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1 Introduction

The family of gamma distributions has fundamental meaning in reliability theory, sur-
vival analysis and general in the area of life time distributions. For an overview and
more details we refer to Johnson, Kotz and Balakrishnan (1994) and Basu (1995). We
consider k£ independent gamma populations 7, ... , 7, with the same shape parameter
m and different scale parameters. The stochastically largest population has the largest
¥;-value. Let there be a control value 9. Each population is called good if 9; > 9, and
bad otherwise. We study the problem of finding all good populations. This is a typical
subset selection problem, see Gupta and Panchapakesan (1985). We assume that the
O, are random and independent distributed according to the unknown distribution G;.
Then for a given loss function the best selection rule, being the Bayes selection rule,
depends on the unknown joint distribution G = ﬁ G;of @ = (04,...,0;). We sup-
pose that historical data are available and can bezizricluded in the decision rule. This is
the empirical Bayes approach due to Robbins (1956). Empirical Bayes methods have
been applied in different areas of statistics. Deely (1965) constructed empirical Bayes
subset selection procedures. In a series of papers Gupta and Liang (1988, 1994, 1996)
and Gupta, Liang and Rau (1994a, 1994b) have studied different selection procedures
using empirical Bayes approach. Assume Y are the actual data based on which we
wish to make a decision. Denote the risk of the decision d by R(d). Then the optimal
decision d(G) depends on the unknown prior distributions G of (©4,...,0;). The
central idea of the empirical Bayes approach is the construction of a good decision rule
d;, on the basis of historical data Y,,. The quality of d is then characterized by the
non-negative random regret risk R, = R(d}) — R(d(G)). The aim of the above men-
tioned papers dealing with empirical Bayes methods was to construct suitable decision
rules d; and to evaluate the non-random regret risk ER,. The main goal of these
papers was to prove the convergence of ER, to zero with a certain rate. It turns out
that the main part of the Bayes decision rule are some functions H;(y) which are linear
transforms of the unknown distribution G;. But one can find a family of functions f,

with H;(y) =Ef,(Y;;), i =1,...,n, so that

Hinl) = 2 3~ 1, (%)
j=1



is an unbiased estimator for H;(y). Gupta and Liang (1996) used H;, instead of H; to
construct an empirical Bayes selection rule d}, for the selection of a good exponential

population and proved
E[R(d;) - R(d(G))] = O(n™/?)

with some 0 < A < 2. The information one needs from H; is only the zero n; of H;.
Gupta and Liese (1998) constructed an /n-consistent M-estimator for 7;, introduced
a new empirical Bayes selection rule d,, and proved a limit theorem for n[’R(c/Z\n) -
R(d(G))]. In this paper we apply to ﬁm(y) techniques from empirical processes to get
a Glivenko-Cantelli Theorem and the convergence of the distributions of the stochastic
processes /n(H,(y)—Hi(y)), 2a < y < 35. It turns out that the Gupta-Liang selection
rule is asymptotically a quadratic functional of the processes ﬁin. Using this fact we will
show that the distribution of n[R(d;) —R(d(G))] converges weakly to the distribution
of a linear combination of independent y?-distributed random variables each with one
degree of freedom. The coefficients in the linear combination are explicitly evaluated

and expressed in terms of the prior distributions Gj.

2 Empirical Bayes Selection Procedures

We consider k independent gamma distributed populations mq,... ,m; with densities
fyl¥s) = c(W)uly)e ¥/%I(y > 0), where c(d) = W—,u(y) =y™tm> 0,9 >0
- Here and in the following I(A) denotes the indicator function of the set A. Given a
standard value 9y we call a population 7; good if ¥; > ¥y. Our aim is to select all good
populations. A selection rule d = (a4, ... ,ax) is a measurable mapping d : (0, 00)* — D
where D = {0, 1}* is the decision space. m; is selected iff a; = 1. Similar as in Gupta,
Liang (1994, 1996) we use the loss function

k

L@,a) =) (%, a)

i=1

where 9 = (94,...,9%),a = (a1,...,ax) and

(2.1) 10, a5) = aidi(Fo — 9:)1(0 < B < 90) + (1 — a;)9s(; — 0o) (o < B) .



