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Abstract

In standard wavelet methods, the empirical wavelet coefficients are thresholded term
by term, on the basis of their individual magnitudes. Information on other coefficients
has no influence on the treatment of particular coeflicients. We propose a wavelet
shrinkage method that incorporates information on neighboring coefficients into the
decision making. The coefficients are considered in overlapping blocks; the treatment
of coeflicients in the middle of each block depends on the data in the whole block. The
asymptotic and numerical performances of two particular versions of the estimator are
investigated. We show that, asymptotically, one version of the estimator achieves the
exact optimal rates of convergence over a range of Besov classes for global estimation,
and attains adaptive minimax rate for estimating functions at a point. In numerical
comparisons with various methods, both versions of the estimator perform excellently.
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1 Introduction

Consider the nonparametric regression model

Y; = f(tz) + 0z (1)

where t; = i/n for i = 1,2,...n, o is the noise level, and the z; are i.i.d. N(0,1). The
function f(-) is an unknown function of interest.

Wayvelet methods have demonstrated success in nonparametric function estimation in
terms of spatial adaptivity, computational efficiency and asymptotic optimality. Standard
wavelet methods achieve adaptivity through term-by-term thresholding of the empirical
wavelet coefficients. To obtain the wavelet coeflicients of the function estimate, each indi-
vidual empirical wavelet coefficient y is compared with a predetermined threshold 7, and
is processed taking account solely of its own magnitude. Other coefficients have no influ-
ence on the estimate. Examples of shrinkage functions applied to individual coeflicients
include the hard thresholding function n*(y) = v - I(Jy| > 7) and the soft thresholding
function 7¢(y) = sgn(y) - (ly| — 7)+. For example, Donoho and Johnstone’s VisuShrink
[12] estimates the true wavelet coefficients by soft thresholding with the universal threshold
T = 0(2logn)*/2.

Hall, Kerkyacharian and Picard [15] and Cai ([4] and [5]) studied local block threshold-
ing rules for wavelet function estimation. These threshold the empirical wavelet coefficients
in groups rather than individually, making simultaneous decisions to retain or to discard all
the coefficients within a block. The aim is to increase estimation accuracy by utilizing infor-
mation about neighboring wavelet coefficients. Estimators obtained by block thresholding
enjoy a higher degree of spatial adaptivity than the standard term-by-term thresholding
methods. The multiwavelet threshold estimators considered by Downie and Silverman [14]
also utilize block thresholding ideas.

In the present paper, we propose a wavelet shrinkage method that incorporates into the
thresholding decision information about neighboring coeflicients outside the block of current
interest. The basic motivation is that if neighboring coefficients contain some signal, then
it is likely that the coefficients of current direct interest also do, and so a lower threshold
should be used. Two particular cases are considered. The NeighBlock method estimates
wavelet coefficients simultaneously in groups, with the aim of gaining the advantages of
the block thresholding method. The NeighCoeff approach is a special case that estimates
coefficients individually.

After Section 2.1 in which basic notation and definitions are reviewed, the two estimators
are defined in Section 2.2. We then investigate the two estimators both theoretically and
by simulation. We show in Section 3 that the NeighBlock estimator enjoys a high degree of
adaptivity and spatial adaptivity. Specifically, we prove that the estimator simultaneously
attains the exact optimal rate of convergence over a wide interval of the Besov classes with
p > 2 without prior knowledge of the smoothness of the underlying functions. Over the
Besov classes with p < 2, the estimator simultaneously achieves the optimal convergence
rate within a logarithmic factor. For estimating functions at a point, the estimator also
attains the local adaptive minimax rate.



