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Abstract

Discrete-time Markov chains have been successfully used to investigate treatment
programs and health care protocols for chronic diseases. In these situations, the transition
matrix, which describes the natural progression of the disease, is often estimated from a
cohort observed at common intervals. We summarize methods to obtain the maximum
likelihood estimate of the transition matrix when the cycle length of the model coincides
with the observation interval, the cycle length does not coincide with the observation

interval, and when the observation intervals are unequal in length.

1. Introduction

The discrete-time homogeneous Markov chain is a popular and often effective model to de-
scribe the progression of a chronic disease' 3. As a result, researchers have used this model to
assess the ramifications of different treatment programs and investigate the cost-effectiveness
of different health care protocols?~'C. The popularity of this model is due primarily to two
factors. First, chronic diseases can often be described in terms of distinct health states and
the Markov chain is a simple yet powerful model to describe progression. Second, this model
is easy to construct and study through matrix analysis and/or simulation.

The usual discrete-time Markov chain limits the description of each subject’s history to
equally spaced time points. The interval between these time points is known as the cycle
length. In disease modeling, this length is often set to an interval associated with subject
follow-ups and inference of the transition matrix is drawn from observational cohort data
where each subject is observed at common intervals. Difficulties in estimation have been noted
when the observation intervals are of varying length and/or do not coincide with the cycle
length®11:12, While a Bayesian approach to this problem in the context of a non-homogeneous
model has been suggested!!, there has been surprisingly little written on estimating the
probability transition matrix for this situation or in general®®. This is most likely due to the



fact that the discrete-time model is often considered a special case of the continuous-time
model for which various numerical algorithms have been proposed!*5.

There is, however, a subtle difference between the two models that can alter the maximum
likelihood estimate of the probability transition matrix. For the continuous-time model, the
process is defined to be Markov at any discrete cycle length. For the discrete-time process,
this is not the case. The process is Markov for any cycle length that is a multiple of the
original length but it is not necessarily Markov for other cycle lengths. This is a variation
of the embeddability problem of homogeneous Markov processes!®1®. While the continuous-
time model restricts the parameters to guarantee the Markov condition for all cycle lengths,
the discrete-time model does not have this restriction and thus may better explain the data
with the potential loss of not being Markov for all cycle lengths.

We do not want to argue the merits of continuous versus discrete-time models but simply
point out that each model is being used in practice and deserves attention. To aid those using
the discrete-time model, we describe methods to obtain the maximum likelihood estimate
of the transition matrix. The organization of this paper is as follows: In Section 2, we
describe the discrete-time Markov model in terms of its probability transition matrix. We
then describe estimation techniques in relation to three common situations; 1) when the
observation intervals coincide with the cycle length, 2) when the observation intervals do not
coincide with the cycle length, and 3) when the observation intervals are unequal in length.
In Section 4, we address two examples using these techniques followed by a discussion.

2. Discrete-Time Homogeneous Markov Model

Suppose a chronic disease can be classified into h distinct, non-overlapping health states. A
subject’s disease history can then be described by the movement through these states over
time. The discrete-time Markov model describes this movement by modeling the states at
distinct times termed cycles. This model does not concern itself with the progression between
cycles and simply models the health state at the end of each cycle.

2.1 Transition Matrix

The key to the Markov model is the Markov property. This states that given the entire
past history of the subject, the present state depends only on the most recent past state.
This memoryless property allows the model to be described solely in terms of a single-cycle
transition matrix. The transition matrix contains the probabilities, {f;r,c = 1,2,...,h},
where 6., represents the probability of moving from state r to state ¢ by the end of a cycle
and Z’:Zl 0.c = 1 for all r. We assume a common cycle length so these probabilities are the

same for each cycle.



As an example, consider a progressive disease with five health states ordered from least
to most severe. A progressive disease means that the health state of an individual can never
improve (6, = 0 for ¢ < r) and is represented by the transition matrix M.
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States 1-4 are called transitional states while State 5 is an absorbing state because once a
subject is in this state, the subject remains in this state.

Since the transition matrix describes the progression, any model summary is a function of
the single-cycle matrix. For example, the transition matrix for a cycle double in length would
involve multiplying the single-cycle matrix with itself. Likewise, the transition matrix for a
cycle half the original length would involve finding a half-cycle matrix such that the square
of this matrix is the single-cycle matrix. This solution is not simply obtained by converting
each probability in the single-cycle matrix to a rate and recomputing the probability for half
the time. This is only appropriate if interest is restricted to a single probability. Appropriate
methods need to take into account the dependent structure of the transition probabilities over

cycles.

