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Summary

Locating quantitative trait loci (QTL), or genomic regions associated with known molecular
markers, is of increasing interest in a wide variety of appli:ations ranging from human genet-
ics to agricultural genetics. The hope of locating QTL (or genes) affecting a quantitative trait
is that it will lead to characterization and possible manipulations of these genes. However,
the complexify of both statistical and genetic issues surrounding the location of these regions
calls into question the asymptotic statistical results supplying the distribution of the test
statistics employed. Coupled with the power of current—-day computing, permutation theory
was reintroduced for the purpose of estimating the distribution of any test statistic used to
test for the location of QTL. Permutation techniques have offered an attractive alternative
to significance measures based on asymptotic theory. The ideas of permutation testing are
extended in this application to include confidence intervals for the thresholds and p-values
estimated in permutation testing procedures. The confidence intervals developed account for
the Monte Carlo error associated with practical applications of permutation testing, provide

tighter controls on type I and type II errors in QTL analyses, and lead to an effective method

of determining an efficient permutation sample size.



1 Introduction

Steady advances have been made in the last five years toward developing powerful method-
ology for locating regions of human, animal, and plant genomes responsible for quantitative
variation. T_hése genomic regions are commonly called quantitative trait loci or QTL and
serve as fence posts fbr statistical associations between measurable/observable characteristics
(phenotypes) and the genome at hand. The long-term hope in identifying these genomic re-
gions is that they will lead to candidate genes, which in turn may be verified, and eventually
sequenced.

Many related statistical techniques can be used to search for associations between geno-
type and phenotype. Examples include traditional single-marker analysis (Sax, 1923; Soller,
Brody, and Genizi, 1976), interval mapping (Lander and Botstein, 1989), regression of pheno-
type on marker genotype (Haley and Knott, 1992; Martinez and Curnow, 1992; Whittaker,
Thompsori, and Visscher, 1996), composite interval mapping (Zeng, 1993, 1994), and the
MQM methods of Jansen (1993, 1994). For a review of these procedures see Doerge et al.
(1997). Regardless of the method used, a statistically significant association between a locus
(or loci) and a trait is suggested by an unusually large observed test statistic and is typically
referred to as a QTL. Following Churchill and Doerge (1994), the location at which any
one of these test statistics is computed will be called an analysis point. Determining which
analysis points have unusually large test statistics is the goal of a distribution-free technique
known as permutation testing.

Permutation testing was originally introduced by Fisher (1935) and first applied to the
QTL mapping problem by Churchill and Doerge (1994). The procedure detects significant

association between genotype and phenotype by comparing the profile of observed test statis-



tics at all analysis points to its permutation distribution which is estimated empirically. The
permutation distribution indicates how the profile of test statistics behaves in the absence
of a true association between genotype and phenotype. Determining which, if any, of the
test statistics are larger than would be expected because of chance variation alone is possi-
ble by comparing the original profile to the distribution of permutation-replicated profiles.
The positions corresponding to unusually large test statistics in the original profile are those
significantly associated with the quantitative trait.

Churchill and Doerge (1994) discuss how the information about the permutation distri-
bution can be used to assess the evidence for QTL presence at each analysis point. They
explain how to determine permutation-based thresholds — values that separate the unusually
large test statistics from those whose values are small enough to be considered unassociated
with the trait. Two types of thresholds, comparisonwise and experimentwise, are described.
Analysis points with test statistics that meet or exceed the selected threshold are considered
significantly linked to the trait while those with statistics falling below the threshold are
judged t‘o be unassociated with the trait. In practice, both thresholds are estimated from
a randomly chosen sample of data permutations because it is typically infeasible from a
computational standpoint to consider all possible data permutations directly. This paper
focuses on techniques for managing and reporting the variability associated with this permu-
tation sampling in the context of QTL data analysis. We extend the concept of permutation
thresholds to permutation p-values and develop confidence intervals for both thresholds and
p-values. We suggest the use of these intervals when drawing conclusions from QTL studies
that employ permutation techniques. Careful accounting of permutation testing variability
through confidence intervals decreases the chance of falsely declaring a significant association

between an analysis point and a trait. The presented methodology frees the QTL researcher
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from selecting a permutation sample size (i.e., the number of data permutations required),
and allows for efficient use of computer resources by automatically determining the minimum
number ofr data permutations necessary to produce uﬁambiguous results.