The theoretical properties of NeighCoeff are discussed in Section 4. The estimator is
within a logarithmic factor of being minimax over a range of Besov classes, and shares the
pointwise optimality properties of NeighBlock. Technical details and proofs are given in
Section 6. ‘

In Section 5, a simulation study of the two estimators is reported, together with a com-
parison on a data set collected in an anesthesiology study. Both estimators have excellent
performance relative to conventional wavelet shrinkage methods; perhaps contrary to the
indications provided by the theoretical discussion, that of the NeighCoeff method is, if
anything, slightly superior. The estimators are appealing visually as well as quantitatively.
The reconstructions jump where the target function jump; the reconstruction is smooth
where the target function is smooth. They do not contain the spurious fine-scale structure
contained in some wavelet estimators, but adapt well to subtle changes in the underlying
functions.

The web site [6] contains SPlus scripts implementing the estimators, and additional
simulation results not included in the paper.

2 The estimation method

2.1 Notation and conventions

We shall assume that we are working within an orthonormal wavelet basis generated by

dilation and translation of a compactly supported scaling function ¢ and a mother wavelet

1. We call a wavelet 9 r-regular if 1 has r vanishing moments and r continuous derivatives.
For simplicity in exposition, we work with periodized wavelet bases on [0, 1], letting

Pt =D gt —1), YR => ¢u(t—1), forte[0,1]

lez lez

where
dik(t) = DP9t — k), pp(t) = 2 79(2t — k).

The collection {¢% ,, k=1,...,27; ¢%, § > jo > 0,k=1,...,27} is then an orthonor-
mal basis of L?[0, 1], provided the primary resolution level j, is large enough to ensure that
the support of the scaling functions and wavelets at level j, is not the whole of [0, 1]. The
superscript “p” will be suppressed from the notation for convenience.

An orthonormal wavelet basis has an associated exact orthogonal Discrete Wavelet
Transform (DWT) that is norm-preserving and transforms sampled data into the wavelet
coefficient domain in O(n) steps. We use the standard device of transforming the problem
in the function domain into a problem, in the sequence domain, of estimating the wavelet
coeflicients. See Daubechies [9] and Strang [21] for further details about the wavelets and
the discrete wavelet transform.

Suppose we observe the data Y = {y;} as in (1). We shall assume that the noise
level o is known. Let © = W - Y be the discrete wavelet transform of Y. Then © is an

n-vector with elements &, (k = 1,---,2%), which are the gross structure wavelet terms
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at the lowest resolution level, and éjk (j=1,---,J -1,k = 1,---,29), which are fine
structure wavelet terms. Since the DWT is an orthogonal transform, the coefficients are
independently normally distributed with variance o2.

For any particular estimation procedure based on the wavelet coefficients, use the no-
tation @ for the estimate of the DWT © of the values of f at the sample points. Up
to the error involved in approximating f at the finest level by a wavelet series, the mean
integrated square error of the estimation satisfies

E||f - fl} =n""El|© - OJ*.

We therefore measure quality of recovery in terms of the mean square error in wavelet
coefficient space.

2.2 The NeighBlock and NeighCoeff procedures

We now define the estimates studied in this paper. The estimator has the following stages:

1. Transform the data into the wavelet domain via the discrete wavelet transform: © =
wW.Y.

2. At each resolution level j, group the empirical wavelet coefficients into disjoint blocks
b} of length Lo. Each block b} is extended by an amount L; = max(1, [Lo/2]) in each
direction to form overlapping larger blocks B? of length L = Lo + 2L;.

3. Within each block b, estimate the coefficients simultaneously via a shrinkage rule
éj,k; = ,Bijéj’k, for all (], ]{3) € bZ

The shrinkage factor ,Bf is chosen with reference to the coefficients in the larger block

Bl
Bl =(1—-ALo®/S%)+ (2)
where 3
k= > 0 (3)
(j:k)EB]

We can envision Bf as a sliding window which moves Ly positions each time and,
for each given window, only the half of the coefficients in the center of the window
are estimated. The choice of the block length Ly and the threshold A are discussed
below.

4. Obtain the estimate of the function via the inverse discrete wavelet transform of the
denoised wavelet coefficients.

The procedure is simple and easy to implement, at a computational cost of O(n). We
shall consider two special cases, as follows:



NeighBlock: Set Ly = [(logn)/2] so that L = logn. This method aims to combine
the advantages previously found for block thresholding methods with those obtained
by using information about neighboring coefficients. In this case the threshold A is
chosen by a James-Stein procedure; see Remark 2 below.