If we have a measurement Y; from each m; the risk of the selection rule d is given by

k
(2:2) R(9,d) =EL(Y,d(Y)) = Y EI(%;, :(Y;))

i=1
Where l’i = (1917 R 7ll9k)7 X. = (}fla B 1}/}6)7 ql(y’b) - Eaz(}/ia s 7}/;'—173/2'7 )/;-1-17 ce. 7)/;9)
Furthermore
(2.3) B0, 0(%) = [ 0w (00 — d)e(ti)u(u)e  dys+C(0)

0

with

We will apply the Bayes approach to the selection problem and assume that the 9; are

realizations of independent r. v. ©; with distribution GG;. We suppose

oo

0

Then the Bayes risk R(d) is finite and given by

EOX R .
R(d) = EL(@,d(Y)) = 3 / / 0:(w) (B0 — 9P ulv)e™E dGi(:)dy: +
=19 0
where

9i(9; — Yo) dG(V;)

=2
I
>
S ~—3

Set,
(2.5) Pialy) = / 9 c(9)e™ b dGi(9)

where ¢(¥) = (['(m)9™)"". As in Gupta, Liang (1996) one obtains by integration by

parts

o0}

(Jo —i)e % = /(190+y1—t)1% -

Yi

Sfer

dt;

/(190 — 191-)6_%3 dGi(%:) = Fovui(ys) — Ya(ws) -
0



Using these relations we obtain

k

EL(©,d(Y)) =Y / w(ws) (ot (4:) — iz () as () g + s
0

i=1
This shows that infEL(©,d(Y)) is attained by the selection rule d® = (d3,...,d?)
d

where

L Gt (ys) < ia(ys)

0: otherwise .

d? (y:) =

If G; is non-degenerate then /1 is strictly increasing. This means that the zero
Mo of Hi(y:) = 9ot (y;) — ¥ia(w;), if there is any, is uniquely determined. To apply
the selection rule d° we have to know 7m;0. But the ;1,10 as well as n;, include the

unknown prior distribution G;. Let Yj;,...,Y:,,i = 1,...,k be data from the past

where Y1, ..., Y are i. i. d. with common density
(2.6) fily:) = / c(9;)u(y;)e” % dGi(9;) .

0
The idea of the empirical Bayes approach is to estimate the unknown optimal selection
rule d? with the help of the historical data Yii,..., Y, 1. e. an empirical Bayes selection
rule c/Z\i,n is a measurable mapping from (0, c0)™** into [0, 1].

The conditional Bayes risk of the empirical Bayes selection rule (/i\n = ((71”, . ,Cch) is

k o0
Z/ in(Yats -, Yin, i) u(ys) Hi(yi) dys + v
0

=1
where H; = ¥g1p;; — 1;2. We call the nonnegative random variable
(2.7) R( R(d°) = Z/ Yis oo Yon, 4i) — d?(yi)] w(ys) Hi(y:) dys
=1 0

the random regret risk. The regret risk studied in Gupta and Liang (1996) is then
ER(d,) — R(d®). The definition of 1, in (2.5) and partial integration show that

hilys) = O/y/c(ﬁi e dt; dGy(0;) = Eu(Y;)I(Yi > ;)
0o 0 . .
¢27-(y1) = O/y/(tz - yz‘)c('&z‘)e 9 dtidGi(’l?i) = Em) (Yz - yi) I(Yz > yi) .



Consequently,

n

= 1
Hin(y) = =Y (90 +y — Ya)I(Ya > y)
=1

u(Y;)

is an unbiased and consistent estimator for

Hi(y) = Yo% (y) — Yia(y)

for every fixed y. Using this fact Gupta und Liang (1996) introduced an empirical

Bayes selection procedure d; by setting

. 1: Hu(y) <0
dm(yl) =

0: otherwise .