Figure 1 exhibits typical plots of LOD score (negative log base 10 of the likelihood ratio)
versus the genetic map position for each of 12 rice chromosomes. These profiles result from
the dpplication of interval mapping (Lander and Botstein, 1989) to data from recombinant
inbred lines of rice. (Champoux et al., 1995). Large LOD scores over a genetic region are
indicative of potential associations between the genetic region and the quantitative trait
of interest — root thickness in micrometers in this case. We discuss these data in greater
detail in Section 3 and use permutation testing to determine which of the many peaks in
Figure 1 can_be considered as significant evidence of association between the corresponding
genetic region and the quantitative trait. Churchill and Doerge (1994) highlight the many
benefits of a permutation testing analysis for these data, as well as in general. Chief among
these benefits is robustness to departures from traditional modeling assumptions and the
ability to control overall type I error rate while conducting mul_tiple tests with multiple
dependent test statistics. One drawback, however, is the computation time required for such
procedures. Thus, our analysis in Section 3.3 focuses on determining the minimum number
of permuta_tions needed to make sound claims about the significance of each of the peaks in

Figure 1.



2 Methods

2.1 Permutation Thresholds and P-Values

Following Churchill and Doerge (1994), let individuals in the QTL experiment be indexed
from 1 to n, and let N denote the number of randomly selected data permutations for
which test statistics at all analysis points are recomputed. Test statistics computed from a
permutation of the original data will be referred to as permutation-replicated test statistics.
There are n! (not necessarily distinct) permutation-replicated test statistics at each analysis
point.

In general, a p-value is defined as the maximum probability of obtaining a test statistic
at least as extreme as the test statistic observed from the original data under the assumption
that the null hypothesis is true. A comparisonwise permutation p-value is defined for any
particular analysis point as the proportion of the n! permutation-replicated test statistics
that match or exceed the original test statistic at that analysis point. Such p-values are the
analog of the comparisonwise thresholds discussed by Churchill and Doerge (1994). The level-
a comparisonwise threshold for any particular analysis point is defined as the 1 — o quantile
of the n! permutation-replicated test statistics computed at that analysis point. Because it
is typically infeasible from a computational standpoint to examine all n! data permutations,
the permutation p-values or thresholds are estimated by using a randomly chosen sample
of N data permutations in place of all n! data permutations. A small estimated p-value —
less than a preselected type I error rate denoted o — is usually considered evidence of an
association between the analysis point and the trait. Equivalently, a test statistic exceeding
its estimated level-a threshold is usually considered (comparisonwise) significant at level a.

Comparisonwise analyses are necessary when the null distribution of the test statistic
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under consideration varies from analysis point to anaiysis point. A comparisonwise p-value
or threshold, however, must be interpreted with caution beéause its type I error rate applies
only to the single locus under consideration. The chance of incorrectly suggesting that some
analysis point is linked to the trait is much greater than the specified comparisonwise type
[ error rate because many analysis points are examined. Since most test statistics used in
QTL mapping have null distributions that do not vary with position, Churchill and Doerge
(1994) present experimentwise thresholds to remedy the multiple testing problem.

The level-a experimentwise threshold is defined as the 1 — o quantile of the n! maxi-
mums of the permutation-replicated test statistic profiles. The aﬁalog is the ezperimentwise
permutation p-value, estimated for any particular analysis point by the proportion of the
N maximums of the permutation-replicated test statistic profiles thaﬁ match or exceed the

“original test statistic. The chance of any false QTL declaration somewhere in any linkage
group is no greater than the selected type I error rate « as long as only analysis points with
experimentwise p-values less than or equal to a — or, equivalently, test statistics greater than

or equal to the level-a experimentwise threshold — are implicated as QTL.

