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1 Introduction

1) The problem which we address in this work is the following: we have an IR%-valued
state process X = (X¢);>0 which evolves according to a stochastic differential equation of
the form

dXt = G(Xt)dt + b(Xt)th, ,C(Xo) = U, (11)
where 4 is a known distribution on IR?, and a, b are known functions, and W is a d-
dimensional Wiener process. We have noisy observations Y3, ..., Yy at N regularly spaced
times, and without loss of generality we will assume that these times are 1,...,N. We
wish to compute the conditional expectations

for all reasonable functions f on IR%.

This is a filtering problem, but although X evolves according to “continuous” time this
problem is essentially discrete in time, and the integer IV, although perhaps large, is fixed
throughout (in contrast with the usual continuous-time non-linear filtering problem).

We will consider below three different ways in which the noisy observations occur.
But in all cases, we have no explicit form for the transition semigroup (Q:);>o of the
Markov process X, so that an explicit form for the filter 7y, is not available, and we will
approximate this filter by Monte-Carlo simulations.

The performance is measured in terms of how many “single” random variables are
necessary to simulate in order to achieve a given error in our approximation. More pre-
cisely, we count as a “single” variable any variable of a fixed dimension which we have to
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simulate. Then if we are allowed to simulate r single variables, we try to find a Monte-
Carlo algorithm giving an estimate Iy nf for my,nf in such a way that the sequence

r/o(T, o f - wy,nf) has bounded moments of some order (these are random variables
defined on the space on which the simulated variables are defined themselves), for some
o > 0 as small as possible: it means that if we wish to have a (mean) error less that ¢ we
need a constant times (1/e)® simulated variables.

Assaid before, we wish to have o as small as possible, together with the following
important properties:

1) o does not depend on the number N of observations (of course the bounds on the
moments will depend on N, and in an exponential way as a matter of fact: so when IV is
big the method does not work well).

2) o does not depend on the observed points (Y1,...,Yy), nor on the bounded measurable
function f.

2) We single out three observations schemes:

Case A) For alli=1,..., N we have
where the ¢; are i.i.d. ¢'-dimensional variables, independent of X and with a law having

a known density, and A is a known function from JR% x IR? into IRY.

Case B) The observed values Y; are the values at times ¢ of an JR%-valued process (¥;)i>0
which satisfies the following:

dY: = h(Xy)dt + odW}, Y = 0, (1.4)
where h is a known function and W' is a ¢g-dimensional Wiener process, independent of

W, and o is an invertible ¢ X g-matrix.

Case C) The same situation as Case B, except that the equation is
dY; = d' (X3, Yi)dt + b (X3, Yz)dW], Yo =0, (1.5)

where a’ and b’ are known functions and W' is as above.

In Cases B and C the initial value Yy = 0 is just for convenience, and for homogeneity
of notation we also set Yy = 0 in case A. In the three cases, the two sequences (Xi)iew
and (X;,Y;)iev are Markov chains, with transitions denoted by @ and P respectively (we
have Q(z,dz') = P(z,y;dz’, IR9) for all y).

Let us now state the assumptions which will be in force in the paper. We do not seek
the weakest possible assumptions here. First, in case (A) and (C) (resp. (B)) we will
suppose (E1) (resp. (E2)) below about Equation (1.1):

(E1) The functions a and b are 2 times differentiable with bounded derivatives of all orders
up to 2, and the matrix (bb*)(z) is uniformly non-degenerate.



(E2) The functions a and b are bounded and Lipschitz continuous.
For case (C) we also need an assumption on Equation (1.5), which is:

(E3) The functions o' and b’ are 2 times differentiable with bounded derivatives of all
orders up to 2, and the matrix (b'6"*)(z) is uniformly non-degenerate.

For case (A) we also need an assumption on the function & and on the i.i.d. variables
[res

(A1) For any z € IR? the variable Y = h(z,¢;) admits a density y — g(z,y) and the
function g is bounded and ezplicitly known.

Observe that (Al) is satisfied as soon as ¥; = H(X;) + ¢; and the ¢;’s have a bounded
known density, whatever the known function H is.

For case (B) we need as well an assumption on the the function h occuring in (1.4)
and on o:

(B1) The function h is bounded and Lipschitz continuous, and the matrix o is invertible.

We will exhibit Monte-Carlo algorithms with the following performances. Below, the
constant By depends on the quantities a, b, o', ¥, h, o involved in the equations, but
not on the observed value (Y1,...,Yy) = (y1,...,yn) except through a minoration of the
continuous version of the density of the variable (Y1,...,Yy) at the point (y1,...,yn) (see
(2.14) below; the assumptions made ensure the existence of this continuous density). As
indicated by our notation, By also depends in a crucial way on the number N of steps,
and in fact the dependency is exponential: we have By = CC'V for two constants C > 0
and C' > 1.

The main results are as follows:

Case A: Under (E1) and (A1) we have E(|ﬁ’{,’Nf —mynf|) < B—ﬁy:,iu, where || f|| is the
sup-norm of f. .

Case B: Under (E2) and (B1) we have E'(|f[§,,Nf ~7ynf|) < B—’T"JJ/%LK, where || f]|’ is
the Lipschitz norm of f, supposed to be a bounded Lipschitz function.

Case C: Under (E1) and (E3) we have E([ﬂ’{,,Nf —nynf]) < %’%y{y)—.

Together with these we will also obtain exponential bounds.

Note that B is a particular case of C, provided (E1) holds and h is of class C?: in
this case we can also apply the result of case C, thus obtaining a majoration involving
|| f]| instead of ||f||". When ¢ =1 the rate is then the same when f is Lipschitz or simply
bounded measurable, but this is no longer true when g > 2.