NeighCoeff: Set Lo = 1 and L = 3, so that each individual coefficient is shrunk by an
amount that may also depend on its immediate neighbors. The threshold A - L is set
to 2logn, or A = (2/3) logn; see Section 4 for further details.

Remark 1: If L is not a power of two, then one or both of the bZ at the boundary is
shortened to ensure all the b{ are nonoverlapping. In the periodic case, the corresponding
B{ are kept of length L with b] at the center. If periodic boundary conditions are not being
used, then the b{ at the boundary are only extended in one direction to form B}, again of

length L.

Remark 2: In the NeighBlock procedure, the thresholding constant A is set to A, =
4.505..., which is the solution of the equation A — log A = 3. The value A, is derived from
an oracle inequality introduced in Cai [5]. The estimator then enjoys superior numerical
performance and asymptotic optimality, as our subsequent discussion shows. Instead of
using a fixed block length, the block length can be allowed to increase with the resolution
level; all the asymptotic results hold if we set the block length at level j to be [(log27)/2].

Remark 3: The estimator can be modified by averaging over every possible position of
the block centers. The resulting estimator sometimes has numerical advantages, at the cost
of higher computational complexity.

3 Optimality of the NeighBlock procedure

3.1 Global properties

As is traditional in the wavelet literature, we investigate the adaptivity of the NeighBlock
procedure across Besov classes. Besov spaces are a very rich class of function spaces. They
contain many traditional smoothness spaces such as Holder and Sobolev Spaces. We shall
show that NeighBlock enjoys excellent adaptivity across a wide range of Besov classes. Full
details of Besov spaces are given, for example, in DeVore and Popov [10].

For a given square-integrable function f on [0, 1], define the scaling function and wavelet
coefficients

Eik = (f, Djk)s ik = {f, ¥ix)-

The function f can be expanded into a wavelet series:

270 oo 20
Fl@) =" Eordior(®) + D Y Ointhju(x) (4)
k=1 J=jo k=1



Let £ be the vector of the scaling function coefficients, and for each j let §; be the vector
of the wavelet coefficients at level j.

Suppose @ > 0, 0 < p < 00 and 0 < ¢ < oo. Then, roughly speaking, the Besov
function norm of index (e, p,q) quantifies the size in an L, sense of the derivative of f of
order «, with ¢ giving a finer gradation; for a precise definition see DeVore and Popov [10].

Define s = a+1/2—1/p. For a given r-regular mother wavelet 1 with r > ¢, the Besov
sequence norm of the wavelet coeflicients of a function f is then defined by

€1l + 16155,

where
[o 0]

ol = 3 26y (5)
j=jo
It is an important fact (see Meyer [19]) that the Besov function norm || f||ss  is equivalent
to the sequence norm of the wavelet coefficients of f. The Besov class B"‘q(M ) is defined
to be the set of all functions whose Besov norm is less than M.
Denote the minimax risk over a function class F by

R(F,n) = infsup E||f, — |3
fn feF

where f, are estimators based on n observed data points. Donoho and Johnstone [11]
showed that the minimax risk over a Besov class B (M) is given by

R(Bg,(M),n) = p2e/(1420) o

If attention is restricted to linear estimates, the corresponding minimax rate of convergence

is n~", with
. a+(1/p_—1/p)
Ca+1/2+(1/p- - 1/p)’

Therefore the traditional linear methods such as kernel, spline and orthogonal series esti-
mates are suboptimal for estimation over the Besov bodies with p < 2.