The random regret risk of d7, is in view of (2.7) given by
kT
28)  R(@)-R@) =Y [ (Il <0) — 1) < 0)] v His) dy
0
and the regret risk is
k o
(2.9) ER(%)~R@)=EY / (3:) < 0) = T(Hi(w) < 0)] u(vi) Hilws) i .
0

Gupta und Liang (1996) studied the rate of convergence of the regret risk ER(d:) —
R(d®) to zero. In this paper we investigate the asymptotic distribution of
n[R(d;) — R(d°)].

A limit theorem for the random regret risk of a modified Gupta-Liang selection rule
was proved in Gupta and Liese (1998). In this paper we apply techniques from the
theory of empirical processes to prove the uniform consistency of f]m and to establish

a limit theorem for n[R(d}) — R(d°)].

3 Uniform consistency of ﬁm

To simplify the notations we concentrate ourselves to one population in this chapter.

Assume Yi,...,Y, arei. i. d. with density function

1) = [ oty > 9) dow)



Integration by parts shows that

(3.1) /19’“ dG(¥) < o0
0

implies

(3.2) EY;* < 0o .

Set c(¥) = (I'(m)9™1) " and

(3-3) Pi(y) = /°° c(9)Pe 3 dG(y), Ya(y) = 7 c(9)6%e™% dG(9) .
Then 0 0
CON ) = B >9) 5
ta(y) = E—y)I(Y1> y)u(Yl)
put
(3-5) H(y) = Poh1 (y) — ¥2(y) -

We study the structure of the function H in more details. For this aim we put for any

measure 4 on the Borel sets of [0, 0o)

L) = [ & nla0) .
0
Then for 0 < a < 1 by Holders inequality

Ly(oys + (1= a)ya) < (Lu(y1))* (Lu(y2)) ™ -

Hence In L, (y) is convex. The set {y : L,(y) < oo} is some interval and L, is known
to be infinitely often differentiable in the interior, say (a,b), of {y : L,(y) < oo}. As
In L,(y) is convex we see that (In L,)" is increasing. Moreover, if p is nondegenerated,
then L, is strictly convex and (InL,)" is strictly increasing. Hence both L /L, and

YoL,, — L, have at most one zero. As L = (—1)*L,,, where pi(dd9) = 9*u(dv9) we



see that also the function VoL, — L, has at most one zero. This means that with

p(d¥) = 9? dG(9) under the assumption

] lbz() ¢2(y)
W) S )

the function H from (3.5) has a unique zero n and it holds

(3.6)

(37) H(y)>0, 0<y<ny

H(y) <0, n<y<oo.
As the function H'(y) has again at least one zero, say X, and yll)rgo H(y) = 0 we see that
in view of H(y) < 0,n < y < oo, there exists a unique local minimum at A being the
zero of H' and H strictly decreasing in (0, A) and strictly increasing in (A, co).
In view of the relations (3.4)

(39 0= D g o102 9) — (= D)1 > )

is an unbiased estimator for H(y).
To prove an uniform law of large numbers we apply methods from empirical process

theory for which we refer to van der Vaart and Wellner (1996). We introduce the

classes of functions
t=Y9l(t—y>0), t—»(t—y)Iit—y>0), t>0,y>0.

These classes are translates of the monotone function 9oI(z > 0), zI(z > 0) and
are consequently VC-subgraph classes in view of Lemma 2.6.16 in van der Vaart and
Wellner (1996). Set g(x) = u(z —=I(z > 0) = —=I(z > 0). Then by Lemma 2.6.18 in
van der Vaart and Wellner the classes of functlons Fi ={fiy(),y >0}

fig() = 9(-)9l(- —y > 0)
foy() = g() =9I~y >0)

are again VC-subgraph classes. Note that for ¢ > 0

| fry ()] Pog(t)
|foy ()] < tg(t) .

IN



If E|Y;| < oo then both F; and F, have integrable envelope. Hence by the Glivenko-
Cantelli theorem (Theorem 2.4.3 in van der Vaart and Wellner (1996))

sup
0<y<oo

— 0 a.s..
n—00

1 n

=D fiy(¥) ~ Efiy (Y1)
j=1

As H(y) = E[f14(Y1) — f2,(Y1)] we have obtained the following statement.