3. Estimation

In this section, we discuss three specific situations where inference of the transition matrix
is drawn from longitudinal cohort data with observation intervals common to all subjects.
We restrict our attention to obtaining the maximum likelihood estimate of the transition
matrix for three specific cases increasing in complexity. The first case is when the observation
intervals are constant and coincide with the cycle length. This represents the ideal situation.
The second case is when the observation intervals are constant but do not coincide with
the cycle length. The method discussed in this section can only be used in certain situations.
When it cannot, the method discussed for the third case is possible. The third case represents
the most common situation when the observation intervals are not equal in length. The cycle

length may or may not coincide with one of these intervals.



3.1 Observation Intervals Coincide

Suppose you have a disease with h distinct health states. You want to estimate a two-year
transition matrix and the data is from a cohort that was followed for four years with two year
observation intervals. We will label the three health states for individual 7 as s;0, ;0 and s;4.

In this case, the observed two-year intervals coincide with the desired two-year transition
matrix. Because our model is homogeneous, the observed transitions between the first two
years can be pooled with the transitions between the second two years to form an observed

two-year transition count matrix

ny1 N2 ... Nih

N21 N2z ... TMNzp
T= ) . . : )

np1 Np2 ... Nhh

where n,. is the number of occurrences where s;p = r and s;3 =cor s;2 =7 and s;4 = c.
Given the observed count matrix, the maximum likelihood estimate of the transition ma-

trix is simply the row proportions of 7',

where
h
Orc = nrc/ E Nyj.
Jj=1

This estimation technique is commonly used and is presented here as a reference for the other

two situations!3.

3.2 Observation Intervals Do Not Coincide

Let L, be the common observation interval and L. the desired cycle length. The maximum
likelihood estimate of the transition matrix ﬂo, associated with the cycle length L,, is ob-
tained using the methods of Section 3.1. By the invariance property, the maximum likelihood
estimate of the transition matrix associated with cycle length Ly is

M, = M¥
where k = Lg/L,. For example, if in the previous example a one-year rather than a two-year

transition matrix were desired (L, = 2 and Lg = 1), one would take the square root of the

the estimated two-year transition matrix (k = .5).



Computation of this matrix is straightforward from the decomposition of M, into its
eigenvalues and eigenvectors (spectral decomposition). Based on this decomposition, the

h x h matrix ]/\Zo can be expressed as

M, = PDP1
where
M 0 -0
p=| 0 Ao :
: ) .0
0 ... 0 M

and A; is the ith eigenvalue and its associated eigenvector is the i¢th column of P. It then
follows that

Mk = ppkp-1
where
)‘If 0O .- 0
pe—| O X :
: .0
0 ... 0 X

The eigenvalues are raised to the power k but the eigenvectors do not change.

This method is very similar to one method used to obtain the MLE estimate of the
continuous-time transition matrix!*. However, while this always works in the continuous-time
case, it does not always work in the discrete-time case. Recall that a discrete-time model is
not necessarily Markov at all cycle lengths. This is comparable to saying the eigenvalues of
the transition matrix can be negative. While the continuous-time model guarantees these
eigenvalues to be non-negative, the discrete-time model does not. Provided the estimated
transition M is positive semidefinite (all the eigenvalues are non-negative), this method will
allow you to compute the MLE directly. In situations where L, is even and M is not positive
semidefinite, the method described in the following section can be used.

3.3 Unequal Observation Intervals

In many situations, the observation intervals may be unequal in length!!. As an example,
suppose a one-year transition matrix is desired but the cohort was observed at year two and
three. In this situation, the one-year transition matrix could be estimated using only the year
two to three information but this throws away half of the observed data. Ideally one would



like to use all the information. We use the EM algorithm, an iterative method consisting of
two steps, to compute the maximum likelihood estimate!”. The E-step imputes the missing
data by computing their expected value. The M-step pretends the imputed data is the true
data and maximizes the likelihood. This is repeated until the results stabilize.

Consider the situation where the observation intervals and cycle length coincide. If n,.
represents the number of individuals that move from state r to state c in one cycle, the
likelihood function is

R R
r6) =T IT e
r=1c=1
and the method of Section 3.1 provides the MLE of 6.