3) The paper is organized as follows: Some preliminaries are provided in Section 2. Sec-
tions 3, 4 and 5 are devoted to the proofs of the above results in cases A, B and C
respectively. In Section 6 we first state some extensions, without proofs. Then we give
some numerical results: indeed the theory gives us constants By above with the form
By = C¥ for some C > 1, which seems to indicate that the method is unfeasible in
practice even for N moderately large. To understand what these constants By really are,
we have made a numerical study in a very simple case: (X,Y) is a 2-dimensional Gaus-
sian diffusion; the simulations show that By stays reasonably small when the diffusion is
recurrent, while it explodes as N increases in the transient case: this is of course to be
expected, although we do not have a proof for this fact.

2 Preliminaries

This section is devoted to recalling some known facts about stochastic differential equa-
tions, and to provide some preliminary results. As a rule in this paper, C and ¢’ will
denote constants which may depend on the coefficients of the equations (1.1), (1.3), (1.4)
and possibly on the function g in (A1), but on nothing else, and they change from line to
line.

2-1) Since we cannot simulate exactly a random variable having the same law as X;
(starting at any Xy = z), we will approximate it by the well known Euler scheme. More
precisely, for any integer m > 1 and any starting point z, we define recursively:

1 1
X(z,m)y = =, X(z,m)ip1 = X(a:,m)z-—i-aa(X(m,m)i)-i-ﬁb(X(x,m)i)Ui, (2.1)
where the variables U; are i.i.d. d-dimensional centered Gaussian with unit covariance
matrix.

Under (E1), if Q™ (z,.) denotes the law of X (z, ), then Q and Q™ have densities
g and ¢(™ satisfying ,
|

4(z,2') + ¢ (z,2') < CeCloe (2.2)

2 C ! !
2=a|>= 5 gla,o) - ¢™(@a)| < Ze Ol (23)

(2.2) is a standard fact under (E1), and (2.3) is proved by Bally and Talay [1], [2] (since
bb* is assumed to be uniformly elliptic we do not need to consider the “perturbed” scheme
introduced in [2], and the C%-regularity is enough). This implies in particular that for any
bounded Borel function f we have for another constant still denoted by C:

Q™) - Q@I < 2. (24

Next, if we simply assume (E2) and if we denote by X (z) the solution to (1.1) starting
at Xo =  and if we take U; = v/m(Wixn — W ) in (2.1) with the same Wiener process
W as in (1.1), we have (see e.g. [3]):

B( sup |X(z,m); - X(z) s [*) <

i
1<i<m m

% (2.5)



Under the same assumption (E2) we also have

E(St<111> | X (2)s — X (y)s]) + SEPE(IE‘-IE | X(z,m); — X(y,m);|) < Clz—yl. (2.6)

2-2) In order to study case C, we also need to perform an Euler scheme for Equation (1.5).
In fact we do this simultaneously for both equations (1.1) and (1.5): starting at z € IR?
and y € IRY, we define X(z,m); by (2.1), and set

Y("I"7y7m)0 =Y Y(x7y7m)i+1 = Y(m7y,m)i+ ( )
2.7
+%GI(X(m’m)i, Y($,y7 m)l) + \/Lmb'(X(:z:,m),, Y(.'L‘, Y, mZ)U'L,7

where the variables U] are i.i.d. g¢-dimensional centered Gaussian with unit covariance
matrix. We clearly have the same properties for the pair (X (z,m);,Y(z,y,m);) as we
had above for X(z,m);. In particular under (E1) and (E3), the pair (X,Y) satisfies an
equation of type (1.1) whose coefficients satisfy (E1) on IR%9. Therefore if P(™ (z,y;.)
denotes the law of (X (z,m)m,Y (z,y,m)n), the transitions P and P(™ have densities p
and p(™) satisfying

T e 12|12
p(z,y; 2, y') + p™ (z,y;2',y) < CeC' s PHy—y' ) (2.8)

2 C - 2 _ a2
le~2'l+ly=y'| > = = Ip(zy;e’,y) =2 (@ y2 )] < —e Clleme Ty, (2.9)

2-3) We fix the observation sequence (yo = 0,%1,%2,...), and instead of my y in (1.2) we
simply write 7, f.

Our assumptions imply that there is a function G on R? x IR? x IR* x IRY such
that y' — G(X;,Y:; Xiy1,v') is a version of the density of the law of Y;,, conditional on
(X3,Y;, X;41): this is trivial in case A with G(z,y;z',y') = g(z',v') (see (A1)), and in case
C with G(z,y;2',vy') = p(z,y;2',y') /q(z,2'). In case B, if ¢ is the density of the normal
law N(0,00*) on IR? (recall that o is invertible) and if k(z,z';du) denotes a version of
the law of the variable fol h(X;)ds conditionally on Xy = z and X; = 7/, then the above
property is satisfied with the function G(z,y;2',v') = [y —y — w)k(z, 2, du).