Proposition 1 If [9dG(9) < oo then H, from (3.8) fulfils a. s.
0

o~

sup |Hn(y) — H(y

0<y<oo

))—— 0.

n—00

Denote by L the set of all measurable f such that Ef?(Y;) < oo and set for f; €
LZ: L= ]-a 27

=

o(f1, f2) = (E(f1(Y2) — f2(Y1))?)

The definition of f;,(-) yields

2
fly® = [ . ﬂof(tZy)J < B2t > y)

tm—l

1 2 alom
Rl) = |mst-niezy)] <emiezy).
If EY};* < oo then for every 0 < 30 < 362 < oo the classes
f:i,}fl,zz - {fi,y(')a VA S Yy S J'f2}

have square integrable envelops. Furthermore, as Y; has a Lebesgue density

(3.9) lim o (fig,, fiys) =0 .

Y1—Y2
As the F; are VC-subgraph classes the F;,, ., have the same property and square
integrable envelops. Consequently they are Donsker classes in the sense of van der

Vaart and Wellner (1996) p. 81. This implies (see p. 89) that the processes
1 n
Lin(y) = —= D [fia(¥) — iy (¥3)]

»; <y < iy are asymptotically equicontinuous in the following sense

lim lim sup P sup Lin(yr) —Tin(y2) > | =0.
hi0  noo Y1,Y2€[311,302}
o(fiug fiyg)<h



for every € > 0. As y — f;, is continuous in L,-sense (see (3.9)) we obtain

lim lim sup P sup  |Din(y1) —Tin(ye) > | =0
_ hl0 - n—oo Y1,Yy2€[5e1,30]
ly1—yz|<h

for every € > 0. Set S,(y) =T'1,(y) + T2n(y) =1 (ﬁn(y) — H(y)) then

(3.10) lim lim sup P sup  |Sp(y1) — Sn(y2)| > | =0
b0 nooo Y1,Y2E€[21,52]
ly1—yz2|<h

for every € > 0. Put

£,(8) = Fuy () + Fou(t) = —ﬁt—) Wol(t > ) — (t — )I(t > y)]

Then
(311) 50) = = Z 1, (¥) — Ef, (V)]

and by the central limit theorem the finite dimensional distributions of S, converge
to the corresponding finite dimensional distribution of a Gaussian process S(y) with

expectation zero and covariance function

(3.12) C(y1,92) = cov (fy,, (Y1), fy(Y1)) -

Let D[z, s,] be the Skorokhod space of all functions on [, 5] which are right contin-
uous and have limits from the left. For distributions P, P;, Ps, ... defined on the Borel
sets of D[sn, s3] the weak convergence is denoted by P, = P. The convergence of
the finite dimensional distributions together with the asymptotic equicontinuity (3.10)
imply the weak convergence of the distributions £(S,) to the distribution £(S) of S.
Note that (3.10) implies the continuity of S (see Billingsley (1968), Theorem 15.5).

Thus we have obtained the following statement.

Theorem 1 If [9*dG(Y) < oo then for the processes S, defined in (3.11) it holds
0
L(Sn) = L(S)

where S is a continuous zero mean Gaussian process with covariance function (3.12).
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In order to study the asymptotic distribution of n [R(d%) — R(d°)] we have to deal with

the following integral

n [ [1(But) <0) - 1) < 0)] wt) ) dy

In a first step we will show that for intervals [e, 8] with éng 5 |H(y)| > 0 the corre-
asys

sponding integrals are o (%) and can therefore neglected as n — oo. We set

[DoI(Y: >y) — (Y —)I(Y; > y)] .
Note EW; (y) = H(y) and set

*(y) = V(Wiy) =EWi(y) — H(y))®
paly) = EWi(y) — H(y))* .

Gupta and Liang (1996) estimated o(y) under the assumption [ 9?dG(¢) and obtained
0

1

(3.13) o*(y) < "o (9241 (y) + 23(y)) -
This yields
(3.14) Vv (ﬁn(y)) < ) (9391(y) + 23(y) )

If Xi,...,X, arei. i. d. with EX} < oo and EX; = 0 then

E (Zn: X,.> = nEX} +3(n — 1)n (V(X1))?