We show in the following theorem that the NeighBlock method attains the exact optimal
convergence rate over a wide range of the Besov scales. We denote by C a generic constant
that may vary from place to place.

where p_ = max(p, 2). (6)

Theorem 1 Suppose the wavelet v is r-reqular. Then the NeighBlock estimator satisfies

sup B fy — f|* < Cn~2/C+2e) (7)
feBg (M)

for all M € (0,00),a € (0,7),q € [1,00] and p € [2, 0]

Thus, the NeighBlock estimator, without knowing the degree or amount of smoothness
of the underlying function, attains the true optimal convergence rate that one could achieve
knowing the regularity. The next theorem addresses the case of p < 2, and shows that the
NeighBlock method achieves advantages over linear methods even at the level of rates.
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Theorem 2 Assume that the wavelet ¥ is r-reqular. Then the NeighBlock estimator is
simultaneously within o logarithmic factor of minimaz for p < 2:

sup E”f; — f“2 S Cn—2a/(1+2a) (log n)(Z—p)/p(1.|_2a) (8)
feBZ (M)

for all M € (0,00), € [1/p,7),q € [1,00] and p € [1,2).

The proofs of these theorems are given in Section 6.

3.2 Local adaptation

We now study the optimality of the NeighBlock procedure for estimating functions at
a point. It is well known that for global estimation, it is possible to achieves complete
adaptation for free in terms of convergence rate across a range of function classes. That
is, one can do as well when the degree of smoothness is unknown as one could do if the
degree of smoothness is known. But for estimation at a point, one must pay a price for not
knowing the smoothness of the underlying function.

Denote the minimax risk for estimating functions at a point ¢y over a function class F
by X

R(F,n,ty) = iI}fSl;_p E(fa(to) — f(t0))?

n

Consider the Holder class A*(M). The optimal rate of convergence for estimating f(¢o)
with o known is n™” where p = 2a/(1 + 2a). Brown and Low [3] and Lepski [17] showed
that even when « is known to be one of two values, one has to pay a price for adaptation
of at least a logarithmic factor, They showed that the best one can do is (logn/n)? when
the smoothness parameter o is unknown. We call (logn/n)? the local adaptive minimax
rate over the Holder class A*(M). The following theorem shows that NeighBlock achieves
the local adaptive minimax rate over a wide range of Holder classes.

Theorem 3 Suppose the wavelets {$,} are r-regular with r > a. Let ¢y € (0,1) be fized.
Then the NeighBlock estimator f(to) of f(to) satisfies

sup E{f}(to) — f(to)}* < C(n~"logn)?/(+2e), )
feax(M)

3.3 Denoising property

In addition to the global and local estimation properties, the NeighBlock estimator enjoys
an interesting smoothness property which should offer high visual quality of the reconstruc-
tion. The estimator, with high probability, removes pure noise completely.

Theorem 4 If the target function is the zero function f = 0, then, with probability tending
to 1 as n — 00, the NeighBlock estimator is also the zero function, i.e., there exist universal
constants P, such that

P(f*=0)>P,—1, as n— o0 (10)



4 Properties of the NeighCoeff estimator

The NeighCoeff estimator is intuitively appealing and easy to implement. It can be shown
that the estimator is locally adaptive and is within a logarithmic factor of being minimax
over a wide range of Besov classes. This is the same asymptotic performance as VisuShrink.
We summarize the results without proof in the following theorems. We shall see subse-
quently that, in most cases, the estimator enjoys superior numerical performance to many
classical wavelet estimators, such as VisuShrink, SureShrink and TI-denoising estimators
in most cases. It even outperforms NeighBlock, even though that estimator apparently has
better asymptotic properties.

The first result shows that the global performance of the NeighCoeff estimator is simul-
taneously within a logarithmic factor of minimax over a wide range of Besov classes, and
the second result shows that NeighCoeff has the same good pointwise behavior as Neigh-
Block. Both results remain true if a ‘hard thresholding’ version of the estimator is used,
replacing the shrinkage factor 3 as defined in (2) by the factor I[S% > Ao?].

Theorem 5 Assume that the wavelet 1 is r-regular. Then the NeighCoeff estimator sat-
isfies
sup B f* — fI? < C(n~logn)?/(1+2) (11)
feBg (M)

for all M € (0,00), € (0,7),q € [1,00] and p € [1,00].

