Bayes risks of the subset selection rules considered above is

as follows.
Theorem 1.  limr(x,,S°") = limr(x,,S;) =limr(x,,S™)=a-1.

Proof: Let ze Q be fixed. The inner integral of (19) converges, as n tends to infinity, to 1 if

Gen

i=i"(z) with z. =z, and it converges to 0 otherwise. For S, the minimum in (18), by
= i*(y) [x]

using r(x) =r((n+ N2 z), occurs, for sufficiently large n, at the subset s"(z) = {i"(z)}. Thus, by
Lebesgue’s bounded convergence theorem, one can verify that for S°" the Bayes risks in (19)
tends to a—1 as n tends to infinity. Similarly, one can verify the limit for any subset selection

rule of the type S, as defined below of (1), using S;(x) =S, ((n+1)"?z). The third limit
follows from the fact that a—1<r(x,,S™) <r(x_,S°") holds for all n.

The limiting behavior of n* 2[r(Tcn,S"“)—(a— 1)], as n tends to infinity, remains
unresolved. In view of (16), at z€ Q, and for i*(z) given by Zop = Ziny s

lim n“”i Iy (i*(z))[l—J 11 @(pj‘”[n‘” (2~ 2) + D1y 2] )m(z)dz } (20)

R j=i"(2)
k

X Hprllz(P(pl‘l/zzl') le‘ = 0.

r=|
This can be seen by changing variables in (20) with v, =n*?z_,r=1,...,k, and then considering
an area of v e where the differences of the coordinates are smaller than a suitable bound. On
the other hand, for i#i"(z), the limit of the expression in (20), with i*(z) replaced by i, and
with 1 replaced by a , is only known to be less or equal to zero. This difficulty makes it
unfeasible to determine if (14) does or does not hold for S®"or S;;.
For every n=12,..., the Bayes rule S™ for prior m, is admissible and thus has the

optimum properties in term of the probability of a correct selection and the expected subset size

12



given by Lemma 1 on R*. From a practical point of view, the difference between S%"and
S™ becomes negligible for large n, and therefore S®" appears to be suitable for practical use.
To establish this new subset selection rule S°" at the P”-condition, one has to

compromise on the value of a in the loss function and use that value of a for which P"is equal

to the minimum of the probability of a correct selection. To determine the latter, let

qi(é):J.HCI)(pj”z[xi—xj+ pi'mz])(p(z)dz, i=1,...k, xeR- 21)

R j#
From (18) it follows that at every x € R*,

{il q;(x)za, i= 1,...,k} , if this set is not empty,

S (x) = (22)

{iy} , for any i, with q, (x) = max q;(x), otherwise,
0 =

..... k
with the option to drop elements in the first set for which equality occurs. Using the

representation X, =0_+p;"*N_, r=1,....k, where N,,...,N, are generic i.i.d. standard normal

random variables, the probability of a correct selection of S°" at 8 € Q with 0,4 =00 is

P{ J’ 1 q)[ ij[e[k] —9,~+PEESN;(9> ~p;"’N, .|.pif(lgz])(p(z)dz > a, or (23)

%R j#i"(8)

2 -1/2 -12 —1/2
J.H q)(pjl [e[k]_ei+pi‘(9)Ni'(g)_pj Nj"'p,--(g)z])(P(Z)dZ

R j#i*(8)

>[ T1@(p,2[6, -0, +p; "N, ~p;""N, +p; 2] |o(2)dz, for all r;ti*(g)_)}

R
It has been shown in Gupta and Miescke (1988) that for x; =x, =...= X, , the maximum
of the k values in (21) occurs at {ilp; =p;,i=1,....k}. Thus, if x,,...,x, are sufficiently close
together, the maximum of the k values ‘in (21) may not occur at i=1i"(x). However, for
P, =P, =...= P, , that maximum always occurs at i=i"(x), and here S°" can be established at
the P* -condition with a value of a that depends only on k and P*.

Theorem 2. For p, =p, =...= P, =P, say, S*" satisfies the P" -condition iff a satisfies

13



k-1
P{Nk =Ny, or | [J®(N,~N,+z)o(2)dz 2 a}zP*. 24)
R

i
Proof: From (21) - (23), one can see that for p, = p, =...= p, = p, the probability of a correct

selection under S°"at 6 € Q with 8, =6, is

P{ 0, +p™"N, 26,+p™"’N;, forall j<k, 25)

j=

k-1
or J'Hq)(pl/z[e[k]—Gj]+Nk—Nj+Z)(p(z)dz Za},
®

which is increasing in 6, and decreasing in 0,...,8;,_;;. The minimum of (25) thus oceurs at
0, =0, =...=0,, where it is equal to (24).