This yields

615)  E(A) - HE) = SEWi) - He)' + 2 (°)°

Lemma 1 If [¥*dG(Y) < oo then for everya < n < b and every 0 < o < 8 < 00
0
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withd = inf |H(y)| >0

a<y<p
(3.16) E / n |1 (Baw) < 0) ~ I(H(y) < 0)] uly) H(y) dy
< Hta) 0/ (9291 (y) + 23(y)) H(y) dy
1) B [n[1(f) £0) - (HE) <0)] s)Hw) dy
[ o)
: / )] ™
B
G E[n[1(R)<0)- 1) <0)] s HE) dy
[a} 1 ﬁ
< o [BOME) - Hw) ) dy
3a ; 1
+ (62(v))" u(y) dy = 5-C(.8) .

Proof :
We have [ (H ) < 0) _I(H(y) < 0)] H(y) > 0. By Tschebyshev’s inequality

E[1 (Buy) <0) - I(H(y) <0)] H(y)
= E[1(Huy) - H(y) < —H(y)) - [(H(y) < 0)] H)
< E[I(|Hw-HE)| 2 1HGI)| 1HE)
E|Ha(y) —H(y)‘]c
(319 )

This inequality for £ = 2 implies (3.17). The inequality (3.16) follows now from (3.14)
and H(y) > H(a) as H is positive and decreasing for 0 < y < 7. To prove (3.18) we
apply (3.19) for k£ = 4 and use (3.15). O

Now we study the integrand in an interval which contains the zero n of H. Denote A

the unique minimum point of H. Assume 0 < 311 < 1 < 2o < A. Then H is strictly
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decreasing in [»r, 75]. Denote by 3¢ the inverse function and note that both H and s

are continuously differentiable in (¢, 3r3). For S, (y) from (3.11). We set

1Snll = sup |Sa(y)] -

201 Sy <o
Note that by Theorem 1 the sequence ||S,|| is stochastically bounded, i. e.

(3.20) lim Tim sup P (||| > ¢) =0 .

n—oo

We have

2

[ [1(Batw) <0) - 108 < 0)] wiHw) ay

= [ [r (s Jzute <0) = 165 < 0] su) b0 s

g4t

where v = H(30),71 = H(3%2) and 71 < 0 < 7¥,. It holds

[1 (s + %Sn(x(s)) < 0) (s < 0)] s3>0

and

1
[I <s + %Sn(%(s)) < 0> —I(s< 0)] s=0
if |s| > —=[|Sll. We have for any real numbers z,y € S with |z — y| < w

I(s+2<0)—I(s+y<0)|<I(-z—w<s<—z+w).

Set

(3.21) wp = sup |Sp(s¢(s)) — Sn(3¢(0))].
sl <l1Sal
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Then with w = %wn

,4(5)) < 0) =15 < o)

3
——
| — |
~
TN
W
+
:|"

-1 (54 St < 0) 15 <0) }su(%(s))l}/(s)l ds

Sn(3(0)) — %wn <s
] i
n vn

(1Sn(3(0))] + wa) C

IN
3
—
~
|
S~

wn> |su(5¢(s))s(s)| ds

(322) < Cwn (|Sn(36(0))] + wn)

where

(3.23) C= sup |u(s(s))s(s)| .
118572

Consequently

n / [z ( + T=Salo(s) < o) S I(s< 0>] su(se(s))|¢ (5)] ds

Sn/ I<s+
7 )
Y2

—n / 1 <s + %sn(%(o» < 0) _I(s < 0): su(3¢(0))5¢ (0) ds + Ry + Fon

Sn(52(0)) < 0) —I(s< 0)_

J

su(se(s))|5¢(s)|ds + Ry n

1
Jn

m

if 71 < J=5n(5¢(0)) < 2. In view of (3.22)
|Rin| < Cwy, (1Sn(52(0))] + wy) .
As

(3.24) [u(¢(5)) 2/ (5) — u(3¢(0))>¢(0)] < Ls]
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for every s with 3 < s < v, with some L the remainder term R,,, fulfils

|R2n|<n/’ <s+ (0))<0) —I(s<0)’L32ds

2Ls? ds = L———|]S I
\/_

Lemma 2 If 0 < s <1 < 3550 < X then for v, < —\/l—ﬁSn(n) < 7y

2

o [ 11 (H0)+ J25.0) £0) = 1) 0| s HO) dy - 520

>1

2L 1
< Cy (|Sn(77)| + wn) + ”__”S ”3

\/—
where wy, ¢ and L are defined in (3.21), (3.23), (3.24).