Theorem 6 Assume that the wavelet v is r-reqular with r > «. Let ty € (0,1) be fized.
Then the NeighCoeff estimator satisfies

sup  E(f3(to) — f(to))* < C(n™"logn)?/(+2), (12)
fFeA (M)

5 Numerical comparison

A simulation study was conducted to compare the numerical performance of the NeighBlock
and NeighCoeff estimators with Donoho and Johnstone’s VisuShrink and SureShrink as
well as Coifman and Donoho’s Translation-Invariant (TI) denoising method. SureShrink
selects the threshold at each resolution level by minimizing Stein’s unbiased estimate of
risk. In the simulation, we use the hybrid method proposed in Donoho and Johnstone [13].
The TI-denoising method was introduced by Coifman and Donoho [8], and is equivalent
to averaging over estimators based on all the shifts of the original data. This method has
various advantages over the universal thresholding methods. For further details see the
original papers.

We implement the NeighBlock and NeighCoeff estimators in the software package
S+Wavelets. The programs are available from the web site [6]. We compare the nu-
merical performance of the methods using eight test functions representing different level
of spatial variability. The test functions are plotted in Figure 1. Sample sizes ranging from
n = 512 to n = 8192 and root-signal-to-noise ratios (RSNR) from 3 to 7 were considered.
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The RSNR is the ratio of the standard deviation of the function values to the standard
deviation of the noise. Several different wavelets were used.

For reasons of space, we only report in detail the results for one particular case, using
Daubechies’ compactly supported wavelet Symmlet 8 and RSNR equal to 3. Table 1
reports the average squared errors over 60 replications with sample sizes ranging from
n = 512 to n = 8192. A graphical presentation is given in Figure 2. Different combinations
of wavelets and signal-to-noise ratios yield basically the same results; for details see the
web site [6].

The NeighBlock and NeighCoeff methods both uniformly outperform VisuShrink in
all examples. For five of the eight test functions, Doppler, Bumps, Blocks, Spikes and
Blip, our methods have better precision with sample size n than VisuShrink with sample
size 2n for all sample sizes where the comparison is possible. The NeighCoeff method is
slightly better than NeighBlock in almost all cases, and outperforms the other methods
as well. The NeighCoeff method is also better than TI-denoising in most cases, especially
when the underlying function is of significant spatial variability. In terms of the mean
square error criterion, the only conceivable competitor among the standard methods is
SureShrink. Apart from being somewhat superior to SureShrink in mean square error, our
methods yield noticeably better results visually. Our estimates do not contain the spurious
fine-scale effects that are often contained in the SureShrink estimator.

Though it would be interesting to include comparisons with the block thresholding
estimator of Hall et al. [15], we do not include such comparisons for two reasons. Their
estimator is not easy to implement, and furthermore simulation results by Hall et al. [16]
show that even the translation-averaged version of the estimator has little advantage over
VisuShrink when the signal to noise ratio is high. Our simulation shows that NeighBlock
uniformly outperforms VisuShrink in all examples, and indeed the relative performance
of VisuShrink is even worse for values of RSNR higher than the one presented in detail.
Therefore we expect our estimator to perform favorably over the estimator of Hall et al. in
terms of mean squared error, at least in the case of high signal-to-noise-ratio.

The curious behavior of some of the methods with the Waves signal calls for some
explanation. Throughout, the primary resolution level j, = [log, logn] + 1 was used for all
methods. Thus, jy = 3 for n < 2048, and j, = 4 for n = 4096 and 8192. This change in
the value of jy affects whether or not the high frequency effect in the Waves signal is felt
in the lowest level of wavelet coefficients. For j, = 3, the standard methods all smooth out
the high frequency effect to some extent, because of applying a soft threshold with fixed
threshold. An attractive feature of the NeighCoeff and NeighBlock methods is that they
are not sensitive to the choice of primary resolution level in this way, because the threshold
adapts to the presence of signal in all the coefficients.