For any predetermined P*, the value of a for which (24) holds has to be determined on a
computer with numerical integration or simulation. Likewise, comparisons of the expected subset
sizes of S®" and another subset selection rule, such as S » both meeting the P*-condition, has to

be done in this way.

In the second part of this section, considerations similar to those above will now be made
for the “linear loss” (6), but in a more concise manner. The loss function I’ has — A as a lower
bound, which can be achieved. This bound is inherited by the frequentist risk and the Bayes risk,
and can be achieved by the former.

‘The Bayes subset selection rules ST for the normal prior density m(8), 8 € R*, under

loss function L', minimize the posterior risk at every X = x€ R, and are

{i‘ E{@i IX = 2(_} > E{G[k] IX = 1} -Ai= 1,...,k} , if this set is not empty,
{i,} for any i, with E{@io IX_ = 5} = max E{Gj |X = 5}, otherwise,

=k

ST = (26)

with the option to drop elements in the first set for which equality occurs. This follows from the

fact that the Bayes risk of the Bayes subset selection rules S is given by

14



r,(n:,Sf)zE(mm Z[E olx}- {@ilx}—A]], @7

s(X)=D . ies(X)

and the Bayes risk of any subset selection rule S is given by

ieS(X)

L(n,S) = E(Z[E loy|x]- {@ilx}—A]J. (28)

The Bayes risk of the Bayes subset selection rule S7* under loss L for prior 7,
n=12,..., which are given above of (12), is
L (m,,S™) (29)

= | min 2 [E(max{[n/(n+1)]x +[n/(n+1)]”2pj"”2N })—[n/(n+1)]xi—A}
ies(x)

s(x)#@ -----

% ]'[[pr / (m+ D1 0([p, / (n+1)]"*x,) dx
r=1

where N,,...,N, are generic i.i.d. standard normal random variables. The minimum in (29) is
taken pointwise, at every x € Q, over all 2* —1 non-empty subsets of {1,...,k}. A change of
variables x, =4/n+1z, r=1,...,k, leads to the alternative representation

r,(n,,S")=| min Y, [[n/(n+l)]”2< (max{n”zz +p; ”ZNJ.})——n”Zzi>—A] (30)

Q s(z)#QD s L\ \Fle

The Bayes risk r,(n,,S) of any other subset selection rule S can be derived from (29) by
deleting the minimum and replacing s(x) by S(x). Likewise, it can be derived from (30) by
deleting the minimum and replacing s(z) by S((n+1)"z).

An interesting subset selection rule is the generalized Bayes rule S for the Lebesgue

measure used as a non-informative prior on R* . It selects, at x € R*, any subset which achieves

r,(X):= min Z l: (max{x +p; -2y }) xi"A] G1)

s(x)#ales(x) .....

15



The limiting behavior of the Bayes risks of the subset selection rules considered above is

as follows.

Theorem 3.  limr, (%, ,S%") = limr, (n,,S;) = limr, (%, ,S7") = —A.

Proof: Let x€Q be fixed. Obviously, i*(x) is element of S;, S, and S™ for all n. That

part of the sum in the respective Bayes risks which is associated with a selection of i*(x), in the

~1/2

setting of (30) with z=(n+1)"""x, tends to — A. This follows from

——AS[n/(n+1)]”2E(jr=r}ax{n”2(zj—z[k])+pj'”2Nj})—ASE( ax{pj_mNj})—A, (32)

..... k =1,k

and the fact that the term in the term in the middle of (32) tends to O as n tends to infinity.
Let now i#i°(x). Since for i€Sg(x), Xyq—X; <8, ie. (n+1)"*(z,y—2)<3, for
some & > 0, that part of the sum in the Bayes risk of S; which is associated with a selection of i

is bounded by

~A LI ((n+1)l,zz)(i){[n/(n+ D12 E(jrzl}a)](({n”z(z ;—z)+p; N J}) - A} (33)

.....

where the indicator function in (33) is O for sufficiently large n. Thus by Lebesgue’s bounded

convergence theorem, the second limit in the theorem holds true. The third follows from
-A<r,(n,,ST")<r,(w,,S5), n=1.2,...
For any i#i"(x) with ieSE"(x), that part of the sum in the Bayes risk of S

which is associated with a selection of i is bounded by
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—A STy (i){[n /(n+D]" E(g}a)ﬁ{n’” (z;=2)+p ,-"’ZNJ-}) - A} (34)

.....
.....