Now, a version of mx f is given by

_ J p(dzo)Q(z0, dz1)G (0, Y0; 71, 11) - . - Q(rN—1,dzN)G(ZN_1,YN—-1; xayN)f(-'BN).

i = fﬂ(dl‘o)Q(wo,dwl)G(ib‘o,yo;xl,yl)---Q(xN—l,dwN)G(fﬂN—l,yN—l;iBN,’yA(r) )
2.10

There is a recursive way to write the “filter” 7y, which is as follows. First, we clearly
have

mf = u(f) = [ f@u(do). (211)

Next, we introduce the kernels H; from IRY into itself by
H;f@) = [ Qads')G(a,y5-1,2',5)1 @) (212

5



Then 7y is also given by the following recursive formula, starting with (2.11):

(2.13)

Note that the denominator of (2.10) is pH;... Hy1, and it is of course natural to
assume that it is not equal to 0 (it is the value of the denmsity of (Yi,...,Yn) at the
observed values (y1,...,yn)). We give a name to this number:

E = qu...HNl. (214)

Next, -as seen before the function G is bounded in case A (use (Al)) and B (because ¢ is
bounded); in case C we have G(z,y; z,y') < C/q(z,z') by (2.8). Then (2.12) implies that
there exists a constant K such that

H;1(z) < K VzeR? j=1,...,N. (2.15)

Then (2.14) and (2.15) yield

ﬂHl...Hj+1l €

By applying (2.15) several times we also get uH;...H;_11 < K772, Then since i f =
Z—gi—gi—{ by (2.13), we readily deduce the following estimates (for the right side, use the
fact that m;_ is a transition measure and (2.15) again):

7 < Ml < K. (2.16)

2-4. The approximate filter. We will replace the true filter (given by formula (2.13)
for example) by an approximate filter constructed via the Euler approximation mentioned
above. More precisely, we replace the kernel H; of (2.12) by another kernel H 7 such that
for any bounded function f,

IHF"f — HifIl < Bmllf]l (2.17)

for some B, > 0 which will go to 0 as m — oo (this kernel H™ will be related to the Euler
approximation of stepsize 1/m in a way which will depend on the cases A, B or C). Then
we define the probability measures #77* by induction on n as follows:

m ”ﬁ llily\fn
= = m = - T . -1

The quality of this approximation of m, is provided by the following result:

Proposition 2.1 Assume (2.17). For all bounded Borel functions f on IR® and all j =
1,..., N, we have

|7 f —mifl < BmllfIl4;, (2.19)
where p7'+1 N
A, = £ F = 92— .
J K(p _ 1) ’ p 2 c (2 20)



Proof. a) We will prove (2.19) by induction on j. For j = 0 it is trivial with Ay = 0, so
we assume that it holds for j — 1. We may write

1
W;nf - 7rjf = m ((7‘(';7"_1H;nf - 7Tj_1ij) + (W;-nf)(’/'rj_lHj]. - W_;TL—IH_;nl)) .

Since 7} ; and 77" are probability measures, we obtain by (2.17):
|7 HY'f — ni Hif| < Bmll£Nl,

7 f1 < NIfI)-

Taking also |H;f|| < K|{f]l (see (2.15)) into account and using the inductive hypothesis
(2.19) for j — 1, we then easily deduce that

N-1

a2 f —mif) < B aBllFI (L + K Ajy)

€
Therefore (2.19) holds, provided we have

N-1

1
Aj = 2 (1+KA_7'_1) = p<E +Aj_1) .

Since Ag = 0, this gives (2.20) for 4;. O

Finally we have another version of this result which proves useful for case B. First, we
introduce the following norm on Lipschitz functions on IR%:

nm=nmﬁgmgi%ﬂ (2.21)

(with || f||' = oo by convention if f is not Lipschitz). Next we assume that we have for
some constant K':
I < KNS Vi=1,...,N. - (2:22)

Observe that this implies (2.15) with K < K'. Finally, suppose that for each n we have
other kernels H" satisfying

155" f — Hfll < Bl fIl (2.23)

for some By, > 0. Define again the probability measures 7/* by induction on n by (2.18).

Proposition 2.2 Assume (2.22) and (2.23). For all bounded Lipschitz functions f on
RYandallj=1,...,N, we have

(75 f —mif| < Bullfll'AL, (2.24)
where Vil , N
I K
/U i Sy .



Proof. The proof is exactly the same as for Proposition 2.1: we use the properties
| HM f — 7w Hyfl < BRllfIl,

= I < A0 < WIS
and ||H;f||" < K'||f|I' by (2.22) and the fact that under (2.22) we have (2.16) with K’
instead of K. O

3 Case A

In this section we study our first case A, which is the easiest one. The assumptions are
(E1) and (A1l); recall that g is defined in (A1).

A possible procedure goes as follows. We fix an integer n, and we take for m,, the
smallest integer > /n. Then we perform the following steps:

e Step 1: We simulate n i.i.d. variables (X0)1<J<n according to the law u, and for each
j a variable X7 (n) according to the law Q™) (X (n);.).

e Notation: At the end of Step £ > 1 we will know the variables (X k)1<3<n, SO we can
set for every function f on IR%:

Wgf = Zf Xp)g(XE,yx)- (3.1)

Then we introduce the following random probability measure on IR%:
nV[}"I > ie1 Q(Xzi, yk)sX}; if Wg1>0
\I,n — k
€o otherwise

(the measure gy above could indeed be replaced by any probability measure on IR%).

e Step k£ > 2: We simulate n i.i.d. variables (X,'Cj_l)lstn according to the law ¥}_,.
Then for each j = 1,...,n we simulate the random variable X} according to the law
Q(m")(Xk 1)

We stop at the end of Step IV, and our approximation of 7wy f will be ¥? % f: as always
in this paper, my is defined by (2.13) with a given observation (yy,... ,yN) while the
expectations below refer to the probability underlying our Monte-Carlo simulations.

Theorem 3.1 Assume (E1) and (A1). For all bounded Borel functions f on IR, all
k=1,...,N and all n, we have

BT f —mefl) < ZElifl,

_ . (3.3)
P03 —mifl > 6) < Frexp (‘” (7m) ) :

8



where (with p = 2K [e: recall that € is given in (2.14):

k+1 _
B = o4p) 4p

R 4
4p_1 ) k 3 ) Fk 0(8.0) (3 )

and C depends only on a, b and g.