2.2 Motivation

Point estimates of permutation thresholds or p-values may be extended to include the accu-
racy with which they are estimated. The effect of permutation sampling variability can be
magnified in QTL studies because p-valﬁes and/or thresholds are often estimated for many
analysis points across a genome. While the chance of an errant decision caused by sampling
from all permutations is small at any particular analysis point, the chance of an error at

some analysis point grows larger as the number of analysis points increases. Confidence



intervals for p-values and/or thresholds, on the other hand, reflect permutation sampling
variability, and are generally more useful than a single point estimate in QTL analyses. We
suggest that infereﬁtial QTL studies utilizing permutation testing proceed in two stages.
First, conclusions in the form of interval estimates for permutation p-values or thresholds
should be based on the permutation distribution of all test statistics of interest. Second,
the interval estimates should be used to make inferences pertaining to which regions of the
genome are significantly associated with the trait of interest. A test statistic at an analysis
point may be considered significant at the « level only when interval estimates of the p-value
at that analysis point exclude permutation p-values above a. Equivalently, only test statis-
tics exceeding the upper limit of the confidence interval for the level-o threshold should be
considered significant at level o.

When a confidence interval for a p-value includes « — or, equivalently, when a confidence
intervdl for a threshold includes a test statistic, the status of the corresponding analysis
point is unclear. The permutation sample size N should be increased until the interval for
the p-value (threshold) fé.lls either entirely above or entirely below the significance level o
(the test statistic). It may not be affordable from a computational standpoint to resolve all
such analysis points, but this resolution can be obtained in many cases using _relatively few

permutations.

2.3 Confidence Intervals for Assessing Comparisonwise Signifi-
cance

Suppose the profile of test statistics computed from the original data contains k peaks, each of

which might suggest significant evidence for QTL presence at k corresponding analysis points.



Let pq, ..., pr denote the unknown comparisonwise permutation p-values associated with the
k analysis points. Let ¢y, ..., ¢, denote the test statistics computed at these k analysis points.
For j =1,...,N; let t;;,...,t;; denote permutation replications of ¢y,...,%s, respectively,

computed with the j** of N permuted data sets. For j=1,...,N and £=1,...k; let

1 if¢ < tie
Xje=
0 ift > tig-
ForZ=1,...,k; let pp = % Z;-V:l Xj¢. Note that P, is the estimated comparisonwise p-value
for the £ of the k positions.
For£=1,...,k; Np, has a binomial distribution with N as the number of trials and p, as

the probability of success. Np, counts the number of the N sampled data permutations for
which ¢, < t;, while p, is the proportion of all permuted data sets that yield a test statistic
greater than or equal to #,. If the condition Np, > 5 is satisfied, one may rely on the normal
approximation to the binomial distribution so that 100(1 — v)% confidence intervals for the

k comparisonwise permutation p-values are given by

(e — @7 (1 = 7/2)/5e1 = 8)/N, fe+ @ (L= 7/2)y/pe(l — po)/N) for £=1,...,k; (1)

where ®(-) denotes the distribution function of a standard normal random variable.

Each individual interval provides some protection against an error associated with sam-
pling from the n! permutations. Simultaneous intervals, however, are needed to account for
the possibility of up to & such errors. The intervals in equation (1), when considered together,
can be Bonferroni-adjusted to provide at least 100(1 — )% confidence that py, ..., py are all
contained in their respective intervals simultaneously. Approximate 100(1 — )% Bonferroni

simultaneous confidence intervals for p,..., pr are given by

(e — @M1 = o E)\/Be(L = Be)/N, Be+ @7 (1 = )/bell — po)/N) for £=1,..., k.
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The condition Np, > 5 may not be satisfied for any computationally feasible value of N
when the permutation p-value py is extremely small. In such cases, the permutation p-value
is typically much smaller than the significance level a. Because the evidence for QTL pres-
ence is likely to be overwhelming for such an analysis point (estimated permutation p-value
<< a), there is little need for a confidence interval at that particular analysis point. The
procedure still provides valid intervals for other analysis points at which the permutation
p-values are closer to the selected significance level . There is evidence that Np, may be
less than 5 when Np, is near 5. For such analysis points, the coverage of the comparisonwise
p-value confidence interval is likely to be less than the nominal significance level because
of the ineffectiveness of the normal approximation to the binomial distribution. Confidence
intervals for comparisonwise thresholds can be obtained in place of the intervals for compar-
isonwise p-values in such cases. We defer the discussion of threshold confidence intervals to

the next section.