For this situation, there are T observation intervals which we assume are multiples
(k1,ka, ..., kr) of the cycle length. The missing data are the health states for each indi-
vidual at the unobserved cycles. Thus the EM algorithm involves imputing the data using
their expected values and then using the methods of Section 3.1 to obtain a new estimate
of the transition matrix. This is repeated until the transition matrix stabilizes. An initial
transition matrix is needed to start the algorithm. We recommend starting values based on
ignoring some of the data and using the methods described in Sections 3.1 or 3.2 to estimate
the matrix. Convergence to the MLE is not guaranteed {may converge to local maximum) so
several initial transition matrices are recommended.

For the E-step, we use the estimated single-cycle transition matrix to compute the prob-
ability of each path a subject could have followed to end up where he/she did after k; cycles.
For example, given a one-year transition matrix M, the two-year transition probabilities are
given by computing M x M. If we label the one-year transition matrix

f11 b2 -+ Oip
01 O -+ Oap

M = . . »
Or1 On2 -+ Opn

this product can be expressed in terms of the one-year transition probabilities as

Yoo 0161 Ty 01582 oo Xy O150n
M ox M = D=1 0201 305y 025052 0 305 02i0n
i Onifin oy Onbiz o Ty Onsbin



where each probability product (6,;0;c) represents one possible path from the initial state r
to state ¢ after two cycles (years).

Let us denote the number of observed subjects moving between state r and state c after k;
cycles as n¥:. Given the probability of each possible path, the remainder of this step involves
estimating the number of subjects who follow each of these paths, given the observed data,
and then tallying the number of single-cycle transitions. In our h state model, there are h
paths in each cell of the two-year transition matrix. Each one of the individuals in that cell
must have followed one of the h paths. The expected number of individuals to follow each
path is based on the relative probability of each path (multinomial distribution). For example,
in the upper left cell, the probability of an individual following the path (1 =1 — 1) is

011911
S 01363

So the expected number to have followed this path is

Pl—-1-1|1=27=21)=

n2, ;911911 .
Zj:l 015051

The expected number of one-cycle transitions is then a bookkeeping exercise. For example,
the path 1 — 1 — 1 involves two 1 — 1 transitions and the path 1 —+ 2 — 1 involves a 1 — 2
transition and a 2 — 1 transition. A single-cycle transition count matrix is generated and the
M-step estimates a new transition matrix. This matrix is used to redefine the probability of
each path in the next iteration.

The number of paths depends on the number of health states h, the number of cycles be-
tween observations k;, and any restrictions imposed on the transition matrix (e.g. progressive
disease). While the number of paths can be quite large, it is easy for a computer to handle.
The appendix contains a description of one possible algorithm for the E-step.

4. Examples

4.1 Swiss HIV Cohort Study

Researchers constructed a homogeneous Markov chain to describe the monthly progression
of HIV-infected subjects at the greatest risk of developing Mycobacterium avium complex
(MAC) infection®. This progression included the possibility of movement between three
distinct CD4-cell count ranges (with and without AIDS). Estimates of the monthly tran-
sitional probabilities are based on data from the Swiss HIV cohort study (SHCS). This is a
multi-center, observational study where HIV-infected patients have fairly regular six month



follow-up visits”®. To protect the authenticity of the SHSC data set, the following table of
transitional counts is based on only a fraction of the entire SHSC data set.

Observed Six-Month Transitions - CD4 cell count(1993-1995)

Cell Cell Count
Count 0-49 50-74 75-UP
0-49 |189 8 3
50-74} 93 97 20
75-UP| 37 70 293

Computing the row percentages, the estimated six-month transition matrix is

. 9450 .0400 .0150
Me = 4429 4619 .0952 |.

.0925 1750 .7325

For this analysis, the desired cycle length is one month. To estimate the transition matrix

for this interval, we decompose ]/VI\G. Using the eigen function in Splus, the matrices P and
D are

—-1.0000 -0.1300 -0.0623 1.0000 0 0
P=] -1.0000 0.1898 1.0624 D= 0 0.7505 0
—1.0000 11795 —0.5244 0 0 0.3889

Taking the sixth root of D and remultiplying the matrices, the estimated one month transition
matrix is

. 9885 .0091 .0024
My =] .1032 .8724 .0244 |.
0073 .0460 .9467

4.2 EM Example

Because the number of potential paths grows rapidly, this example consists of a simulated
data set from a two state model with observations at the second and third cycles. A one
month transition matrix is desired. This is a small enough problem that the EM algorithm
could be done using a spreadsheet.