Remark 1: Since E(U) = [;° P(U > u)du holds for any nonnegative variable U, the first
property in (3.3) readily follows from the second one and from the fact that Io° eV /2dy =
\/m, except that the constant Fj has to be substituted with Fkﬁ’kﬁ, which is much
bigger: so if one is interested only in the rates of convergence (i.e. the behavior as n. — o0),
then there is no need to prove the first half of (3.3).

Remark 2: More generally, E(U?) = [¢° P(U > u!/P)du. So the second property in (3.3)
yields

Fi(p)

E(|ORf — mfIP)/P < W”f“ (3.5)
with Fy(p) = Cpﬁ'kﬁ'kl /P for some constant Cp depending on p only; exactly as in Remark
1, the constants Fy(p) thus obtained are far too big, and a direct proof would yield smaller
constants.

Proof. 1) For further reference, let us recall some well known estimates for i.i.d. random
variables. Suppose that 1, ...,¢&, are random variables which conditionally on a o-field G
are independent and centered. Then we have the following two Kolmogorov exponential
inequalities (see e.g. Lemma 1.5 and 1.6 in [4]), where § is arbitrary positive:

6l <a, BI&RIO <b = PUE> 620 < Zexp(—ni).
< = nia B 2exp (—ng_z (2 - ea&/b)) )

In the case where & = n; — E(7;|G), we deduce that

2exp(~n ,
ml <a B@niPlg) <b = P(L3 e1>0) < Pmnaa) (36)
n i=1 - 2ex (_nﬁ (2 _ 20.5/17))
p % €

because with the above notation we have || < 2a and E(|¢;||G) < b. Taking the latter
into account, we also have

S|e

BnPlg) <b = B &) < (37)
i=1

2) We can introduce another random measure on JR? by U =L1ym e X1 (setting
X = X§). We denote by H} the kernel defined by (2.12) with Q substituted by Q™=

9



and 77 is defined by the recursive formula (2.18). In virtue of (2.4) the estimate (2.17)
holds with G, = al||g||/mn < aK/+/n, where « is some constant.

In fact we will prove together the following estimates:

2
P(|ORf—mpfl > 6) < 2Iyexp (—nSJIjW), k=1,...,N, (3.9)
E(19gf — i fl) < \/—Ilfll k=0,...,N -1 (3.10)
m n ! &2

for some Gy, G}, Ix, I}, Jx and Jj, to be computed later.

3) Let us begin with some preliminary estimates. Below f is a bounded Borel function
on IRY. Ifk > 1 we have UPf — U?f = L5 ¢ where & = f(XI’:) — U2 f. These
variables satisfy the assumptions for (3. 6) ( ) with 7; = f(X}}) and w.r.t. the
o-field G generated by the variables X} : i = 1 ,n and with a = ||f| and b = ||f||%.
Hence )

E(upf - wpf?) < ME -
] (3.12)
d
P(Ujnf — U2 f| > 8) < 2exp (—ngfmm)-

Next, the kernel HP takes the form HPf(z) = Q™) (fgr)(z), where gi(z') = g(z',yx).
We have W2 f — U (HR f = % ~_1&i, where
& = f(XPae(XE) — Q) (Far) (Xfy).

These variables satisfy the assumptions for (3.6) and (3.7), with n; = f(X, gk (XE) and
w.r.t. the o-field G generated by the variables X}’ , : i =1,...,n and with a = K||f|| and
b= K?||f||? (recall that here K = ||g||). Hence

22
E(Wpf —wp, HpfP?) < UEE
2 (3.13)
P(Wpf — Ui \HEf1 2 6) < 2exp (—nghgs)-

4) Now we proceed to prove (3.8), (3.9), (3.10) and (3.11) by induction on k.

Since mg = p and the variables X{! are i.i.d. with law p, we can again apply (3.7) and
(3.6) to the variables & = f(X{) — u(f), thus obtaining (3.10) and (3.11) for k¥ = 0 with
Gy=IL=Jy=1.

Now let £ > 1 and assume that (3.10) and (3.11) hold for k¥ — 1. Recalling (2.19) and
(2.17) and H1 < K and B, < aK/+/n, we get

|7TZ_1H£1—7T]C_1H[C1| < Wg_lngl_Hk]-,+|7T]?_1Hk1_7rk—1Hk1|

< Pu(l+KAp-1) < K2,

10



where we used the property 1 + KA,_; = Ai/p coming from (2.20). Since (2.16) gives
nwx—1Hgl > 2K/p, it follows that

K
vVn>ady = wp_ HPL> s (3.14)

In view of (2.13) and (3.2), we have

1 W f
Z—-IHI?]' (lezl ( 1Hl?1 WI?]-) + (Wl?f - WI’,cl—IHchlf))

ne_  onpeo
wf — g f -

if W1 >0 and O3 f — np f = f(0) — 7 f otherwise. Therefore if Lf = W2 f —n}_,HLf,
we obtain as soon as the condition in (3.14) is met and since obviously |Wf| < || f||W1:

BULA+IFNLL) i WPL>0

| TR f — T fl < {
2017 otherwise (3.15)

\Lf| < \WRf— W (HE |+ |93 HE f — i HEf-
Now, (3.13) and (3.10) for k¥ — 1 and |HZf]] < K||f|| yield

B(Lf) < WEa+a, ), 16
P(Lf| > 6) < 2~ /3K Lot o=nd/32 L IfIPK?, '