2.4 Confidence Intervals for Assessing Experimentwise Significance

Suppose the profile of test statistics computed from the original data contains k& peaks, each
of which might suggest significant evidence for QTL presence at k corresponding analysis
points. Let py, ..., px denote the unknown experimentwise permutation p-values associated
with the k analysis points. Let #,...,% denote the test statistics computed at these k
analysis points. For j =1,..., N; let M; denote the maximum of the profile of test statistics

computed at all analysis points for the j%* of N permuted data sets. For j = 1,..., N and
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£=1,...k;let

1 ift, < M;
Xje=
0 ift, > Mj.
For £ =1,...,k; let py = % Zj}’:l Xje. Note that p, is the estimated experimentwise p-value

for the £* of the k positions.

For £=1,...,k; Np; has a binomial distribution with N as the number of trials and p,
as the probability of success. Np; counts the number of the N sampled data permutations
for which t;, < M; while p, is the proportion of all permuted data sets that yield a test
statistic greater than or equal to ¢,. If the condition Np, > 5 is satisfied, one may rely on
the normal approximation to the binomial distribution so that approximate 100(1 — v)%

confidence intervals for the k experimentwise permutation p-values are given by

(be— @7 (1 = 1/DVBe1 = B)/N, B+ 7 (1= /D51 = p)/N) for £=1,.... k; (2)

where ®(-) denotes the distribution function of a standard normal random variable.
Confidence intervals for permutation thresholds can be obtained in addition to the in-
tervals for permutation p-values. Let M1y < --- < M(y) denote the values of My,..., My
ordered from smallest to largest. The level-a experimentwise threshold may be estimated by
M([na1) where [z] denotes the smallest integer greater than or equal to z. Using sta,ndérd
results on quantile estimation (e.g., Conover, 1980; p.112), an approximate 100(1 —-)% con-
fidence interval for the exact experimentwise level-a permutation threshold is [M(z), M

where

L= [N(1 —a) -1~ %)\/N(l ~a)a] and U = [N(1~a) + 87 (1~ %),'/N(l —a)al.

This interval is based on the normal approximation to the binomial distribution and is valid
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as long as Na > 5 which suggests that at least [5/a] data permutations should be considered
to estimate a level-a threshold.

We recommend judging the experifnentwise significance of the k£ analysis points of interest
by comparing ¢,,...,% to the interval [M(z), M(y)]. Analysis point £ should be considered
significantly associated with the trait at experimentwise significance level o if and only if
te > M. If t, < M), it is safe to conclude that analysis point £ is not significantly
associated with the trait at experimentwise significance level a. If M1y < £ < My, the
results are inconclusive. When referring to the confidence interval for the experimentwise
threshold, there is no need for a Bonferroni correction for multiple testing even though &
analysis points are being considered. At this stage of inference ¢, . .., t; are considered fixed,
and only a single quantile of the distribution of permutation-replicated profile maximums is
being estimated.

The confidence intervals for the permutation p-values could be used to judge significance
in place of the procedure above. Analysis point £ could be considered significant at exper-
imentwise significance level a if and only if the upper endpoint the confidence interval for
its experimentwise permutation p-value is less than or equal to o. If the lower endpoint
of the interval is greater than « it is reasonable to conclude that the analysis point is not
significantly associated with the trait at experimentwise level of significance .. The results
for a given analysis point are inconclusive if the interval contains a.

The main drawback associated with the use of the p-value confidence intervals for de-
termining significance is that these intervals are not simultaneous even though all are com-
puted with respect to the distribution of permutation-replicated profile maximums. In other
words, the probability that all k& intervals contain their respective permutation p-values is

potentially less that 1 — v even though each interval has individual coverage probability
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approximately 1 — +. The intervals could be made simultaneous through the common Bon-
ferroni correction, although the resulting procedure for determining significance would be

more conservative than the procedure based on [M(z), M,].