Figure 3 shows a typical segment of the result of the four methods applied to the
inductance plethysmography data analyzed, for example, by Abramovich, Sapatinas and
Silverman [1]. It can be seen that VisuShrink smooths out the broad features of the
curve, while the SureShrink estimator allows through high frequency effects that are almost
certainly spurious.



6 Proofs

6.1 Sequence space approximation

We shall prove Theorem 1 and 2 by using the sequence space approach introduced by
Donoho and Johnstone in [11]. A key step is to use the asymptotic equivalence results
presented by Brown and Low [2] and to approximate the problem of estimating f from the
noisy observations in (1) by the problem of estimating the wavelet coefficient sequence of
f contaminated with i.i.d. Gaussian noise.

Donoho and Johnstone [11] show a strong equivalence result on the nonparametric re-
gression and the white noise model over the Besov classes BS (M). When the wavelet v
is r-regular with » > o« and p,q > 1, then a simultaneously near-optimal estimator in the
sequence estimation problem can be applied to the empirical wavelet coefficients in the
function estimation problem in (1), and will be a simultaneously near-optimal estimator in
the function estimation problem. For further details about the equivalence and approxima-
tion arguments, the readers are referred to Donoho and Johnstone [11] and [13] and Brown
and Low [2]. For approximation results, see also Chambolle et al. [7].

Under the correspondence between the estimation problem in function space and the es-
timation problem in sequence space, it suffices to consider the following sequence estimation
problem.

6.2 Estimation in sequence space by NeighBlock

Suppose we observe sequence data
Yir = Ok +n Yoz, 520, k=1,2,---,2 (13)

where zj;, are i.i.d. N(0,1). The mean array 6 is the object that we wish to estimate.
We assume that 6 is in some Besov Body ©; (M) = {0 : ||f]lss | < M}, where the norm
is as defined in (5) above. Make the usual calibration s = o +1/2 — 1/p. Donoho and
Johnstone [11] show that the minimax rate of convergence for estimating 8 over the Besov
body ©; (M) is n™2*/(1%28) 55 n — co. The accuracy of estimation is measured by the
expected squared error R(4,60) = E ¥, 4(0;5 — 0;x)%

We now approach this sequence estimation problem using a procedure corresponding to
NeighBlock. Let J = [log, n|. Divide each resolution level jy < j < J into nonoverlapping
blocks of length Ly = [(logn)/2]. Again denote by b] the i-th block at level j and similarly
define B! to be the larger block obtained by extending b by [(logn)/4] elements in each
direction. Define S to be the sum of the 3, over B}, by analogy with (3). Now estimate

0 by 6* with

) Yik forj<jo
=19 U—nT"NLo?/Sh)ryp  for (k) €4, jo<j<J (14)
0 fory>J
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For this estimator, we have the following minimax results, demonstrating that the
estimator attains the exact minimax rate over all the Besov Bodies @;,q(M ) with p > 2,
and the exact minimax rate up to a logarithmic term for p < 2.

Theorem 7 Define 6* as in (14). Then, as n — oo,

sup E|f* — 0|3 <

{ On—2a/(1+2a) forp > 2
05.4(M)

Cn~2e/(1420) (Jog n)2-P)/{p(1+20)}  for p < 2 and ap > 1.

The results of Theorem 1 and 2 follow from this theorem and the equivalence and the
approximation arguments discussed in Section 6.1.

6.3 Proof of the main results

We will prove Theorem 7. The proof of Theorem 4 is straightforward and the proof of
Theorem 3 is similar to a corresponding result in Cai [5]. A key result used in the proof of
Theorem 7 is the following oracle inequality.