Now we will prove (3.8) and (3.10) for k. Assume first that /n > oK. In this
case, (3.14) yields that W1 = 0 = |L1| > K/p: thus (3.16) yields P(WP1 = 0) >
—\%(1 + G},_1)- Then putting together (3.15) and the first line of (3.16), we get (3.8) for
k, provided Gy > 4p(1 4+ G),_;). On the other hand the left side of (3.8) is smaller than
2[|£]l, so (3.8) will hold for all n having v/n < aAg as soon as Gy, > 2aAy. Further, under
(3.8) we readily deduce (3.10) from (3.12) for k, with G}, = 1 + Gx. Therefore (3.8) and
(3.10) will be true for all k, n, as soon as

Gk > (4p(1+G_1))V(eds), Gp = 1+Gx, Gy =
At this point, one easily checks that the above properties are satisfied if
k+1 —4
0
= (2 ——. .
Gr = 2V o) 4p_1 (3.17)

Next we prove (3.9) and (3.11) for k. Assume first that v/n > cAy. Then (3.14) and
(3.15) yield

0K 0K
P(|9f —mpfl 26) < P(ILf|> %) +P(L1] 2 5 ||f||) + P(WE'1 = 0)1ig)5|>6} -

Recall also that P(W'1 =0) < P(|L1]| > K/p) < P(|L1| > 6K /2p||f||) if 2||f|| > . Thus
(3.16) yields that (3.9) holds with I > 3(1+1I;_;) and J; > (4p)%J}_,. Since the left side

11



of (3.9) is 0 as soon as ¢ > 2| f|| and is always smaller than 1, we see that (3.9) holds for
all n with \/n < @Ay as soon as Iy > 2 and Ji > (ady)?/2. Further, taking into account
(3.12) we deduce from (3.9) that (3.11) also holds for k, as soon as I, = 1+ I; and
Ji, = 4Ji. Therefore (3.9) and (3.11) will be true for all k, n, as soon as

2
w0V s (@) VR

Ilﬁ: = 1+ I, J]; = 4J, I(,)=J6=1.
At this point, one easily checks that the above property are satisfied if

a2
Jp = <1Vﬁ) (26p2)%, I, = 3kl _3 (3.18)

5) So far we have (3.8) and (3.9) for all k, with constants given by (3.17) and (3.18).
It remains to apply (2.19). Since 8, < aK / v/n, the first part of (3.3) is obvious with
F} given in (3.4), because the function z “’k:_l_z
C =2+ 2a.

In order to obtain the second part of (3.3) we observe that when 3, f||4r < §/2, i.e.
when n6?/||f||? > (22K Ax)?, then the left side of (3.3) is smaller than the left side of (3.9)
written with §/2; otherwise it is certainly smaller than 1: so the result will hold with F}
and F}, given by (3.4), in view of (3.18). O

is increasing over (0,00), and with

Now, if we are allowed to simulate at most r “single” random variables, we give our
final result under the assumptions of this section. For a given n, the previous procedure
necessitates n(1 + my)N single simulations (counting for 1 each variable X§ and X} and
for m;, each variable X} for k = 1,..., N because of the Euler scheme which we use) So
we choose n = n(r) to be the b1ggest 1nteger n(l +mp)N < r, and the simulated filter is

iy = o3, (3.19)

Then (3.3) gives, as soon as r > 6N (hence n(r) > (r/2N)?/3):
N)L/3
(i f —nufl) < CHTEx) g

(3.20)
Pl f —nnf| > 8) < FNexp< 2/3 (m)z) :

We also observe that we have strong consistency for our estimates H : indeed, taking
6 = r~1/% in the second estimate (3.20) yields that

ZP IHNf—’/TNf|> 1/6) < o0,
r>1

so that II% NS converges almost surely to 7y f as r — oo by Borel-Cantelli lemma.

Finally, let us emphasize that the constants obtained above are perhaps (very) big,
but they also are “uniform” in the observations (y1,...,yn) as soon as pH;... Hyl > ¢
(see (2.14)) because they are obviously decreasing as ¢ increases.
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4 Case B

In this section we study our second case B. The assumptions are (E2) and (B1). The
function G is not explicitely known in this case, but the kernel Hj is given by the following
formula, where as above ¢ is the density of the normal law A (0, 00*) in IR?:

/() = B (fX@0p (- vi1 - [ hX@as)). (41)

Thus in view of (B1) and (2.6) and since the function g is also bounded and Lipschitz, we
have (2.22) with some constant K’ depending on a, b and h. :

A possible procedure goes as follows. We fix an integer n, and we perform the following
steps:

e Step 1: We simulate n i.i.d. variables (X0)1<z<n accordmg to the law u, and we set
Xl = X0 Then for each ¢ we simulate the varlables (X3 ])1<J<n along the Euler scheme

(2.1) with stepsize 1/n and starting point X{, i.e. with the same law as the sequence
(X (X{,n);)1<j<n if we use the notation (2.1).

o Notation: At the end of Step & > 1 we will know the variables (le:,j)lﬁiﬁn,lﬁjﬁm SO
we can set for every function f on IR%:

1 & ,
Wl?f = ;;Ef(Xlz,n)(p(yk_yk 1""2th]) (42)
i=1 j=1
Then we introduce the following random probability measure on IR%:
n
Vi = an 1 Z} Yk—1 — Yr— 2——;:1th 1,5) X} .. (4.3)

(observe that here ¢ > 0, hence W’1 > 0 identically).

e Step k > 2: We simulate n i.i.d. variables (X,'c 1)1<i<n according to the law ¥y
Then for each 7 = 1,...,n we simulate the random variables (X? A J)1<J<n according to the
law of the sequence (X(X,c L M)i<i<n.