Observed Two-Month Transitions Observed One-Month Transitions

Health Health State Health Health State
State 1 2 State 1 2

1 323 30 1 205 21

2 148 65 2 88 42

The E and M steps are detailed below. The E-step equations combine the observed one
cycle transitions (first total in each equation) with the imputed number of one cycle transitions
based on the observed two cycle transitions. In this case, each rc cell in the two cycle transition
matrix is a sum of two path probabilities (6,161 + Or202¢)-

As initial values, we used the estimated one-year transition matrix ]/V.f\l and the square

root of M\z which are

=\ 9421  .0579 = ( .9071 .0929
(Mz) - ( 4729 5271 ) M, = ( .6769 .3231 ) )
Convergence occurred in about 20 iterations for both cases. The final matrix is

T — (92280772
EM = | 5623 4377 /-

E-Step

0116; 810, 5.0
1 = 205+ 2(323) A—,\H*‘li*—'z— 4+ 30 M—ll_lf__:\__ +148 | —— 21 1/]\. _
011011 + 012621 011612 + 012022 021611 + 022021

A = 21+323 (202 ) g9 M)Hﬁ _ mb2
611611 + 61202 011012 + G12022 021012 + 022620

0,20: 001011 -+ Oas. 8210,
fay = 884323 [ei20f ) | ygg(fuafutOmbnl) o Ombr2
011611 + 012621 021011 + 022021 021612 + 022022

fiay = 4243021292 )48 - Ombn +2(65) L
011612 + 012622 021011 + O22021 021012 + 022022

M-Step
~ n11 "y 112
911 = = = 912 ==
711 + N2 n11 +ni2
§ _ 21 o 722
21 — <=~ 11 ==
N21 + Nag ng1 + Noa



5. Conclusions

Although not discussed, model fit and accounting for uncertainty in the estimated matrix
are also very important since most model summaries, such as life expectancy, are a func-
tion of this matrix. For fit, a likelihood ratio, or asymptotically equivalent chi-squared test
statistic is described in Anderson and Goodman'3. Confidence intervals based on bootstrap
techniques!® are implemented in Sendi et al.” and based on large sample theory in Anderson
and Goodman'3. A Bayesian approach to estimation (and uncertainty) has been described
in Craig and Newton!! for a non-homogeneous Markov chain.

With the growing popularity of discrete-time Markov chains, we feel it is important to
describe appropriate techniques to estimate the transition matrix. While methods for the
continuous-time Markov chain have been available in the literature for some time, we are un-
aware of any sources which summarize the techniques available for the homogeneous discrete-

time chain.

REFERENCES

1. Beck, J.R. and Pauker, S.G. *The Markov process in medical prognosis’, Medical Deci-
sion Making 3, 419-458 (1983).

2. Sonnenberg F.A. and Beck, J.R. 'Markov models in medical decision making: A practical
guide’, Medical Decision Making 13, 322-338 (1993).

3. Briggs, A. and Sculper, M. ’An introduction to Markov modeling for economic evalua-
tion’, Pharmacoeconomics 13, 397-409 (1998).

4. Dasbach, E.J., Fryback, D.G., Newcomb, P.A., Klein, R. and Klein, B.E.K. Cost-
effectiveness of strategies for detecting diabetic retinopathy’, Medical Care 29(1), 20-39
(1991).

5. McCarthy, B.D., Wong, J.B., Munoz, A., Sonnenberg, F.A. "Who should be screened
for HIV infection?’, Archives of Internal Medicine 153, 1107-1116 (1993).

6. Chancellor, J.V., Hill, A.M., Sabin, C. A., Simpson, K.N., and Youle, M. 'Modelling
the cost effectiveness of Lamivudine/Zidovudine combination in HIV infection’, Phar-
macoeconomics 12(1), 54 —66 (1997).

7. Sendi P.P., Bucher H.C., Craig B.A., Pfluger D., and Battegay M. 'Modeling disease
progression in HIV-infected patients without AIDS in the era of antiretroviral combina-
tion therapy’, 12th World AIDS Conference, June 28 - July 3, 1998, Geneva, Switzerland
(abstract, poster #43474).

10



10.

11.

12.

13.

14.

15.

16.

17.

18.

. Garg, S.K., Marshall G., Chase, H.P., Jackson, W.E., Archer, P., and Crews, M. 'The

use of the Markov process in describing the natural course of diabetic retinopathy’,
Archives of Ophthalmology 108, 1245-1247 (1990).