Lemma 1 Assume that y;j and é;k are giwen as in (13) and (14) respectively. Then,
defining A, by A — log A, = 3, for each j and i

S E@, -0 < A(0®ntlogn A Y. 62,) +2n720% (15)
(4:k)€b] (3:k)€B]

The proof of this lemma is an extension of the proof of Theorem 1 of Cai [5]. For j,k in

B/ define A
65 = (1= n"\L0?/S3) 4 yin-

Since éjk = é;k for (4, k) in b!, extending the sum from b} to B!, and replacing 6* by 61,
can only increase the left hand side of (15). The argument of Theorem 9 and Lemma 2 of
Cai [5] shows that the inequality holds with these changes, completing the proof. 1

We also recall two elementary inequalities between two different £, norms, and a bound
for a certain sum.

Lemma 2 Let z € R™, and 0 < p; < ps < 00. Then the following inequalities hold:
1_1
[5]lp, < l|2llp, < mrr P2 ||z, (16)

Lemma 3 LetO0<a<land S={zecRf: ¥F 20<B, 2;>0,i=1,---,k}. Then
forT >0,

k
sup Y (z; AT) < B-71'7%
z€S ;1
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We can now return to the proof of Theorem 7. Let y and 6* be given as in (13) and
(14) respectively. Then,

J-1 oo

E|6* 0|2 = Z ZE( e 0;1)% + Z ZE(H}‘k — ij)2+ Z ZH?,C =51+ S5+ 85, (17)
J<jo k Jj=jo k j=J k

say. We bound the term S, by using Lemma 1. Let

(4,k)EB]

the sum of squared coeflicients within the block Bf . We then split up the sum defining
Sp into sums over the individual blocks &/, and apply the oracle inequality (15). Since
L ~logn and the number of blocks is definitely less than n, this yields

J-1 J-1 .
Sa=> D Bl —0ix)><C> Y (A Ac’n7'L) +2n7 0% (18)
j=jo k j=jo 1t

Note also that, since § € O3 (M), we have 27¢(|0;||, < M for each j. We now complete the
proof for the two cases separately.

The case p>2 For § € ©, (M), Lemma 2 implies that

1612 < (29)2575)][6;2 < 222G 270) = pp292ed, (19)

It follows that .
S1+ S3 < 2o 1g? 4 Z M?*9729 = o(n_z"‘/(”z"‘)), (20)

j=J

so that Sy + S3 can be neglected.
We divide the sum in (18) into two parts. Choose J; such that 27t & n'/(1+20)  Then,

Ji-1 , Ji—1
2 (AIAGPTIL) < Y Yot L < 02l < One () (21)

j=jo 1 j=jo i

and, making use of the bound (19),

J—1 . J-1 . J-1
Z Z(A{ Aa*n7lL) < Z ZA{ <2 Z 165115 < Cn~2e/(1420) (22)
j=J @ j=4 i j=J1

Combining (21) and (22) demonstrates that S, < Cn~2¢/(+22) completing the proof for
this case.
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The case p < 2 with ap > 1: For § € ©; (M), Lemma 2 now yields ||6;]]3 < [|6;]12 <
M?27%%, The assumption ap > 1 implies that > 1, so that

S3 < C Z 27%s < Cn~% < Cn~L.
j=J
Thus S; + S5 = o(n~22/(+22)) a5 before.
Now let J, be an integer satisfying 272 < n'/(+20)(Jog n)~(-P)/P(1+22) " Then by an
argument analogous to that leading to (21),

Ja—1 . Ja—1
NS (AIATIL) < YD S 0?0 L < On T2/ (20 (Jog )~ P)/p(420), (23)
i=jo 1 j=io 1

Turning to the other part of Sy, it follows by convexity that, for each j,
Z(AJ p/2 < Z Z 92 p/2 < 22 92 p/2 < QMP2IeP,

i i (J k)EBJ

Applying Lemma 3 with a = p/2, we have, after some algebra,
S S (AD A o?nTiL) < O (420 (1gg ) ~(2-P)/p(1420), (24)
j=J2 i