2.5 Determination of the Permutation Sample Size

Doerge and Churchill (1996) stated a result that allows one to calculate the minimum number
of data permutations required to estimate a level-a threshold with less than a specified level
of Monte Carlo resampling error. Inherent in the confidence interval procedures put forth
here is the ability to stop permuting once each of the analysis points of interest has been
resolved as significant or insignificant. This is a valuable feature since the tolerable amount
of Monte Carlo resampling error debends on the true significance of the test statistics at the
k analyses worth considering as potential QTL. The status of the k analysis points can be
correctly determined despite relatively large Monte Carlo resampling error when all k¥ analysis
points are either strongly significant or insignificant. On the other hand, very little Monte
Carlo resampling error is acceptable when several analysis points are marginally significant
or insignificant. Since it is difficult to know which situation applies to the data at hand
before permutation testing begins, a procedure for dynamically determining permutation
sample size that is specific to the obserQed data can substantially improve the efficiency of
permutation testing in QTL analyses.

Consider the following procedure for determining the level-o experimentwise significance

of the test statistics at k¥ analysis points.

1. Choose Npin > [5/a] as the minimum number of data permutations that will be

analyzed.
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2. Choose Ny, as thé maximum number of data permutations that can be analyzed in
a reasonable vamognt of time given the data set at hand and the computing power
available. The value Np.x should not typically play a role in the analyses. It is
specified only to halt the procedure if the desired conclusions cannot be reached after

an acceptable number of iterations.

3. Once Ny, data permutations have been analyzed, determine whether or not the & test
statistics are resolved as significant or insignificant by comparing their values to Mz,

and M(yy as described in the previous section.

4. If all k statistics are resolved as significant or insignificant, no additional data permu-
tations need to be considered. If one or more test statistics are unresolved, continue
analyzing randomly selected data permutations until all &£ statistics are resolved or

N = Npax.

This procedure frees the researcher from specifying an acceptable level of Monte Carlo
resampling error or the permutation sample size /N. In addition, the question, “Have enough
data permutations been considered to yield unambiguous results?”, is all but eliminated.
The number of permutations required for clear-cut results is automatically determined for
the specific data at hand when the procedure terminates before reaching Npyay. If there is
insufficient computing power to resolve all analysis points as significant or insignificant, the
confidence interval for the threshold computed with Ny, permutations should be reported

along with the test statistic or test statistics that fall in this interval.
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3 Simulated and Real Data Examples

As demonstration of both the comparisonwise and experimentwise confidence interval meth- -
ods, we present three different analyses, two of which are centered around the QTL work in
root morphology of rice published initially by Champoux et al. (1995), and the other being
simulated data that are presented and analyzed for the purpose of illustrating the advantages

and limitations of this methodology in determining significance of QTL results.

3.1 Single Marker Analysis of Recombinant Inbred Data

Following the single marker analysis initiated by Churchill and Doerge (1994) of a recombi-
nant inbred (F;) population of rice (Oryza sativa L.) (Champoux et al., 1995) derived from a
cross between CO39 (maternal) and Moroberekan, we analyze the same data using permuta-
tion based confidence intervals. The data consist of 203 recombinant inbred lines, each scored
at 147 molecular (RFLP) markers. The focus of the original experiment by Champoui et
al. was the identification and mapping of QTL associated with root morphology traits. The
recombinant inbred lines were the result of a cross between indica cultivar CO39, which has
a fine root structure, and japonica, which has a thick root complex. One of the results of
single marker and iﬁterval mapping analyses performed by Champoux et al. was the key
finding that selecting for Moroberekan alleles at marker loci associated with presumed root
morphology QTL maybe an adequate course of action for altering the root phenotype. We
aim to reanalyze these data using the described confidence intervals, and in keeping with the
previous (Chﬁrchill and Doerge, 1994; Doerge and Churchill, 1996) analyses, the quantitative
trait of interest is root thickness (micrometers).