4 Asymptotic distribution of the random regret
risk

We suppose that Y;y,...,Y;,, ¢ =1,...,k is a sample from 7y, ... , 7, and assume that
the Y;;, 1 = 1,...,n have the density (2.6). The prior distributions are supposed to
fulfil

(41) /194 dG(9) < oo .
0
Furthermore we suppose that the function 1);, introduced in (2.5) satisfy
. Yia(y) Yi2(y)
4.2 lim < Yo < lim
( ) y{0 ’(pﬂ( ) ytoo ";bzl( )

for every 1 <1 < k. We suppose that for
o2(y) = V (SoI(Y; > y) - (¥ — 9)I(%; > 9))

and every 1 <: <k

(4.3) / i y y) dy < 00
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for some by > m;, where 7; is the zero of H;(y). Recall that the random regret risk

Rn = R(d;) — R(d°) of the Gupta-Liang selection rule d is given by

R(&;) = R@) =3 [ [1(Binlw) < 0) = 1 (5) < 0] w) ity dy

i=1

Now we are ready to formulate and to prove the main result of this paper.

Theorem 2 Assume the conditions (4.1), (4.2) and (4.3) are fulfilled. Then

£ (n(R(d;) = R(@")) = £ (Z @-x?)

where x3,... ,X: are independent r. v. where each has a x?-distribution with one degree

of freedom and

_ u(n)
B = 2H£(m)0i () -

The proof is divided into several steps.
Proof :
1) f U, = X, + Y, are random variables with £(X,, ) = u for every € > 0 and

ElY, | < e then for every Lipschitz continuous function ¢

lo(z) —w(y)] < Lz —yl)
|Eo(Un) — Bp(Xne)| < e

Hence Ep(Z,) — [ ¢ dp which implies £(Uy) = p.

2) As the populations m; are independent, it is enough to show that

0

c (n / [I (flz—n(y) < 0) — I (H;(y) < 0)] u(y)H;(y) dy) = L (8ix?) -

To this end we choose for a given € > 0 0 < o < 1; < b, such that by (3.13) and
(3.14) |

(4.4) En /[I (Hinlw) < 0) = I(Hi(y) < 0)] () Hily) dy| < -
(4.5) En /[I (ff (y)<0)—I(Hi(y)<0)] u(y)Hi(y) dy| < g
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for every n =1,2,.... Now we choose a, < 3 < 1; < 365 < b, such that H; is strictly

decreasing in [371, 52]. Note that by (3.15)

1 be
@e) Bl [+ [ [1(Fints) <0) - 1) < 0)] w(w) Hi(w) dy
< — [Clapsa) + Cloa, b))
nd?
where
4= yE[ae,}it?]E[%z,bs] H )] -
Theorem 1 implies that |S,]| 1is stochastically bounded. Hence

P (fyl < %Sn(n) < 'yz> —— 1. If we combine (3.10) and (3.20) we get that
n—00

wp tends stochastically to zero. Hence the right hand term in the inequality of Lemma

2 tends stochastically to zero. This means that in view of (4.6)

Xpe =n / [ (Hinly) < 0) — I(Hi(y) < 0)] uly) Hi(y) dy

Qg

and 2I}Lf(’—787)1)|’ S2(m;) have the same limit distribution, if there is any. By the central

limit theorem S, (7;) tends in distribution to a normal distribution with expectation

zero and variance

o) =V (7 (o~ W = m) 10 > 0))

This means that
£ (Xn,a) = ‘C(:BzXzz)

where x? has a x2-distribution with one degree of freedom. To complete the proof we

set
Yoie=n /+/ [I (ﬁn(y) < 0) —I(H(y) < O)} u(y)H (y) dy

and apply the first part of the proof. O
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