We complete the proof by combining the bounds (23) and (24), as in the case p > 2. 1
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Table 1: Mean Squared Error From 60 Replications (RSNR=3)

n || NeighCoeff | NeighBlock | SureShrink | TI-denoising [ VisuShrink
Doppler

512 2.22 2.36 2.91 5.13 6.76
1024 1.34 1.35 1.98 3.36 4.49
2048 0.83 0.82 1.23 2.24 2.96
4096 0.51 0.50 0.68 1.25 1.61
8192 0.30 0.26 0.43 0.77 1.05
HeauiSine

512 0.82 0.82 0.81 0.81 0.83
1024 0.59 0.63 0.56 0.62 0.63
2048 0.46 0.47 0.41 0.48 0.51
4096 0.28 0.36 0.30 0.29 0.36
8192 0.16 0.23 0.18 0.20 0.26
Bumps

512 6.73 8.38 7.17 15.90 20.98
1024 3.66 4.24 4.04 10.08 13.63
2048 2.11 ‘ 2.28 2.50 6.34 8.99
4096 1.08 1.75 1.54 342 5.09
8192 0.57 0.90 0.73 2.05 3.14
Blocks '

512 5.49 6.30 5.68 10.45 11.84
1024 3.78 4.09 3.65 7.37 8.29
2048 2.28 2.42 2.16 4.99 5.55
4096 1.39 1.96 1.42 2.92 3.38
8192 0.83 1.23 0.95 1.94 2.32
Spikes

512 1.92 2.19 2.00 4.88 6.13
1024 1.18 1.31 1.35 3.11 4.00
2048 0.67 0.70 0.76 1.80 2.48
4096 0.38 0.49 0.42 0.71 1.19
8192 0.22 0.25 0.25 0.41 0.78
Blip

512 1.06 1.33 1.50 1.80 1.94
1024 0.70 0.83 0.98 1.20 1.36
2048 0.39 0.43 0.55 0.77 0.93
4096 0.24 0.39 0.37 043 0.52
8192 0.13 0.19 0.21 0.28 0.34
Corner

512 0.67 0.74 0.76 0.61 1.06
1024 0.36 0.41 0.40 0.40 0.69
2048 0.19 0.21 0.22 0.26 0.43
4096 0.11 0.15 0.13 0.12 0.16
8192 0.06 0.07 0.06 0.07 0.10
Wave

512 2.65 2.84 3.15 5.75 7.14
1024 1.36 1.43 2.90 3.67 5.08
2048 0.55 0.54 3.18 2.22 3.27
4096 0.25 0.23 0.20 0.27 1.27
8192 0.14 0.13 0.12 0.16 0.70

15




Doppler HeaviSine

-10 0 10
20 -10 0 10

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Bumps Blocks

0 20 40 60
-10 0 10 20 30

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Spikes Blip

010 30 50
S
0 20 30 40

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Corner Wave

-30-20-10 0 10
20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Test functions. Doppler, HeaviSine, Bumps and Blocks are from Donoho and
Johnstone [12]. Blip and Wave are from Marron et al. [18]. The test functions are
normalized so that every function has standard deviation 10. Formulae for all the functions
are given in Cai [5]
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NeighCoeff vs VisuShrink NeighCoeff vs SureShrink
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Figure 2: RSNR=3. The vertical bars represent the ratios of the MSEs of various estimators
to the corresponding MSE of the NeighCoeff estimator. The higher the bar the better the
relative performance of the NeighCoeff estimator. The bars are plotted on a log scale and
are truncated at the value 2 of the original ratio. For each signal the bars are ordered from
left to right by the sample sizes (n=>512 to 8192).

17



0.50

Te)
ﬂ: 4
o
— NeighCoeff
-------- NeighBlock
o -~-= VistuShrink
< —— Sureshrink
(e}
250 350 400

Figure 3: Curve estimates for a segment of the inductance plethysmography data. ——
— NeighCoeff; ------ NeighBlock; — — — VisuShrink; — — SureShrink. The VisuShrink
estimate smooths out the broad features, while the SureShrink estimate contains high
frequency effects near times 300 and 335, both of which are presumably spurious.
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