The second inequality in (34) is established by replacing a factor n/ (n+ 1) of the expectation by

one. The third follows from the fact that, according to (31),

E(_ma)l(c{(n+1)”2(zj—zi)+p;”2Nj})SA for ieS% ((n+1)"*(2)). (35)
j=1

.....

This completes the proof of the theorem.

Similar as with the “(0,a,a-1) loss”, the limiting behavior of n*?[r,(%,,S™)+A], as n
tends to infinity, remains unresolved. This difficulty makes in unfeasible to determine if (14)
does or does not hold for S>*"or S.

From (7) it can be seen that the frequentist risk of every subset selection rule S is

continuous on R*, and thus all Bayes rules for the prior densities 7(0) and 7 _(0) are

admissible on R* in the class of non-randomized subset selection rules. The arguments are the
same that were used below of (11). From a practical point of view, the difference between S
and ST becomes negligible for large n, and thus S appears to be suitable for practical use.

To establish this new subset selection rule S at the P*-condition, one has to
compromise on the value of A in the loss function L’ and use that value of A for which P"is

equal to the minimum of the probability of a correct selection. To determine the latter, let

pi(z)zxi—E(max{xj+pj‘”2Nj}), i=1..k, xeR*. (36)
=l

..... k

From (31) it follows that at every x € R*,
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£

{il pi(x)2-4, i= 1,...,k} , if this set is not empty,

37
{io}, foranyi, with x; =X, otherwise, (37

S (X = {

with the option to drop elements in the first set for which equality occurs. The probability of a

correct selection of S at 8 Q with 8, , =6, is

PZ{ O + pi_'l(lgz)zi'((j) _ Eu(}gai{ej " pj—uzzj +pj—1/2Nj}) =-A, or (38)

~1/2 -1/2 .k
0 P L) 2 0,+p, Z, , forallr#i (9_)},
where Z,,...,Z, are i.i.d. generic standard normal random variables which are independent of
N,,...,N,, and where the superscripts indicate the random variables involved. S%" can be

established at the P”-condition with a value of A that depends on p,,... Py k, and P*.

Theorem 4. S satisfies the P -condition iff A satisfies
min pZ {p;"zzi = ma)l(({pjf”zzj} , or p;"*Z. ~ Eﬂ(n}ai{p;”z(zj +Nj)}) >-A } =P". (39)
Proof: The assertion follows from the fact that the probability in (38) is increasing in 6, and

decreasing in 0,,...,0, ;-

It is interesting to note that for p, =p, =...=p, =p, say, (39) simplifies to

N 2 _ p*
PZ {Zk =Z[k] » O Zk—E (jrga)l(({ZJ+Nj})2—p‘ A} =P. 40)

For any predetermined P*, the value of A for which (39) or (40) holds has to be

determined on a computer with numerical integration or simulation. Likewise, comparisons of

the expected subset sizes of S and another subset selection rule, such as S, both meeting the

P -condition, has to be done in this way.
In conclusion, the extension of the admissibility results from non-randomized to

randomized subset selection rules will be described briefly. A randomized subset selection rule

18



S*, say, can be represented by S*(x,u) ={i|ui Sps.i(ﬁ),i=l,...,k} , where at every xeR*,
P . (X) denotes the probability of including population P, into the subset, r =1,...,k, and where

U,,...,U, are generic i.i.d. random variables, each uniformly distributed on [0,1], which are

independent of X . For such a randomized subset selection rule S*(X,U), one has
Rires KW} =R{U, <py, 0} =Ey[py, X)), 8T r=Lok. @D

The risk function of a randomized subset selection rule S* under loss function L is given by

R(.5") = By(LO.S (XU =23 Ey(py,(0) = ¥, Eqlpy, (), 0%, @2
i=1

jeA(®)

where A(8) ={jl9;=86,}. By the same arguments that have been used before, for every

randomized subset selection rule S*, R(0,S")is continuous on . Every S” that is admissible on
Q under L within the class of all randomized subset selection rules must also be admissible on

R*, since for any randomized subset selection rule S*, Eo(p,. (X)) is continuous at every

0eR*, r=1,...,k. For loss function L’ similar arguments apply, but are omitted for brevity.
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