Sendi P.P., Craig, B.A., Pfluger D., Gafni, A., and Bucher, H.C. 'Stepwise model val-
idation of disease models with application to Mycobacterium avium complex infection

in HIV disease’, under review.

Freedberg, K.A., Scharfstein, J.A., Seage I1I, G.R., Losina, E., Weinstein, M.C., Craven,
D.E., and Paltiel, D.A. "The cost-effectiveness of preventing AIDS-related Opportunistic
Infections’, Journal of the American Medical Association, 279, 130~136 (1998).

Craig B.A. and Newton, M.A. "Modeling the history of diabetic retinopathy’ in Case
Studies in Bayesian Statistics III, C. Gatsonis et al. eds, New York: Springer-Verlag,
305-323 (1997).

Miller, D.K. and Homan, S.M. 'Determining transition probabilities: Confusions and
suggestions’, Medical Decision Making, 14: 52-58 (1994).

Anderson, T.W. and Goodman, L.A. *Statistical inference about Markov chains’, Annals
of Mathematical Statistics, 28, 89-110 (1957).

MAP Workshop, 'Markov models’ ,Statistics in Medicine, 12, 2127 — 2130 (1993).

Kalbfleisch, J.D. and Lawless, J.F. "The analysis of panel data under a Markov assump-
tion’, Journal of the American Statistical Association, 80, 863-871 (1985).

Kingman, J.F.C. "The imbedding problem problem for finite Markov chains’, Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1, 14-24 (1962).

Dempster, A.P., Laird, N.M., and Rubin, D.B. 'Maximum likelihood from incomplete
data via the EM algorithm’, Journal of the Royal Statistical Society 39, 1-38 (1977).

Efron, B. and Tibshirani, R.J. ’An introduction to the bootstrap’, Chapman & Hall.
New York, 168-199 (1993).

11



APPENDIX

We briefly describe a matrix-oriented method to do the E-step. Consider a hx h single-cycle
transition matrix M and data observed at T unique interval lengths equal to k¢ : ¢t =1,2,...,T
cycles. For each of these intervals, the E-step involves 1) calculating the probability of each
possible path, 2) obtaining the expected number of subjects to follow each path, and 3)
tallying the number of single-cycle transitions.

Since the procedure is similar for each cycle, we focus on a single interval equal to % cycles.
Consider constructing the following h* x h matrix P using the following iterative procedure
starting with P, = M

r=12,..
Py(h(r = 1)+ 1, j) = Pe—1(r,c) x M(c,5) 4 ¢=1,2,...,h
j=1,2

In other words, the first row of Py is the Kronecker product of the first element in P;_; and
the first row of M. The second row is the Kronecker product of the second element Pj,_1(1, 2)
and the second row of M and so on. The matrix P contains all possible paths of length ¥ and
has these paths arranged such that each column ¢ contains all paths that end in state ¢ with
the first h*~! rows containing the paths that start in state 1, the next h*~! rows containing
the paths that start in state 2, and so on. This allows easy computation of the expected
number of subjects to follow each path since it arranges all the possible paths in adjacent
rows and a single column.

In the construction of each of the probabilities in Py, k single elements of M were multiplied
together. We use the multiplication pattern to tally the single-cycle transitions. Let 1\7k (r,c)
represent the expected number of subjects to follow the path described in row r and column
c of the P,. The expected number of single-cycle transitions is

k—1hI"Y B h'“‘l"

Are = > D). (s(c by by 1) + R*F17HE — 1) +m — 1, §)

=1 i=1 j=1 m=

=
[

+ Z]Vk (r+h(i—-1),¢

=

=

where s(c, h, k,1) = R¥~17}(h(r — 1) + ¢ — 1). The variable ! represents the /th ordered single-
cycle transition of a path. We’re summing together each J\Afk that contains a rc transition in
the Ith position. The second sum represents this process for the last single-cycle transition in
each path. It is separate because the rc transition is only possible in one column.
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We recommend the reader construct some P matrices in terms of single-cycle transitions
to get an idea of the ordering. For example, consider the situation where subjects are observed
after k = 3 cycles. If this were a h = 2 state model,

611011611 611011012
011012621 611012022
012021611 612021012
012022021 012022022
021011611 621011612
021012021 621012022
0220216011 622021012
022022621 022022022

P
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