The reanalysis of these data serves to verify that the proposed confidence intervals for
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permutation p-values effectively account for the Monte Carlo error associated with sampling
from all data pérmutations, and to confirm the findings of the original work (Champoux
et al., 1995). 1000 data permutations were performe-d, and respective single marker test
statistics (t-tests) were used to estimate the comparisonwise p-value at each marker. 95%
confidence intervals for comparisonwise p-values were calculated for each marker and reported
when the data permutation resulted in non-zero p-values. The theoretical p-value based on a
t-distribution with 201 degrees of freedom was computed for each relevant marker. Since the
t-distribution is an appropriate reference distribution in this case, the theoretical t-based
p-values serve as good approximations of ‘the exact comparisonwise permutation p-values
estimated with the 1000 data permutations. If the confidence intervals for the p-values are
working as they should, any t-based p-value will fall within the confidence intervals for the
exact permutation p-values with approximate probability 0.95. We found that the approxi-
mate 95% confidence intervals for the exact permutation p-values contained their respective
t-based p-values for all 44 of the analysis points with non-zero p-value estimates. This perfor-
mance is perhaps somewhat better than would be expected, but it is important to note there
is dependence among the test statistics and among the confidence interval estimates. Fach
of the remaining 103 analysis points has a t-statistic that was never matched or exceeded
by any of its 1000 permutation-replicated t-statistics. Hence the exact permutation p-values
for these points are estimated to be zero, and no confidence interval calculation is possible.
These 103 analysis points have an average t-based p-value of 0.00009, standard deviation of
0.00036, and a maximum of 0.0026. Based on these findings the zero p-value estimates are

realistic in all of the 103 cases.
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3.2 Interval Mapping Analysis of Simulat_gd Data

A sample of 100' backcrdss individuals with four chromosomes and four QTL were simulated.
The trait value of the ** individual was determined using Y; = 2.50Q;1 +0.75Q;s2 + 1.00Q;3 +
1.00Q;4 + ¢;, where ¢; is a standard normal eﬁvironmental error term, with ad‘ditive effects
deﬁned-as Qi; = 1 if the ** individual is heterozygous at the gt QTL aﬁd 0 otherwise.
Chromosomes 1, 2, 3, and 4 are 102, 130, 169, and 70 cM in length, reépectively. A total of
46 markers are arbitrarily positioned throughout the genome - il on chromosome 1, 13 on
chromosome 2, 15 on chromosome 3, and 7 on chromosome 4. QTL 1 is 62 cM from the left
end of chromosome 1. QTL 2 is 44 cM from the left end of chromosome 2. Chromosome 3
has QTL 3 and QTL 4 at 17 and 147 cM, respectively from the left. No QTL are present on
chromosome 4. |
LOD scores were computed every 1 ¢cM on each chromosome as described in Lander
and Botstein (1989). The resulting test statistic profile for each chromosome is depicted
in Figure 2. Major peaks occur at 66 cM on chromosome 1 (LOD = 12.808), 24 cM on
chromosome 2 (LOD=2.894), and at 22 and 152 ¢cM on chromosome 3 (LOD=1.640 and
LOD=1.013, respectively). Examination of the profiles in Figure 2 reveals the only other
analysis points with large LOD scores are clearly linked to one of the four analysis points
above. Consequently, the subsequent permutation analyses will focus on these four points
(k= 4).
~ Only 53 data permutations were required to determine the experimentwise significance
of the four analysis points at the 0.10 level. An approximate 95% confidence interval for the
0.90 quantile of the distribution of permutation-replicated profile maximums was determined

to be [1.715, 2.346] using the methods outlined previously. The peaks on chromosomes 1 and

18



2 are judged significant (experimentwise) at the 0.10 level since 2.346 is less than the LOD
scores 12.808 and 2.894. The peaks on chromosome 3, on the other hand, fall short of
experimentwise significance at level 0.10 since 1.640 and 1.012 are less than 1.715. If the
goal is to determine éxperimentwise significance at level 0.05, 110 data permutations are
sufficient in ﬁhis case. An approximate 95% confidence interval for the 0.95 quantile of the
distribution of permutation-replicated profile maximums was determined to be [1.940, 2.659].
The peaks on chromosomes 1 and 2 are thus experimentwise significant at the 0.05 level.
Even 1000 data permutations are insufficient to determine the significance status of all
four points when considering 0.01-level experimentwise significance. An approximate 95%
confidence interval for the 0.99 qﬁantile was determined to be [2.801,3.530] using 1,000
randomly selected data permutations. The analysis point on chromosome 1 is clearly sig-
nificant while the points on chromosome 3 are clearly insignificant. The status of the point
on chromosome 2, however, is uncertain. Considering 94 additional randomly chosen data
permutations yielded [2.897,3.530] as an approximate 95% confidence interval for the 0.99
quantile of the distribution of permutation-replicated profile maximums. Hence, the second
analysis point is judged iﬁsigniﬁcant at the 0.01 e:xperimentwise significance level.
Confidence intervals for experimentwise permutation p-values can be computed for the
analysis points of interest on chromosomes 2 and 3 using equation (2). Point estimates and
approximate 95% confidence intervals are displayed in Table 1. The p-value estimates are
based on the 1094 data permutations used to estimate the 0.01-level experimentwise thresh-
old. No interval is provided for the first analysis point since its test statistic was exceeded
by none of the 1094 permutation-replicated profile maximums. If the true experimentwise
permutation p-va,lue‘is actually 0.01 or bigger, the chance of estimating the p-va,lﬁe to be zero