We stop at the end of Step N. Our approximation of 7y f will be T%, f. Below, recall
that || f||' is the Lipschitz norm given by (2.21).

Theorem 4.1 Assume (E2) and (B1). For all bounded Lipschitz functions f on IR%, all
k=1,...,N and all n, we have

E(9pf - mfl) < ZElFI,
(4.4)

_ 2
P(I\Il’lk—:bf - 7rkf| Z 6) S F]:; €xp <_n (F']Tf”’) ) ’
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where (with p' = 2K'N [¢):

40 k+1 _ 4 _ .
Fy = C (pi,,—_lp B, = 31, B, = C@p), (4.5)
and C depends only on a, b, h and o.

Proof. 1) We prove first that (2.23) holds with 8], = aK'//m for some constant a,
provided we choose for H}"* the kernel defined by

Hf(z) = E (f(X(-'v,m)m)w (yk — Ypo1— — Zh )J))) . (4.6)

_7 1
and 77" is defined by the recursive formula (2.18). We have
|H*f(z) — Hjf ()| < E(|Un(2) — Vim(2)]) + E(|Vim () — V(2)]),

where

Un(@) = f(X(zm)m)e (yn ~ Yo —%memm)j)) ,
j=1

Vim(z) = f(X(z)1)e (yn Yn—1— — i X(x)j/m) )

V() = S @00 (30~ o1 - / A(X(a)sds)

Since ¢ is bounded and Lipschitz, we have

Um(z) = Vim(z) < CISN Sup | X (z,m); — X(2)j/ml,

1<j<m
and thus (2.5) yields
1
B(|Un(z) ~ Vm(@))) < OISl

We also have
B([Va(s) = V(@)l) < CIFIY. [ BUX(2)s - X(2) s
j=1""%=

and by well known results about Euler schemes (see [3]) (E2) implies that this expression
is smaller than C/+/m. Putting these facts together shows that (2.23) holds with 3, =

aK'[v/m.

2) Now the result is proved exactly as in Theorem 3.1: we introduce another random
measure on R% by ¥' = 15°% ¢ X1 (setting X' = X§), and the proof goes exactly the
same way: we have to replace 5, by £, and K and p by K’ and p’, and use Proposition
2.2 instead of Proposition 2.1. We have to take

& = f(Xim)e (yk"‘yk 1__Zth])_H/?(X;Ci—1)

j=1
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for the proof of (3.13), and the fact that || f||’ comes in instead of the smaller number || f||
is due to the use of Proposition 2.2 (since (2.17) does not hold here). O

Now, if we are allowed to simulate at most r “single” random variables, we give our
final result under the assumptions of this section. For a given n, the previous procedure
necessitates n(1+n)N single simulations. So we choose n = n(r) to be the biggest integer
n(l+n)N < r, and the simulated filter is again given by (3.19). Then (4.4) gives, as soon
asr > 8N:

S 2N 1/4FI
B(fyf —mnfl) < E0Fw g

A ~ 6 2
P(Iyf —nnfl26) < Fyexp <—T1/2 (W) )

Here also we have strong consistency for our estimates II%;.

5 Case C

Now we study our last case C. The assumptions are (E1) and (E3). We have seen that in
this case the function G of subsection 2-3 is G(z,y;z',y') = p(z,y; 7', v') /q(z, '), so that

ka(l') = /p(wayk—la"I;Iayk)f(m,)dx,' (51)
We choose a Borel bounded function ¢ from JR? into [0, c0) such that
/‘P(y)dy = 1, 7 = /lyltp(y)dy < oo. (5.2)

We can then propose the following procedure: we fix an integer n > 1. Then m,
denotes the smallest integer > nl/ (2""1), and we set

en(y) = n¥/FHDpynl/2+9), (5.3)

Then we perform the following steps:

e Step 1: we simulate n ii.d. variables (X3)15i5n according to the law u, and for each
i a variable (X?,Y{) according to the law P(™=)(X% yo;.).

¢ Notation: at the end of Step k¥ we will know the variables (X,’;, Y;f)lgigm so we can set
for every function f on JR%:

WEF = =3 F(Xh)en(Y — ui). (54)
=1

Then we introduce the following random probability measure on IR%:

awrt Lie1 en(Yi —ykexi.  if WPL>0
Up = *
€0 otherwise
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e Step k > 2: We simulate n i.i.d. variables (X}’ ;)1<i<n according to the law T7_,.
Then for each j = 1,...,n we simulate the random variable (X},Y}) according to the law
Pma) (X5 1 yk15-)-

We stop at the end of Step N. Our approximation of 7 f will be ¥% f.

Theorem 5.1 Assume (E1) and (E3). For all bounded Borel functions f on IR%, all
k=1,...,N and all n, we have

B(1WRf —mfl) < kil

_ \ (5.6)
P(|U3f —mf| 2 8) < Frexp (_"2/(2+q) (Fkﬂf“> ) ’

where Fy,, Fk and Fy, are given by (3.4) with the same p and another constant C depending
ona,b,d,t and .

Proof. Here again the proof will be similar to the proof of Theorem 3.1.