based on 1094 data permutation is extremely small (no larger than 0.99'%%* = 0.0000168).
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We can be quite confident that this analysis point is significantly linked to the trait.

Note that the confidence interval for the second analysis point includes 0.01, suggesting
that this analysis point may be significant at the 0.01 level. Examination of the threshold
confidence interval suggested insignificance at the 0.01 level using the same 1094 data permu-
tations. Such minor discrepancies are possible when analysis points are near the borderline.
If we consider 334 additional data permutations, the confidence interval for the p-value

becomes [0.0101, 0.0235], bringing it into agreement with the threshold-based analysis.

3.3 Interval Mapping Analysis of Recombinant Inbred Data

Continuing the prior analysis of the described root morphology data (Champoux et al.,
1995), interval mapping (Lander and Botstein, 1989) was used to compute LOD scores at
2 cM increments across each of the 12 rice chromosomes. The resulting LOD profiles are
displayed in Figure 1. The procedure described in Section 2.5 was used to determine the
smallest permutation sample size needed to obtain the 0.05-level experimentwise significance
for each of the many peaks in Figure 1. Initially, 100 permutations were analyzed yielding an
estimated experimentwise 0.05-level critical value of 2.644. The associated 95% confidence
interval for the exact threshold is (2.366, 5.793).

Based on only these first 100 permutations, it is safe to conclude that most of the peaks
in Figure 1 are easily significant at the 0.05 level because most of the corresponding LOD
scores exceed 5.793, the upper endpoint of the threshold confidence interval. Peaks whose
significance is less certain include the first two peaks on chromosome 2, the middle peak on
chromosome 7, the first peak on chromosome 8, and the peaks on chromosome 12. The LOD

scores associated with these peaks range from a low of 2.420 on chromosome 7 to a high of
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5.707 on chromosome 12.

After 142 permutations, all peaks are excluded from the 95% confidence interval for
the 0.05-level threshold. The point and interval estimates for the threshold are 2.934 and
(2.517,3.569), respectively. The middle peak on chromosome 7 falls below the lower endpoint
of the confidence interval while all other peaks exceed the upper endpoint of the confidence
interval. Thus, it is reasonable to declare all peaks — aside from the middle peak on chromo-
some 7 — significant at experimentwise level 0.05. This conclusion is correct provided that our
confidence interval for the threshold contains the true permutation threshold computed from
all possible data permutations. An additional 358 permutations were examined bringing the
total number of permutations to 500. Using all 500 permutation yields an interval estimate
for the exact permutation threshold of (2.670, 3.038). Our conclusions based on this interval
are no different than those obtained with the interval based on 142 permutations because
the former interval falls within the latter.

Champoux et al. (1995) reported evidence of significant association between genomic
region and root thickness on all chromosomes except chromosome 5. Our analysis suggests
significant association on all chromosomes because the maximum LOD score on chromosome
5 is 7.746. The discrepancy is the result of the standard for significance used by Champoux
et al. who only reported significant association if a marker on a chromosome had a LOD
score exceeding 4.0 and an F-statistic exceeding 19.22. These values were chosen to assure
very small significance levels for individual tests in hopes of appropriately controlling overall
type I error. Our analysis allows direct contfol of the overall type I error rate and is less

conservative than the approach used by Champoux et al. (1995).
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4 Discussion

Permﬁtation testing has become a popular tool for QTL researchers because of its validity
and effectiveness in a variety of realistic data analysis settings. The techniques presented
in this paper provide an effective way to control for the variability a;ssociated with permu-
tation testing in QTL mapping experiments. Without examining confidence intervals like
those proposed herein, there is no guarantee that a user-selected permutation sample éize
will be large enough to sufficiently reduce the ambiguity introduced by sampling from all
permutations. At the other extreme, user specified values of N may be larger than necessary,
resulting in inefficient use of computer time.

The intervals for p-values and thresholds are approximat-e confidence intervals because
they are based on the normal approximation to the binomial distribution. It is possible to
replace the asymptotic intervals by exact intervals based directly on the binomial distribu-
tion. Exact intervals, however, are more difficult to compute and provide only small gains in
accuracy. The dynamic method of selecting permutation sample size can bias the interirals
(asymptotic and exact) to some degree. When the test statistic at an analysis point falls
near the boundary of a confidence interval for a threshold, for example, there is a small
possibility that the final interval will be shifted artificially away from the test statistic value
due to the stopping criterion. Examining a fixed number of permutations before assessing
the stopping criterion substantially reduces the chance that such bias will have an imbortant
impact on QTL analyses.

It may be possible to develop a less conservative method of determining experimentwise
significance for secondary peaks in the profile of test statistics. A set of k¥ analysis points

of interest is singled out because the points are associated with the k largest peaks over
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the original profile of test statistics. The same basic procedure could be repeated for each
permuted data set to gauge the significance of the k peaks. The largest peak in the original
profile should be compared with the distribution of permutation-replicated profile maximums
as before. The second largest peak in the original profile could be compared with the
distribution of permutation-replicated second largest __peaks while, perhaps, maintaining‘_an
appropriate overall type I error rate. An analogous approach could be used for other lesser
peaks. Unfortunately, some judgement is required in determining the & largest peaks in a
given profile. It is difficult to know, for example, whether a lesser peak is simply an artifact
of close proximity to a larger peak.

We have extended current permutation methodology (Churchill and Doerge, 1994) to
include the variability inherent in any resampling procedure by 1’)roviding confidence inter-
vals for assessing both comparisonwise and experimentwise significance. Permutation based
confidence intervals maximize the benefits of the time and resources spent collecting QTL
data by improving the quality of the inference made from the data. Such improvements
naturally lead to a better understanding of the relationship between QTL and quantitative

traits.
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Table 1: Experimentwise permutation p-value estimates and confidence inter-

vals for a backcross sample of 100 individuals.

Chromosome Position® LOD P-Value® Confidence Interval®
1 66 12.808  0.0000 ok
2 24 2.804 0.01645 [0.009, 0.024]
3 22 1.640 0.2112 [0.187, 0.235]
3 152 1.013  0.6417 [0.613, 0.670]

2Distance in ¢cM from the first marker on the chromosome
bEstimated experimentwise permutation p-value based on 1094 data permutations

¢ Approximate 95% confidence interval the p-value based on 1094 data permutations
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Figure 1: LOD score interval mapping profiles for 12 rice chromosomes based
on recombinant inbred line data from the study of Champoux et al. (1995).
LOD scores are computed every 2 cM across each chromosome beginning at

the left marker.
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Figure 2: LOD score interval mapping profiles for each of four simulated chro-
mosomes from a backcross experiment comprised of 100 individuals, and total
of 46 markers arbitrarily positioned throughout the genome. The first QTL is
62 c¢cM from the left end of chromosome 1, the second QTL is 44 cM from the
left énd of chromosome 2, the third and fourth QTL are 17 cM and 147 cM,

respectively from the left end of chromosome 3, and chromosome 4 contains

no QTL.
Chromosome 1 Chromosome 2
127 12+
]

8 8
=] E a P
g | T ]

44 44

0 20 40 60 80 100 0 20 40 60 80 100 120
Pasition (cM) Position (M}
Chromosome 3 Chromosome 4

12 12

8 8
Q [=] 4
g g

4 44

b w
0 T T T T 0 T T
0 50 100 150 ] 20 40 60
Position (cM) Position (cM)

29