1) We denote by H} the kernel defined by

HE (@) = [ o), yees, ', 9)F @) on(y’ - ye)de'dy (5.7)

and 7} is defined by the recursive formula (2.18).
In view of (5.1), (5.2) and (5.3) (which yields [ ¢, (y)dy = 1) we get

HEf(z) = Hef(z) = [(™) (2, y6-1;2",y") — p(2, Yo—1;2",¥)) F (&) (¥ — yi)dz'dy’

+ Sz, yk—1;2",Y) — p(@, yr—1; 2", yk)) F (2 )on (v — yi)da'dy’.  (5.8)

The first integral above can be divided into two parts: first, the integral over A4, =
{(=",y) : |z — 2’| + |y — yk—1] > 2/my}, and this bit is smaller than C||f||/m, by (2.9)
and [ ¢n(y)dy = 1; second, the integral over the complement A¢ which is smaller than

cifl as' [ only/ - p)dy < Cllfll/m4

{z':|z' —z|<2/mn}

by (2.8). Recalling that the derivative dp(z,y;z’,y')/dy’ also satisfies (2.8) under (E1)
and (E3), and since [ |y|¢n(y)dy = yn~1/@+9), the second integral in (5.8) is smaller than
C||flln=Y/@+9). So in view of the definition of m,, we finally get

1
Hy f(2) — He f(2)] < Clf |7

In other words, we have

. C
|Hgf — Hefll < Bullfll with 6, = mey/crmE (5.9)

16



2) We introduce another random measure on JR% by ¥" =157 ¢ Xt (setting X} =
X%). We will prove the following estimates

E(l‘I’Z’f—WZfI) < 1/(2+q) “f”, k=1,...,N, (510)

VN —alf|>4) < 2 ..,N, 5.11
GI

BUES —nff) < kil k=0, N1 (512

2
P — 2 f] > 6) < 2I.exp (—nTﬁ) k=0,...,N—1.  (513)
k

for some Gy, G}, Ix, I, Ji and Jj, to be computed later.

3) Here again we give preliminary estimates. First (3.12) is proved exactly as in
Theorem 3.1. Next, W2 f —U* (HP f = % ~_1 &, where

= f(XDen(XE —yu) — HRF(XE_y).

These variables satisfy the assumptions for (3.6), with 7 = f(XL)en(XE — yx) and
w.r.t. the o-field G generated by the variables X,’ci_1 :4=1,...,n and with a = ay :=
C1l|flIn?/?*+9 and b = by := Ca| f||>n9/@+9) for some constants C; and Cy: indeed, the
first of these assumptions is obvious by (5.3), and for the second one we may write

E(ni|Fi-1) < CIfIPn?/CHOE(pn(YE - yi)lG) = CIfIPn?/CHOH (X,

and HZ1 < K + B, < C (see (2.15) and (5.9)). Then instead of (3.13) we deduce from
(3.7) and from the second inequality in (3.7) that for yet another constant C:
22
E(wpf - HfP) < Ml
. (5.14)
P(Wpf — WP HPf| > 6) < 2exp (—n g )

(up to replacing the constant Cs in the above definition of by, we can always assume that
2a76/bs < 1/2, hence 2 — €?®/% > 2 — /e > 0, for all functions f and all § > 0 such that
d < 2||f||: in this case the second inequality comes from (3.6); since on the other hand its
left side equals 0 when & > || f||, it always holds).

4) Now we proceed to prove (5.10), (5.11), (5.12) and (5.13) by induction on k. The
last two estimates hold for £ = 0 with G = Ij = Jj = 1, as in Theorem 3.1.

Now let ¥ > 1 and assume that (5.12) and (5.13) hold for ¥ — 1. Using (5.9) instead
of B, < aK/+/n, (3.14) gets substituted with (a being still another positive constant)

L K
N >ad; = aP_ HP > . (5.15)
p
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Then under (5.15) we still have (3.15), hence (3.12) and (5.14) allow to replace (3.16) by

B(Lf) < Ec+a, ),

(5.16)
P(ILf| > 8) < 2o m/CTIS/CIPK? 4 op | o=/ CTOP /AT, IAPK?,
Then as in Theorem 3.1 we see that (5.10) and (5.12) for k, provided
Gy 2 (4p(C+Gr 1))V (adr), Gp =1+Gy, Gy =1,
which are satisfied by .
_ (4p)*t1 —4p
Similarly, we obtain that (3.9) and (3.11) hold for k, provided
ady)?
Lx UiV g > (@0 Vo) e
I =1+L, & > 4Lk\VO0), L=J=1
The above properties are satisfied if
o2
Jy = (C +1\/ ﬁ) (28p%)F, I, = 3ktl_g3, (5.18)

5) So far we have (5.10) and (3.9) for all k, with constants given by (5.17) and (5.18).
It remains to apply (2.19) and the fact that 8, = C/n'/(2%9 by (5.9): Again exactly as
in Theorem 3.1 we conclude that (5.6) holds with the prescribed constants. O

Now, if we are allowed to simulate at most r “single” random variables, we give our
final result under the assumptions of this section. For a given n, the previous procedure
necessitates n{1 4+ my)N single simulations. So we choose n = n(r) to be the biggest
integer n(1 + my)N < 7, and the simulated filter is again given by (3.19). Then (5.6)
gives, as soon as r > 8N:

: A 1/(3+4)
E(lyf —nnf]) < G208 1

7‘1/(3+‘Z)

- (5.19)
A ) 2
P(IIyf—7nfl > 6) < FNe)P( 2/ (FNQ* 1")16/(3‘“’)||f||) )7

and here again we have strong consistency for our estimates II7%;.

6 Comments and numerical results

6-1) The regularity assumptions in (E1), (E2) and (E3) are reasonably weak, but the
non-degeneracy ones could obviously be weakened: taking advantage of the result of Bally
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and Talay we could replace the uniform ellipticity by weak Hérmander’s conditions, at the
expense of much stronger regularity on the coefficients.

Another interesting point is when o degenerates in (1.3), for example when o = 0.
Even then our filtering problem is not trivial, since the knowledge of fol h(X¢)dt does not
entail full knowledge of X in general. In this situation we can treat case B as a particular
case of C with degenerate coefficient b'd™*.

Still another interesting situation is when b = 0, i.e. X is a deterministic (not observ-
able) function. The above method does not work since in the “simulation” of X we get
a single deterministic path. However one could add a “small noise”, i.e. consider (1.1)
with b(z) = € and run the algorithm: this is a standard regularization technique used in
practice.

In a different direction, it is interesting to see what happens when f is not bounded.
Because of the bounds (2.2) the same results will hold when f has |f(z)| < v(1+|z[P), with
|| || replaced by a number depending on v and p, and except of course for the exponential
bounds (the second halves of (3.20), (4.7) and (5.19)).

6-2) Our second comment is that it makes no practical sense here to achieve an “infinite”
precision on the approximate filter. In practice one usually wants to deduce the value
JF(Xn) for some given function f (possibly a family of such functions) from the observations
(y1,--.,yn). Then even under the true filter m the order of magnitude of the error made
is the standard deviation ¥y = £,(y1,...,yn) of f under 7. Thus in this situation it is
somewhat meaningless to take the number r of simulated variables such that |1:I§v f—nnf|
is much smaller than Xp.

6-3) An obvious drawback of our method is the form of the constants Fy,.... For example
Fy is roughly of the form Fy = CC'N where C' > 1. If the “true” value of Fy is really
exponential in N, then clearly the method is not feasible.

In order to get an idea of the true value of Fy we have conducted a series of simulations
in the following very special case, where d = ¢ = 1 and

dX; = aXidt+ dWy, Xo =1,
(6.1)

dY; = Xdt+odW!, Y = 0.

The true filter 7 is known (and given by the Kalman-Bucy discrete-time filter). We have
run the algorithm given for case C, for the function f(z) = z (this is not bounded, but
see the comments in 6-2 above), and for an observation set (y1,...,yn) obtained by a first
preliminary simulation of a particular path of the pair (X,Y).

We have considered three cases, and in each case the algorithm is run for all N between
1 and 90:

Case 1: @ = —.b, 0 =1, so X is a recurrent Ornstein-Uhlenbeck process. The standard

deviation of f under my is ¥y = .74, Xo = .79 and Xy = .8 for all N > 3 (the two first
values are smaller than the others because in our model we exactly know Xj).
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Case 2: a = —.5, 0 = .1: this is like the above, except that the smaller value of o implies
that we get “more information” on X from Y, and this is apparent from the standard
deviation for the filter which is now X1 = .49 and ¥y = .51 for all N > 2.

Case 3: a = .1, 0 =1, so X is a transient Ornstein-Uhlenbeck process. The standard
deviation of f under 7y is ¥; = .94, 39 = 1.06 and X = 1.07 for all N > 2.

The function ¢ of (5.2) is the normalized indicator function of an interval [—u, u] where
u has been empirically adjusted so that in (5.5) one does not encounter the second stated
possibility. This led us to take u = 20 in cases 1 and 2, and » = 40 in case 3.

The algorithm has been run for the following values of n in Theorem 5.1: n =
100, 500, 1000, 2000, using of course the Euler approximation for X and Y. For each of
these values it has been run 20 times, and the following tables give for some values of N
the average absolute value of the normalized error nl/3|U% f — wx f| over these 20 runs
(recall that here 7y f is known).

Case 1
N | n=100 n=500 n=1000 n=2000
511.3 2.1 3.3 4.4
10 | 2.7 4.9 5.0 7.0
20 | 1.1 4.6 6.0 54
30| 1.1 2.1 3.1 4.1
40 | 1.1 1.9 3.0 3.1
50 [ 1.9 4.0 5.2 7.6
60 | 1.4 1.5 3.4 2.5
70 | 5.9 9.8 10.6 13.9
80 | 3.0 4.9 5.7 8.5
90 | 3.0 6.1 9.3 10.4
Case 2

N | n=100 n=500 n=1000 n=2000

5 (9.6 18.6 24.0 27.3
10 | 0.9 2.6 3.5 4.5
20 | 6.7 10.9 12.5 16.8
30 | 4.7 7.4 9.1 10.8
40 | 7.2 14.2 20.2 21.7
60 | 2.1 3.3 4.9 7.2
60 | 2.4 3.3 4.3 5.6
70 | 4.6 8.7 9.7 10.9
80 | 2.7 4.9 4.9 7.8
90 | 7.0 11.8 17.5 21.3
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Case 3
N | n=100 | n=500 | n=1000 | n=2000

5 4 3 12 20
10 14 21 41 74
20 40 145 214 238
30 56 444 359 164
40 146 984 893 369
50 375 1970 1581 |~ 907

60 1052 2952 4457 2760
70 2910 4973 6284 7883
80 7902 | 13541 17033 21516
90 | 21525 | 36873 46500 58475

These numerical results are all surprising: in the recurrent cases, the constant Fiy
seems indeed fairly independent from IV, presumably because the process X forgets rather
quickly its past values. In the transient case, the constant Fjy seems to behave somewhat
exponentially in NV, as expected. There is however something unexpected, namely that
the results are worse in case 2 than in case 1, while the observation noise is smaller.

Note also that since the standard deviation of f under 7 is of the order of magnitude
equal to 1, there is no reason to increase the precision of our estimate of 7 f much further
than 1. Recalling that the above tables give the error multiplied by n!/3, and looking at
the data for N = 90 for example, we see that we could stop at n = 100 already for case
1, while for the other two cases n = 2000 is not enough, and in case 3 the results are
clearly totally inefficient: n should be much larger (and hopefully when n gets large the
normalized error stabilizes...).
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